This week we're building up our skills at inventing useful probability models.

MONDAY

linear models & feature design (to quickly turn our ideas into easy-to-fit models)

WEDNESDAY

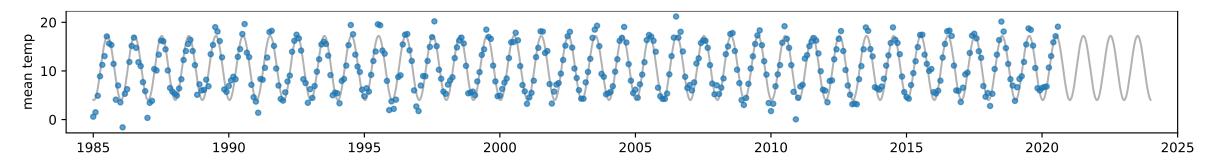
"debugging" models

FRIDAY

- identifiability of parameters
- the link between least squares and likelihood

With our periodic model ...

$$temp \approx \alpha + \beta \sin(2\pi(t + \phi))$$



... how do we *discover* we should add a secular term, such as $+\gamma t$?

Machine learning models don't fail with nice friendly exceptions. They fail by giving us fishy answers.

So what does "debugging" look like?

§2.3. Diagnosing a linear model

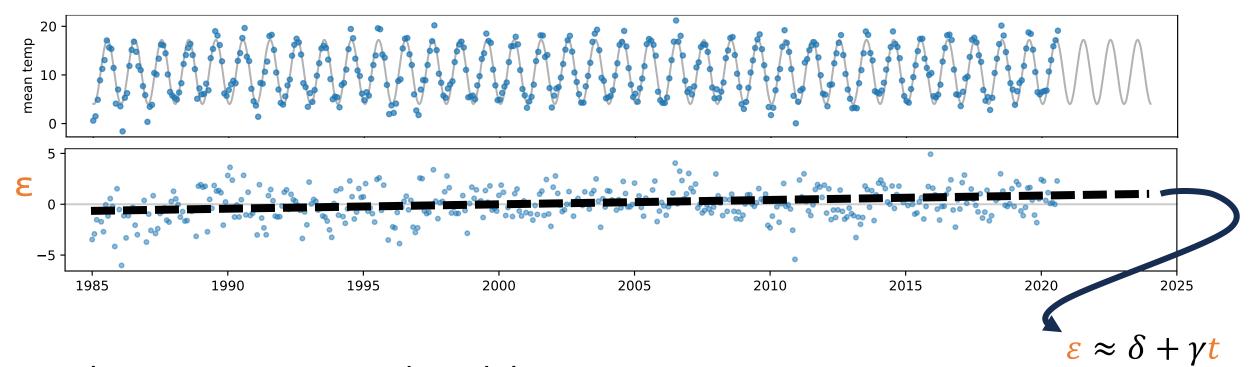
```
After fitting a model model.fit(..., y)
```

1. Compute the prediction errors a.k.a. the residuals

```
ε = y - model.predict()
```

2. Plot € against anything we can think of. It tells us where our model is poor.

temp
$$\approx \alpha + \beta \sin(2\pi(t + \phi))$$
 i.e. temp $= \alpha + \beta \sin(2\pi(t + \phi)) + \varepsilon$



This suggests a revised model ...

temp
$$\approx (\alpha + \delta) + \beta \sin(2\pi(t + \phi)) + \gamma t$$

Example sheet 1

Question 8. For the climate data from section 2.2.5 of lecture notes, we proposed the model

$$temp \approx \alpha + \beta_1 \sin(2\pi t) + \beta_2 \cos(2\pi t) + \gamma t$$

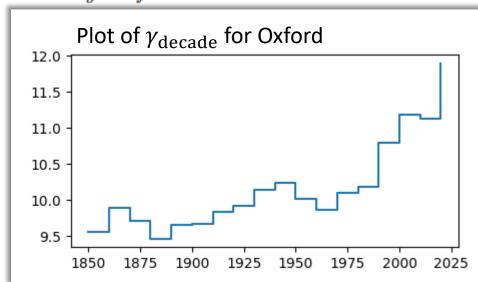
in which the $+\gamma t$ term asserts that temperatures are increasing at a constant rate. We might suspect though that temperatures are increasing non-linearly. To test this, we can create a non-numerical feature out of t by

(which gives us values like 'decade_1980s', 'decade_1990s', etc.) and fit the model

temp
$$\approx \alpha + \beta_1 \sin(2\pi t) + \beta_2 \cos(2\pi t) + \gamma_u$$
.

