
MONDAY
❖ linear models & feature design

(to quickly turn our ideas into easy-to-fit models)

WEDNESDAY
❖ “debugging” models

FRIDAY
❖ identifiability of parameters

❖ the link between least squares and likelihood

This week we’re building up our skills at inventing useful probability models.



With our periodic model ...

... how do we discover we should add a secular term, such as +𝛾t ? 

temp ≈ 𝛼 + 𝛽 sin 2𝜋 t + 𝜙



Machine learning 
models don’t fail with 
nice friendly 
exceptions. They fail 
by giving us fishy 
answers.

So what does 
“debugging” look like?



After fitting a model
 model.fit(..., y)

1. Compute the prediction errors 
a.k.a. the residuals
 ε = y – model.predict()

2. Plot ε against anything we can 
think of. It tells us where our 
model is poor.

§2.3. Diagnosing a linear model



i.e. temp = 𝛼 + 𝛽 sin 2𝜋 t + 𝜙 + ε

ε

temp ≈ (𝛼 + 𝛿) + 𝛽 sin 2𝜋 t + 𝜙 + 𝛾t

This suggests a revised model ...

temp ≈ 𝛼 + 𝛽 sin 2𝜋 t + 𝜙

§2.3

𝜀 ≈ 𝛿 + 𝛾𝑡



Plot of 𝛾decade for Oxford



class StepPeriodicModel():
    def __init__(self):
        self.mindec = np.nan
        self.maxdec = np.nan

    def fit(self, t, temp):
        self.mindec = np.floor(min(t)/10)*10
        self.maxdec = np.floor(max(t) / 10) * 10
        indicators = [np.where(np.floor(t/10)*10 == year*10 + self.mindec, 1, 0) 
                      for year in range(int((self.maxdec - self.mindec)/10) + 1)]
        X = np.column_stack([np.sin(2 * np.pi * np.mod(t,1)), np.cos(2 * np.mod(t,1)), *indicators])
        model = sklearn.linear_model.LinearRegression(fit_intercept=False)
        model.fit(X, temp)
        (_,_,*γ) = model.coef_
        self.γ = np.append(γ, np.nan)

    def predict_step(self, t):
        t = np.array(t).astype(float)
        ℓ = ((np.floor(t/10)*10-self.mindec)/10).astype(int)                  
        replace_mask = np.where((ℓ<0) | (ℓ>=len(self.γ)-1))
        ℓ[replace_mask] = len(self.γ) - 1
        return np.take(self.γ, ℓ)

QUESTION. This code doesn’t pass the Moodle tester. What’s the bug?



I computed the residuals. 
I plotted them against the variables in the question, looking for any systematic pattern.

This tells me there’s something dodgy with how the model captures month-by-month variation, 
i.e. with the features for the sinusoid shape.

Histograms of residuals, by monthHistograms of residuals, by decade



After fitting a model
 model.fit(..., y)

1. Compute the prediction errors 
a.k.a. the residuals
 ε = y – model.predict()

2. Plot ε against anything we can 
think of. It tells us where our 
model is poor.

When we propose a model, 
write down the predicted 
response at some “useful” 
datapoints.

This should help us interpret 
what the parameters mean.



temp ≈ 𝛼 + 𝛽1 sin 2𝜋t + 𝛽2 cos 2𝜋t + 𝛾t

When we fit the model with a constant-rate climate change term ...

the fitted parameters are surprising:
𝛼 𝛽1 𝛽2 𝛾

-67.5 -1.1 -6.6 0.039



§2.6

Why do these three models lead to such different estimates for α?

Model 0: temp ≈ 𝛼 1 + 𝛽1 sin 2𝜋 t + 𝛽2 cos 2𝜋 t  ⇒   ො𝛼 = 10.6 °C
Model A: temp ≈ 𝛼 1 + 𝛽1 sin 2𝜋 t + 𝛽2 cos 2𝜋 t + 𝛾 t ⇒   ො𝛼 = −67.5 °C
Model B: temp ≈ 𝛼 1 + 𝛽1 sin 2𝜋 t + 𝛽2 cos 2𝜋 t + 𝛾 (t−2000) ⇒   ො𝛼 = 10.5 °C

EXERCISE. Interpret α, by writing out the predicted response temp at several different timepoints t.



§2.5 The geometry of linear models

NST Maths B, Michaelmas NST Maths B, Easter

To really understand what’s going on in a linear model, 
we need to understand the linear algebra behind them.



The subspace spanned by a collection of vectors 𝑒1, … , 𝑒𝐾  
is the set of all linear combinations

𝒮 = 𝜆1𝑒1 + ⋯ + 𝜆𝐾𝑒𝐾 ∶ 𝜆𝑘 ∈ ℝ for all 𝑘

The vectors are linearly dependent 
if at least one of the 𝑒𝑘 can be written as a linear combination of the others, 
i.e. there is some set of real numbers 𝜆1, … , 𝜆𝐾  not all equal to zero such that

𝜆1𝑒1 + ⋯ + 𝜆𝐾𝑒𝐾 = 0

If not, they are linearly independent, and
𝜆1𝑒1 + ⋯ + 𝜆𝐾𝑒𝐾 = 0 ⇒  𝜆1 = ⋯ = 𝜆𝐾 = 0

np.linalg.matrix_rank(np.column_stack([𝑒1, … , 𝑒𝐾]))  is

= 𝐾 if linearly independent

< 𝐾 if linearly dependent

§2.5



0 𝑒1

𝑒2

෤𝑦

The subspace spanned by {𝑒1, 𝑒2} is ℝ2

Any ෤𝑦 ∈ ℝ2 can be written as a linear 
combination of 𝑒1 and 𝑒2

❖ by eye, ෤𝑦 = 2.5𝑒1 − 0.3𝑒2

§2.5



Are {𝑒1, 𝑒2, 𝑒3, 𝑒4} linearly independent?

The subspace spanned by {𝑒1, 𝑒2, 𝑒3, 𝑒4} is ℝ3

If we discarded 𝑒2 …
Are 𝑒1, 𝑒3, 𝑒4  linearly independent? What’s the span?

If we discarded 𝑒1 …
Are 𝑒2, 𝑒3, 𝑒4  linearly independent? What’s the span?

§2.5



Exercise 2.5.2
Are the following five vectors 
linearly independent? If not, find a 
subset that is.

𝑒1 = 1,1,1,1
𝑒2 = 0,1,1,0
𝑒3 = 1,0,0,1
𝑒4 = 1,1,1,0
𝑒5 = [0,0,0,1]

§2.5



0 𝑒1

𝑒2

𝑦

෤𝑦

𝒮

𝜀

GEOMETRY OF PROJECTIONS

Let 𝒮 be the span of {𝑒1, … , 𝑒𝐾}.

What's the closest we can get to 𝑦, while staying in 𝒮?

§2.5

What does “closest” even mean?
It means: find ෤𝑦 ∈ 𝒮 to minimize 𝑦 − ෤𝑦

i.e. to minimize σ𝑖 𝜀𝑖
2 where 𝜀 = 𝑦 − ෤𝑦.

The minimization is over all ෤𝑦 ∈ 𝒮,
i.e. over all linear combinations of {𝑒1, … , 𝑒𝐾}.

LECTURE CUT SHORT BY A FIRE ALARM
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