
BAYESIANISM
▪ (methods)
▪ Parameter confidence
▪ Model choice: model weighting

FREQUENTISM
▪ (methods)
▪ Parameter confidence
▪ Model choice: hypothesis testing

EMPIRICISM
▪ Evaluating model fit
▪ Model choice: holdout evaluation

PUTTING THE JIGSAW TOGETHER

The Generalization Jigsaw



Bayes’s rule, done right

ℙ 𝑋 = 𝑥 𝑌 = 𝑦 =
ℙ 𝑋 = 𝑥 ℙ 𝑌 = 𝑦 𝑋 = 𝑥

ℙ 𝑌 = 𝑦
 when ℙ 𝑌 = 𝑦 > 0

Pr𝑋 𝑥 𝑌 = 𝑦 =
Pr𝑋 𝑥  Pr𝑌 𝑦 𝑋 = 𝑥

Pr𝑌 𝑦
 when Pr𝑌(𝑌) > 0

For two discrete random variables 𝑋 and 𝑌,

For two discrete or continuous random variables 𝑋 and 𝑌,

§5

What do these “conditional likelihoods” even mean?



Joint distribution

The joint pmf of (𝑿, 𝒀)
Pr𝑋,𝑌 𝑥, 𝑦 = ℙ 𝑋 = 𝑥, 𝑌 = 𝑦

def rxy():
    x = np.random.randint(low=-5, high=6)  # from -5 to +5 inclusive
    y = np.random.binomial(n=6, p=(x/6)**2)
    return (x,y)

§5.1



Marginal random variables

The marginal of 𝒀
Pr𝑌 𝑦 = ℙ 𝑌 = 𝑦

= ෍
𝑥

ℙ(𝑋 = 𝑥, 𝑌 = 𝑦)

= ෍
𝑥

Pr𝑋,𝑌(𝑥, 𝑦)

def rxy():
    x = np.random.randint(low=-5, high=6)  # from -5 to +5 inclusive
    y = np.random.binomial(n=6, p=(x/6)**2)
    return (x,y)

§5.1

by the Sum Rule

The joint pmf of (𝑿, 𝒀)
Pr𝑋,𝑌 𝑥, 𝑦 = ℙ 𝑋 = 𝑥, 𝑌 = 𝑦



Conditional random variables

ℙ 𝑋 = 𝑥|𝑌 = 3 =
ℙ(𝑋 = 𝑥, 𝑌 = 3)

ℙ(𝑌 = 3)
=

Pr𝑋,𝑌(𝑥, 3)

Pr𝑌(3)

def rxy():
    x = np.random.randint(low=-5, high=6)  # from -5 to +5 inclusive
    y = np.random.binomial(n=6, p=(x/6)**2)
    return (x,y)

def rx_given_y():
    while True:
        x,y = rxy()
        if y == 3: break
    return x

Sample space:

Code to generate values from it:

We can think of “𝑿 conditional on 𝒀 = 3” 
as a random variable …

We’ve provided a valid probability mass function:

§5.1

def rx_given_y():
    Ω = {-5,...,5}
    p = [pmf3(x) for x in Ω]
    return np.random.choice(Ω, p=p)

i.e. take the Y=3 row,
then rescale it to sum to 1

QUESTION. What is 𝑿 conditional on 𝒀 = 3?



Conditional random variables

def rxy():
    x = np.random.randint(low=-5, high=6)  # from -5 to +5 inclusive
    y = np.random.binomial(n=6, p=(x/6)**2)
    return (x,y)

§5.1

We define the conditional random 
variable, written 𝑋 𝑌 = 𝑦 , by 
specifying its likelihood:

Pr 𝑋|𝑌=𝑦 𝑥 =
Pr𝑋,𝑌(𝑥, 𝑦)

Pr𝑌(𝑦)

This likelihood is also written Pr𝑋(𝑥|𝑌 = 𝑦).

i.e. take the Y=y row 
from the joint pmf, 
then rescale it



Conditional random variables (continuous case)

def rxy():
    x = np.random.uniform(-1,1)
    y = np.random.normal(loc=x**2, scale=0.1)
    return (x,y)

The marginal for 𝒀

Pr𝑌 𝑦 = න
𝑥

Pr𝑋,𝑌(𝑥, 𝑦)  𝑑𝑥

§5.1

Take the Y=0.6 slice of the joint pdf,
then rescale it so it integrates to 1
i.e. so we get a legitimate pdf.

(Rescale it by dividing by PrY(0.6)
where PrY(⋅) is the marginal for Y.)

QUESTION. What is 𝑿 conditional on 𝒀 = 0.6?