Write this as a linear model, and give code to fit it. [Note. You should explain what your feature

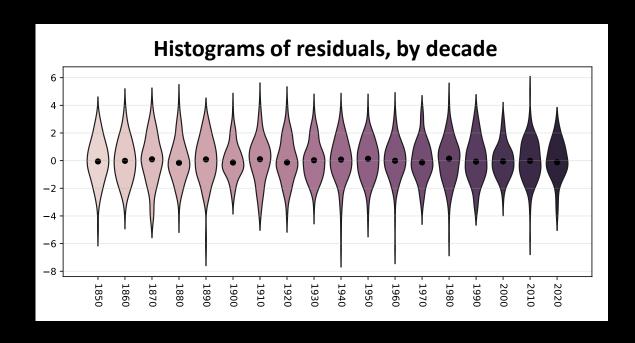
vectors are, then give a one-line command to estimate the parameters.]

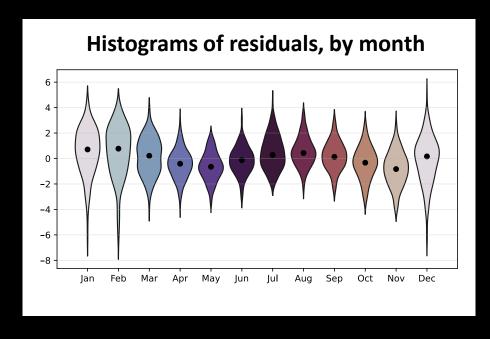


```
should be
2 TIt
class StepPeriodicModel():
    def __init__(self):
        self.mindec = np.nan
        self.maxdec = np.nan
    def fit(self, t, temp):
        self.mindec = np.floor(min(t)/10)*10
        self.maxdec = np.floor(max(t) / 10) * 10
        indicators = [np.where(np.floor(t/10)*10 == year*10 + self.mindec, 1, 0)
                       for year in range(int((self.maxdec - self.mindec)(10) + 1)]
        X = np.column_stack([np.sin(2 * np.pi * np.mod(t,1)), np.cos(2 * np.mod(t,1)), *indicators])
        model = sklearn.linear_model.LinearRegression(fit_intercept=False)
        model.fit(X, temp)
        (\_,\_,*\gamma) = model.coef_
        self.\gamma = np.append(\gamma, np.nan)
    def predict_step(self, t):
        t = np.array(t).astype(float)
        \ell = ((np.floor(t/10)*10-self.mindec)/10).astype(int)
        replace_mask = np.where((\ell < 0) | (\ell > = len(self.\gamma) - 1))
        \ell[replace_mask] = len(self.\gamma) - 1
        return np.take(self.γ, ℓ)
```

I computed the residuals.

I plotted them against the variables in the question, looking for any systematic pattern.





This tells me there's something dodgy with how the model captures month-by-month variation, i.e. with the features for the sinusoid shape.

When we propose a model, write down the predicted response at some "useful" datapoints.

This should help us interpret what the parameters mean.

```
After fitting a model model.fit(..., y)
```

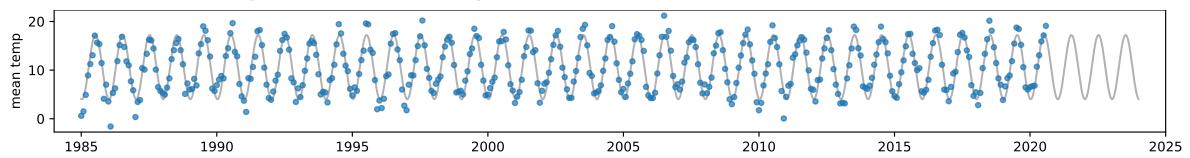
1. Compute the prediction errors a.k.a. the residuals

```
ε = y - model.predict()
```

2. Plot € against anything we can think of. It tells us where our model is poor.

When we fit the model with a constant-rate climate change term ...

temp
$$\approx \alpha + \beta_1 \sin(2\pi t) + \beta_2 \cos(2\pi t) + \gamma t$$



the fitted parameters are surprising:

α	eta_1	eta_2	γ
-67.5	-1.1	-6.6	0.039

Why do these three models lead to such different estimates for α ?

Model 0: $temp \approx \alpha \ 1 + \beta_1 \sin(2\pi \ t) + \beta_2 \cos(2\pi \ t)$ $\Rightarrow \hat{\alpha} = 10.6 \text{ °C}$ $temp \approx \alpha \ 1 + \beta_1 \sin(2\pi \ t) + \beta_2 \cos(2\pi \ t) + \gamma \ t$ $\Rightarrow \hat{\alpha} = -67.5 \text{ °C}$ $temp \approx \alpha \ 1 + \beta_1 \sin(2\pi \ t) + \beta_2 \cos(2\pi \ t) + \gamma \ (t-2000)$ $\Rightarrow \hat{\alpha} = 10.5 \text{ °C}$

EXERCISE. Interpret α , by writing out the predicted response temp at several different timepoints t.

