This week we’re building up our skills at inventing useful probability models.

‘ MONDAY
¢ linear models & feature design

(to quickly turn our ideas into easy-to-fit models)

WEDNESDAY
** “debugging” models

FRIDAY
¢ identifiability of parameters
¢ the link between least squares and likelihood

R




With our periodic model ...

a + fsin(2n(t + ¢))
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. how do we discover we should add a secular term, such as +yt ?



Machine learning
models don’t fail with
nice friendly
exceptions. They fail
by giving us fishy
answers.

So what does
“debugging” look like?




§2.3. Diagnhosing a linear model|

After fitting a model
model.fit(..., V)

. Compute the prediction errors
a.k.a. the residuals
= v - model.predict()

. Plot £ against anything we can
think of. It tells us where our
model is poor.
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c= 0+ yt

/

temp = (a+0) + B sin(Zn(t + (/5)) + yt
X

This suggests a revised model ...



Example sheet 1

Question 8. For the climate data from section 2.2.5 of lecture notes, we proposed the model
temp = a + [ sin(27t) + 32 cos(27t) + 4t

in which the ++t term asserts that temperatures are increasing at a constant rate. We might
suspect though that temperatures are increasing non-linearly. To test this, we can create a non-
numerical feature out of t by

u = ’decade ’ + str(math.floor(t/10)) + ’@s’
(which gives us values like *decade_1980s”, *decade_1990s”’, etc.) and fit the model
temp = a + 3 sin(27t) + B3 cos(27t) + .

Write this as a linear model, and give code to fit it. [Note. You should explain what your feature

vectors are, then give a one-line command to estimate the parameters.]
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QUESTION. This code doesn’t pass the Moodle tester. What’s the bug?

class StepPeriodicModel(): 5[\04("' Le
def __init__(self):
self.mindec = np.nan ) 1€

self.maxdec = np.nan

def fit(self, t, temp):
self.mindec = np.floor(min(t)/10)*10
self.maxdec = np.floor(max(t) / 10) * 10
indicators = [np.where(np.floor(t/10)*10 == year*10 + self.mindec/, 1, 0)
for year in range(int((self.maxdec - self.mindec)/40) + 1)]
X = np.column_stack([np.sin(2 * np.pi * np.mod(t,1)), np.cos(2 * np.mod(t,1)), *indicators])
model = sklearn.linear_model.LinearRegression(fit_intercept=False)
model.fit(X, temp)
(_,_,*y) = model.coef_
self.y = np.append(y, np.nan)

def predict_step(self, t):
t = np.array(t).astype(float)
£ = ((np.floor(t/10)*10-self.mindec)/10).astype(int)
replace_mask = np.where((8<0) | (€>=len(self.y)-1))
2l replace_mask] = len(self.y) - 1
return np.take(self.y, &)



| computed the residuals.
| plotted them against the variables in the question, looking for any systematic pattern.

Histograms of residuals, by decade Histograms of residuals, by month
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This tells me there’s something dod gy with how the model captures month—by—month variation,
i.e. with the features for the sinusoid shape.



When we propose a model,
write down the predicted
response at some “useful”
datapoints.

This should help us interpret
what the parameters mean.

After fitting a model
model.fit(..., V)

. Compute the prediction errors
a.k.a. the residuals
= v — model.predict()

. Plot £ against anything we can
think of. It tells us where our
model is poor.



When we fit the model with a constant-rate climate change term ...

temp = a + B4 sin(2mwt) + B, cos(2mt) + yt
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the fitted parameters are surprising:

b2

1

a

-6.6 0.039

-1.1

-67.5



Why do these three models lead to such different estimates for a?

Model O: temp =~ al+ By sin(2rt) + B, cos(2m t) = a=10.6"°C

Model A: tempral+fysinRrt)+p,cos(2nt)+yt = a@=-675°C

Model B: temp = a1+ B; sin(2r t) + [, cos(2m t) + y (t-2000) = a@=10.5°C
= -

EXERCISE. Interpret a, by writing out the predicted response temp at several different timepoints t.
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§2.5 The geometry of linear models

To really understand what’s going on in a linear model,
we need to understand the linear algebra behind them.

NST Maths B, Michaelmas NST Maths B, Easter

Example: Distance of point from plane Definition. V' is called a vector space over K, and the elements of |/ are called

e What is distance of point A with position vector a from plane 7 - i = [? vectors, if the following axioms hold:

Al For any vectors u,v,w €V, (u+v)+w =u + (v + w). (Associativity.)
For any vectors u,v € V, u + v = v + u. (Commutativity.)

There is a vector in V' denoted 0, called the zero vector for which « + 0 u
Vuel.

For each vector w € V there is a vector in V' denoted —u for which u + (—u) = 0.

Line containing A and point of closest approach of plane to A must be || 7; has (Inverse.)

equation
For any a € K and any u,v € V, a(u +v) = au + av.

~

r=a-+ An

Forany a,b € K and any u € V, (a + b)u = au + bu.

l=a- f+A For any a,b € K and any u € V, (ab)u = a(bu).

For the unit scalar 1 € K and any u € V', 1lu = u.

e )\ is distance along line from a so required distance is |a - i — {|




The subspace spanned by a collection of vectors {e;, ..., ex}
is the set of all linear combinations

S ={Aie; + -+ Agex : A € Rfor all k}

The vectors are linearly dependent

if at least one of the ¢, can be written as a linear combination of the others,

i.e. there is some set of real numbers (14, ..., Ax) not all equal to zero such that
/1181 + -+ AKeK =0

If not, they are linearly independent, and
1181+°"+/1K8K=0 = /11==/1K=0

np.linalg.matrix_rank(np.column_stack([e;,...,ex 1)) is < K if linearly dependent

= K if linearly independent
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The subspace spanned by {e;, e,,e3,e,} is R3

Are {e,, ey, e3,e,} linearly independent? Mo .

If we discarded e, ... R
Are {ey, e3, 4} linearly independent? What's the span?  They awe [rnery ind, spon i3 4

If we discarded e ...
Are {e,, e3, e,} linearly independent? What's the span? They owe (ireanty tndy sPan & 'd



Exercise 2.5.2 e iy (c‘uow(y inelup |olmt.7

Are the following five vectors

linearly independent? If not, find a € =@ + €5
subset that is. €, = ¢, +RQ3
e; =[1,1,1,1]
82 = [0 11110] 50 $P°‘n ( fcl, ezI eSl eff fs {)
= [1,0,0,1] . - -
ey = [11.1,0] « span (le), e 05 ¢4 F) sime & - €06
es = 10,0,0,1] = Spon ( fe-, &, €4 f) sine €, = € - ¢3

Pre ie,, €, 945 [l‘No«f? :‘uobf-(noauf 7
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=2 M+ Mrq=0 2 =0
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2, =0



What does “closest” even mean?
It means: find ¥ € § to minimize ||y — V||

. .« . . 2 _ ~
i.e. to minimize / i€ Wheree =y — 7.

The minimization is over all y € S,
i.e. over all linear combinations of {¢;, ..., ex }.

GEOMETRY OF PROJECTIONS
Let S be the span of {e4, ..., ex}.

What's the closest we can get to y, while staying in §7?

LECTURE CUT SHORT BY A FIRE ALARM
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