Conditional random variables (continuous case)

def rxy():
    x = np.random.uniform(-1,1)
    y = np.random.normal(loc=x**2, scale=0.1)
    return (x,y)

We define the conditional random variable 
(𝑿|𝒀 = 𝒚) by specifying its likelihood:

Pr𝑋 𝑥 𝑌 = 𝑦 =
Pr𝑋,𝑌(𝑥, 𝑦)

Pr𝑌(𝑦)

§5.1

Take the Y=0.6 slice of the joint pdf,
then rescale it so it integrates to 1
i.e. so we get a legitimate pdf.

QUESTION. What is 𝑿 conditional on 𝒀 = 0.6?

(Rescale it by dividing by PrY(0.6)
where PrY(⋅) is the marginal for Y.)



Bayes’s rule

Bayes’s rule is true for any pair of random variables 𝑋, 𝑌.
It’s only useful for “sequential models” i.e. when the question tells us Pr𝑋(𝑥) and Pr𝑌(𝑦|𝑋 = 𝑥).
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Now we have the tech to apply Bayes’s rule 
to problems with continuous random variables.



Bayes’s rule for discrete or continuous random variables

For two random variables 𝑋 and 𝑌,

Pr𝑋 𝑥 𝑌 = 𝑦 =
Pr𝑋 𝑥  Pr𝑌(𝑦|𝑋 = 𝑥)

Pr𝑌(𝑦)
 when Pr𝑌 𝑦 > 0

In practice, we write it as

Pr𝑋 𝑥|𝑌 = 𝑦 = 𝜅 Pr𝑋 𝑥  Pr𝑌(𝑦|𝑋 = 𝑥)

constant that 
doesn’t involve 𝑥

then figure out 𝜅 so that Pr𝑋(⋅ |𝑌 = 𝑦) 
is a legitimate likelihood function
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Exercise.
Consider the pair of random variables (Θ, 𝑋) where

Θ ∼ 𝑈 0,1 , 𝑋 ∼ Bin(4, Θ)

Find the distribution of (Θ|𝑋 = 1).

PrΘ 𝜃 =

Pr𝑋 𝑥 Θ = 𝜃 =

PrΘ 𝜃 𝑋 = 1 = 𝜅 PrΘ 𝜃  Pr𝑋(1|Θ = 𝜃)



Exercise.
Consider the pair of random variables (Θ, 𝑋) where

Θ ∼ 𝑈 0,1 , 𝑋 ∼ Bin(4, Θ)

Find the distribution of (Θ|𝑋 = 1).

PrΘ 𝜃 𝑋 = 1 = 𝜅 PrΘ 𝜃  Pr𝑋(1|Θ = 𝜃)

Beta

Probability density function

Notation Beta(𝛼, 𝛽)

PDF 𝑥𝛼−1 1 − 𝑥 𝛽−1

𝐵(𝛼, 𝛽)

where 𝐵 𝛼, 𝛽 =
Γ 𝛼 Γ(𝛽)

Γ(𝛼+𝛽)
 and Γ 

is the Gamma function.this is a standard pdf

It’s easier to communicate the posterior distribution by reporting a confidence interval. 
E.g. what is ℙ Θ ∈ .2, . 3  𝑋 = 1)?

D = scipy.stats.beta(a=2,b=4)
D.cdf(.3) – D.cdf(.2) 

so this constant
must be 1 (otherwise this pdf wouldn’t integrate to 1 wr.t. θ)



Exercise 5.2.3 (Bayesian classification)
In a dataset of MP expense claims, let 𝑦𝑖  be log10 of the claim amount in record 𝑖. 
A histogram of the 𝑦𝑖  suggests we use a Gaussian mixture model with two 
components,

𝐾 = ቊ
1 with prob 𝑝 − 1
0 with prob 1 − 𝑝

𝑌 ∼ Normal 𝜇𝐾 , 𝜎𝐾
2

Find the probability that a claim amount £5000 belongs to the component 𝑘 = 0.

Pr𝐾 𝑘 =

Pr𝑌 𝑦 𝐾 = 𝑘 =

Pr𝐾 𝑘 𝑌 = 𝑦 = 𝜅 Pr𝐾 𝑘  Pr𝑌(𝑦|𝐾 = 𝑘)

𝑘 = 0
𝜇0 = 2.861
𝜎0 = 0.116

𝑘 = 1
𝜇1 = 1.797
𝜎1 = 0.679

𝑝 = 0.966

In other words, find ℙ(𝐾 = 0|𝑌 = 𝑦), where 𝑦 = log10 5000 = 3.70.



We’ve used Bayes’s rule to find the posterior distribution of random variable.
We’ve had tricky integrals / sums, to find the normalizing constant.

Θ

𝑋

∼ 𝑈[0,1]

∼ Bin(𝑛, Θ)

Want PrΘ(𝜃|𝑋 = 𝑥) 

𝐾

𝑌

∼ Bin(1, 𝑝)

∼ 𝑁(𝜇𝐾, 𝜎𝐾
2)

Want Pr𝐾(𝑘|𝑌 = 𝑦) 

If we want to give our answer in a more practical form, as a confidence interval,
there’s another tricky integral.