Model 0: at
$$t=0$$
, pred. $teup= x + \beta_2$ — at is an . $teup$. over a single simuoid.

Model A: at $t=200p$, $= x + \beta_2 + 2000r$ \Rightarrow at is any . $teup$ over a single simusoid at $t=200p$, $= x + \beta_2 + 2000r$ \Rightarrow at is any heup over a single at $t=2000$, $= x + \beta_2 - 2000$ \Rightarrow at is any heup over a single sinusoid at $t=2000$, $= x + \beta_2 - 2000$ \Rightarrow \Rightarrow is any heup over a single sinusoid at $t=2000$.

Model A asks: what was an few in $t=0$.

Model A asks: what was an few in $t=0$.

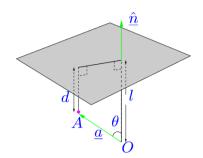
§2.5 The geometry of linear models

To really understand what's going on in a linear model, we need to understand the linear algebra behind them.

NST Maths B, Michaelmas

Example: Distance of point from plane

• What is distance of point A with position vector \underline{a} from plane $\underline{r} \cdot \hat{\underline{n}} = l$?



• Line containing A and point of closest approach of plane to A must be $\parallel \hat{\underline{n}}$; has equation

$$\underline{r} = \underline{a} + \lambda \hat{\underline{n}}$$

• Line meets plane where $r \cdot \hat{n} = l$, i.e. where

$$l = a \cdot \hat{n} + \lambda$$

• λ is distance along line from \underline{a} so required distance is $|\underline{a} \cdot \hat{n} - l|$

NST Maths B, Easter

Definition. V is called a **vector space over** K, and the elements of V are called **vectors**, if the following axioms hold:

- A1 For any vectors $u,v,w\in V$, (u+v)+w=u+(v+w). (Associativity.)
- **A2** For any vectors $u, v \in V$, u + v = v + u. (Commutativity.)
- **A3** There is a vector in V denoted 0, called the **zero vector** for which u + 0 = u $\forall u \in V$.
- **A4** For each vector $u \in V$ there is a vector in V denoted -u for which u + (-u) = 0. (Inverse.)
- **A5** For any $a \in K$ and any $u, v \in V$, a(u + v) = au + av.
- **A6** For any $a, b \in K$ and any $u \in V$, (a + b)u = au + bu.
- **A7** For any $a, b \in K$ and any $u \in V$, (ab)u = a(bu).
- **A8** For the unit scalar $1 \in K$ and any $u \in V$, 1u = u.

The *subspace spanned* by a collection of vectors $\{e_1, ..., e_K\}$ is the set of all linear combinations

$$S = \{\lambda_1 e_1 + \dots + \lambda_K e_K : \lambda_k \in \mathbb{R} \text{ for all } k\}$$

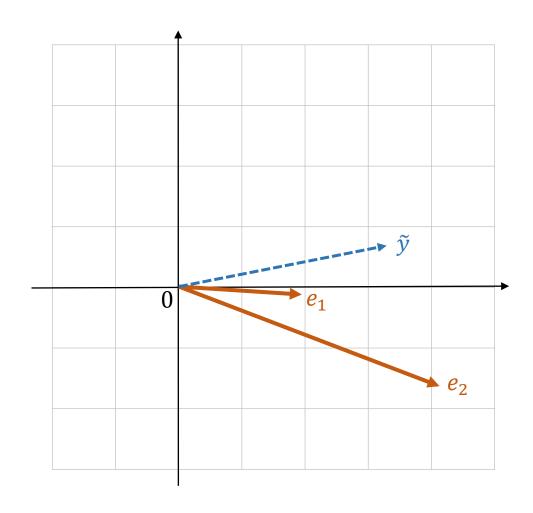
The vectors are linearly dependent

if at least one of the e_k can be written as a linear combination of the others, i.e. there is some set of real numbers $(\lambda_1, ..., \lambda_K)$ not all equal to zero such that $\lambda_1 e_1 + \cdots + \lambda_K e_K = 0$

If not, they are *linearly independent*, and

$$\lambda_1 e_1 + \dots + \lambda_K e_K = 0 \quad \Rightarrow \quad \lambda_1 = \dots = \lambda_K = 0$$

