The Generalization Jigsaw

BAYESIANISM

= (methods)

= Parameter confidence

* Model choice: model weighting

FREQUENTISM

= (methods)

" Parameter confidence

* Model choice: hypothesis testing

EMPIRICISM
= Evaluating model fit
= Model choice: holdout evaluation

PUTTING THE JIGSAW TOGETHER



Bayes’s rule, done right

For two discrete random variables X and Y,
P(X =x)P(Y =y|X =x)

P(X = x|V =) = 5T =5

when P(Y =y) > 0

For two discrete or continuous random variables X and Y,

Pry(x) Pry(y|X = x)
Pry(y)

Pry(x|Y =y) = when Pry(Y) > 0

What do these “conditional likelihoods® even mean?



Joint distribution §5.1

def rxy():
x = np.random.randint(low=-5, high=6)
y = np.random.binomial (A=6, p=(x/6)**2)
return (x,y)
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Marginal random variables

0.10 4 def rxy():

. x = np.random.randint(low=-5, high=6)
y = np.random.binomial(n=6, p=(x/6)**2)
0.00 -

return (x,y)
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The joint pmf of (X,Y) _
Pryy(x,y) =PX =x,Y =y) The marginal of Y
Pry(y) =P(Y =y)

_ z P(X =x,Y =y) by the Sum Rule

= z PrX,Y(x; y)
X



Conditional random variables

0.21 def rxy():
i x = np.random.randint(low=-5, high=6)
ol y = np.random.binomial(n=6, p=(x/6)**2)

return (x,y)

Ay o L [ QUESTION. What is X conditionalon Y = 3? ]

We can think of “X conditionalonY = 3”
as a random variable ...

We’ve provided a valid probability mass function:

P(X =x|Y =3) = PT =3 = Pry(3) fmﬂ Sx ph
G .. 5
Pmﬁ (=) i.e. take the Y=3 row, Sample space: ‘2 < ;" 5 4*, s 1! j

then rescale it to sum to 1 ,
Code to generate values from it:

def rx_given_y(): def rx_given_y():
while True: Q={-5,...,5%}
x,y = rxy(Q) p = [pmfy(x) for x in Q]
if y == 3: break return np.random.choice(Q, p=p)

return X



Conditional random variables
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def rxy():
x = np.random.randint(low=-5, high=6)
y = np.random.binomial(n=6, p=(x/6)**2)
return (x,y)

We define the conditional random
variable, written (X|Y = y), by
specifying its likelihood:

This likelihood is also written Pry (x|Y = y).




Conditional random variables (continuous case)

1.01

0.5 A

0.0 : def rxy():

125 ] x = np.random.uniform(-1,1)

1.00 1 1 y = np.random.normal(loc=x**2, scale=0.1)
075 unmnunnnunnnnnnnnnny 1

y oo [ _ 4—) return (x,y)
I, ' : {QUESTION. What is X conditionalon Y = 0.6? J

—0.25 1

Take the Y=0.6 slice of the joint pdf,
then rescale it s0 it integrates to |
i.e. 50 we get a legitimate pdf.

(Rescale it by dividing by Pr,(0.6)
where Pr(-) is the mar ginal for Y.)

The marginal for Y

Pry(y) :j Pryy(x,y) dx

X




Conditional random variables (continuous case)

0.6

0.4

0.2 A

0.0 : | def rxy():

1.25 1 x = np.random.uniform(-1,1)

1.00 1 y = np.random.normal(loc=x**2, scale=0.1)

s — . return (x,y)

0.50 A

0.25 A
ZZ‘; {QUESTION. What is X conditionalon Y = 0.6? J

Take the Y=0.6 slice of the joint pdf,
then rescale it s0 it integrates to |
i.e. 50 we get a legitimate pdf.

(Rescale it by dividing by Pr,(0.6)
where Pr(-) is the mar ginal for Y.)

We define the conditional random variable
(X|Y = y) by specifying its likelihood:
Pryy(x,y)

Pry(x|Y =y) = Pry (7)




Bayes’s rule
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Bayes’s rule is true for any pair of random variables X, Y.
It’s only useful for “sequential models” i.e. when the question tells us Pry(x) and Pry (y|X = x).



Now we have the tech to apply Bayes’s rule

to problems with continuous random variables.

@ Q () ~ vlo,1]
§ to express complete prior

J ignorance about 8

CNOXCJO!

X ~ Bin(n, 0) + -

0.0 0.5 1.0 0.0 0.5



For two random variables X and Y,

Pry (x) Pry (y|X = x)

when Pry(y) > 0
Pry(y) Y

Pry(x|Y =y) =

In practice, we write it as

Pry(x|Y = y) = x Pry(x) Pry(¥|X = x)
o thut
(x) chewt ©° -
PQX‘Y’J) jn Pr,&) R, (ylX=x) 4% L

x

then figure out x so that Pry (- |Y = y)
is a legitimate likelihood function



Exercise.
Consider the pair of random variables (0, X) where

® ~ U[0,1], X ~ Bin(4, ©9)
Find the distribution of (O|X = 1).
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Exercise.
Consider the pair of random variables (0, X) where

® ~ U[0,1], X ~ Bin(4, ©9)
Find the distribution of (O|X = 1).