Or ℙ(Θ ∈ [.2, . 3]|𝑋 = 𝑥) 

Next: how we can use sampling and computation instead of tricky integrals



Let 𝑋 be the location of a 
randomly thrown dart, and let 
𝑥1, … , 𝑥𝑛 be some throws.

The probability of hitting 𝐴 is

ℙ 𝑋 ∈ 𝐴 ≈
1

𝑛
෍

𝑖=1

𝑛

1𝑥𝑖∈𝐴

What’s the chance that a randomly thrown 
dart will hit the mystery object 𝐴?

1
2
3
4

# Let 𝑋 ∼ 𝑁(𝜇 = 1, 𝜎 = 3). What is ℙ 𝑋 > 5 ?
x = np.random.normal(loc=1, scale=3, size=10000)
i = (x > 5)
np.mean(i)

§6. Computational methods



Expectation
For a real-valued random variable 𝑋

𝔼𝑋 = ൝
σ𝑥 𝑥 Pr𝑋 𝑥 , 𝑑𝑥if 𝑋 is discrete 

𝑥׬
𝑥 Pr𝑋 𝑥 𝑑𝑥 , if 𝑋 is continuous
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Law of the Unconscious Statistician
For a random variable 𝑋 and a real-valued function ℎ 

§6.1

If we want to know the average properties of a rich random variable 
(e.g. the average length of a random tweet), we have to use real-
valued property readout functions h(X) so that we can take averages.

≈
1

𝑛
෍

𝑖=1

𝑛

ℎ 𝑥𝑖

where 𝑥1, … , 𝑥𝑛 is a sample drawn from 𝑋

Monte Carlo integration

𝔼ℎ 𝑋

𝔼ℎ 𝑋 = ൝
σ𝑥 ℎ 𝑥  Pr𝑋 𝑥 , 𝑑𝑥if 𝑋 is discrete 

𝑥׬
ℎ 𝑥  Pr𝑋 𝑥 𝑑𝑥 , if 𝑋 is continuous

 𝔼ℎ 𝑋 = ൝
σ𝑥 ℎ 𝑥  Pr𝑋 𝑥 , 𝑑𝑥if 𝑋 is discrete 

𝑥׬
ℎ 𝑥  Pr𝑋 𝑥 𝑑𝑥 , if 𝑋 is continuous

 



Let 𝑋 be the location of a 
randomly thrown dart, and let 
𝑥1, … , 𝑥𝑛 be some throws.

The probability of hitting 𝐴 is

ℙ 𝑋 ∈ 𝐴 ≈
1

𝑛
෍

𝑖=1

𝑛

1𝑥𝑖∈𝐴

§6.1



Monte Carlo integration

𝑎 𝑏

ℎ(𝑥) 

න
𝑥=𝑎

𝑏

ℎ 𝑥  𝑑𝑥 ≈ ෍

𝑖=1

𝑛

ℎ 𝑥𝑖

𝑏 − 𝑎

𝑛

where 𝑥𝑖 is the midpoint of interval 𝑖

Trinity College integration

Let’s instead approximate this integral using Monte Carlo. Let 𝑋 ∼ 𝑈[𝑎, 𝑏].

By Monte Carlo,

𝔼ℎ 𝑋 ≈
1

𝑛
෍

𝑖=1

𝑛

ℎ 𝑥𝑖  where 𝑥1, … , 𝑥𝑛 sampled from 𝑋

න
𝑥=𝑎

𝑏

ℎ 𝑥  Pr𝑋 𝑥  𝑑𝑥 = න
𝑥=𝑎

𝑏

ℎ 𝑥  
1

𝑏 − 𝑎
 𝑑𝑥

Thus,

න
𝑥=𝑎

𝑏

ℎ 𝑥  𝑑𝑥 ≈
𝑏 − 𝑎

𝑛
෍

𝑖=1

𝑛

ℎ(𝑥𝑖)

§6.1



COMPUTATIONAL METHODS

❖ If we want 𝔼ℎ(𝑋) but the maths is too 
complicated, we can approximate
 𝔼ℎ 𝑋 ≈ 𝑛−1 σ𝑖=1

𝑛 ℎ 𝑥𝑖

where 𝑥1, … , 𝑥𝑛 are sampled from 𝑋

❖ This approximation also tells us how to 
estimate probabilities, since 

ℙ 𝑋 ∈ 𝐴 = 𝔼1𝑋∈𝐴

❖ In Bayesian analysis, our aim is to estimate 
probabilities, e.g. ℙ(Θ ∈ [.2, . 3]|𝑋 = 1). 
How can we do this computationally?
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