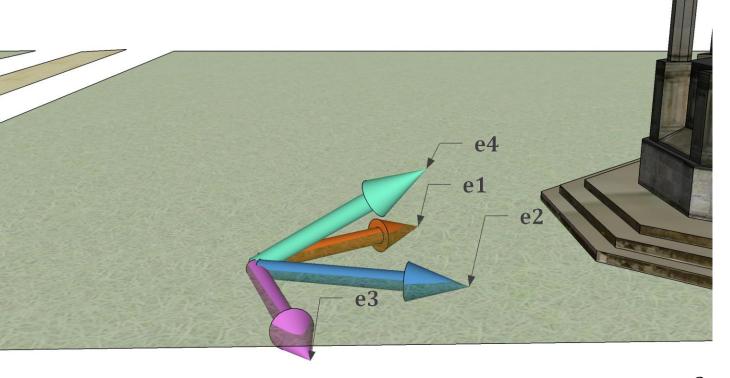
np.linalg.matrix_rank(np.column_stack($[e_1, ..., e_K]$)) is < K if linearly dependent = K if linearly independent



The subspace spanned by $\{e_1,e_2\}$ is \mathbb{R}^2

Any $\tilde{y} \in \mathbb{R}^2$ can be written as a linear combination of e_1 and e_2

• by eye, $\tilde{y} = 2.5e_1 - 0.3e_2$



The subspace spanned by $\{e_1,e_2,e_3,e_4\}$ is \mathbb{R}^3 Are $\{e_1, e_2, e_3, e_4\}$ linearly independent? \sim

If we discarded e_2 ...

Are $\{e_1, e_3, e_4\}$ linearly independent? What's the span?

They one linearly ind, span is IRS

If we discarded e_1 ...

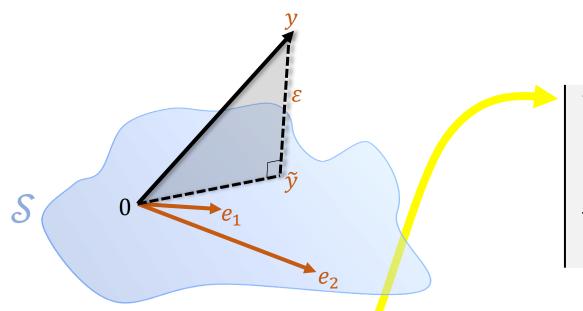
Are $\{e_2, e_3, e_4\}$ linearly independent? What's the span? They are linearly ind, span is \mathbb{R}^5 .

Exercise 2.5.2

Are the following five vectors linearly independent? If not, find a subset that is.

$$e_1 = [1,1,1,1]$$
 $e_2 = [0,1,1,0]$
 $e_3 = [1,0,0,1]$
 $e_4 = [1,1,1,0]$
 $e_5 = [0,0,0,1]$

```
Are they linearly independent!
            e1 = e4 + e5
            e, = e2 + e3
  50 span ({e11 ez, e3, e4, e5})
       * span ({e1, ez, e3, e4 }) since es = e1-e4
      = span ( {e1, e2, e4 }) since e2 = e1-e3
Are {e, ez, e4} linearly independent?
Suppose hie, + hzez + hze4 = 0
\Rightarrow \lambda_1 \left[ \frac{1}{1} + \lambda_2 \left[ \frac{0}{0} \right] + \lambda_4 \left[ \frac{1}{0} \right] = \frac{0}{0} \right]
          \begin{array}{c} \lambda_1 + \lambda_4 = 0 \\ \lambda_1 + \lambda_2 + \lambda_4 = 0 \\ \lambda_1 + \lambda_2 + \lambda_4 = 0 \end{array} \Rightarrow \begin{array}{c} \lambda_1 = 0 \\ \lambda_4 = 0 \\ \lambda_2 = 0 \end{array} \Rightarrow \begin{array}{c} \lambda_1 = 0 \\ \lambda_2 = 0 \end{array}
              À, =0
```



What does "closest" even mean? It means: find $\tilde{y} \in \mathcal{S}$ to minimize $||y - \tilde{y}||$

i.e. to minimize $\sqrt{\sum_i \varepsilon_i^2}$ where $\varepsilon = y - \tilde{y}$.

The minimization is over all $\tilde{y} \in \mathcal{S}$, i.e. over all linear combinations of $\{e_1, \dots, e_K\}$.

GEOMETRY OF PROJECTIONS

Let S be the span of $\{e_1, \dots, e_K\}$.

What's the closest we can get to y, while staying in S?

LECTURE CUT SHORT BY A FIRE ALARM