Beta

Probability density function

Prg(0|X = 1) = k Prg(8) Pry (1|06 = 0)

- ke (1-o°

this is a standard pdf

Notation | Beta(a, B)
PDF x¥1(1 = x)F1
B(a,f)
where B(a, B) = DB g

T'(a+B)
is the Gamma function.

A
4 A

~ p-\
< Blxp) O ' (-o)”
— B(x,§)

50 this constant

w have 0(..:'2/ #:‘Q'

must be 1 (otherwise this pdf wouldn't inte grate to 1 wr.t. 6)

Thee  (®1x=1) ~ Beta (x=2, f= )

It’s easier to communicate the posterior distribution by reporting a confidence interval.

E.g. whatisP(@ € [.2,.3] | X = 1)?

D = scipy.stats.beta(a=2,b=4)
D.cdf(.3) - D.cdf(.2)




Exercise 5.2.3 (Bayesian classification)

In a dataset of MP expense claims, let y; be log,, of the claim amount in record 1.
A histogram of the y; suggests we use a Gaussian mixture model with two
components,

K = 1 with probp
~ |0 withprob1—p

Y ~ Normal(ug, 62)

Find the probability that a claim amount £5000 belongs to the component k = 0.
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p = 0.966
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logl0(expense claim)

In other words, find P(K = 0|Y = y), where y = log,, 5000 = 3.70.
e——-

T——

Pri (k) =
Pry(y|IK = k) =

Prig(klY = y) =k Prg(k) Pry(y|K = k)
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EXERCISE




We’ve used Bayes’s rule to find the posterior distribution of random variable.
We've had tricky integrals / sums, to find the normalizing constant.

() ~ulo1]

1 2
logl0(expense claim)

X ~ Bin(n, ©) Y ~ N(ug, o)

Want Prg(0|X = x) Want Prg (k|Y = y)
OorP(® € [.2,.3]|X =x)

If we want to give our answer in a more practical form, as a confidence interval,
there’s another tricky integral.

Next: how we can use sampling and computation instead of tricky integrals



§6. Computational methods

Let X be the location of a
randomly thrown dart, and let
X1, -, Xy be some throws.

What’s the chance that a randomly thrown
dart will hit the mystery object 4?

The probability of hitting A is ;' ¢ x; €f

n
1 1;(;04 =
P(X €A) %~ ) Ty o
=1

# Llet X~Nw=1,0=3). Wwhat is P(X >5)7?

X = np.random.normal (loc=1, scale=3, size=10000)

| i=(x>5) — L i5e vec & 100D bools

i np.mean(i)

§\VQW- P TN whot fraction 3 them owe True?
W/




Expectation 301
For a real-valued random variable X

(Zxx Pry(x), ifX isdiscrete
EX = <f

X

x Pry(x) dx, if X is continuous



Law of the Unconscious Statistician 6.1
For a random variable X and a real-valued function h

(Y h(x) Pry(x), ifX is discrete

Eh(X) = - [ h(x) Pry(x) dx, if X is continuous
\

If we want to know the average properties of a rich random variable
(e.9. the average length of a random tweet), we have to vse real-
valved property readout functions h(X) so that we can take averages.

Monte Carlo integration

ER(X) ~ %Zilh(xi)

where x4, ..., X, is @ sample drawn from X



bk RE< 1x(-A-

By Mokt corde ,\
Eh(X) = & Z'"(’r")
/ x lzix;ca
wt ¥=h(X) ¢
EY = O «P(Y=0) +| < P(¥>I)
= P(Y=))

= P( ixeA "’)
= P (XeR)

Let X be the location of a
randomly thrown dart, and let
X1, -+, Xy be some throws.

The probability of hitting A is

n
1
P €A~ ~ ) Ty
=1

§6.1



Trinity College integratio 56.1

b n _
Jzah(x) dx ~ ; h(x;) b m -

where Xx; is the midpoint of interval i

Let’s instead approximate this integral using Monte Carlo. Let X ~ U|a, b].

Monte Carlo integration By Monte Carlo,

n
1
Eh(X) = —z h(x;) where x4, ..., x,, sampled from X

j b

b 1
f h(x) Pry(x) dx =j h(x) P— dx

> x=a x=a




COMPUTATIONAL METHODS

0

0

*

4

4

If we want [EA(X) but the maths is too

complicated, we can approximate
Eh(X) =n~ Y, h(x;)

where x4, ..., x,, are sampled from X

This approximation also tells us how to

estimate probabilities, since
]P)(X € A) — ]E1X€A

In Bayesian analysis, our aim is to estimate
probabilities, e.g. P(0 € [.2,.3]|X = 1).
How can we do this computationally?
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