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Monthly average temperatures in Cambridge, UK

What’s a good model for this dataset?

20 A

10 A

Climate is stable?
Temp(t) ~a+ b sin(Zn(t + qb)) + N(0,02)
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Temperatures are increasing?

2025

The extremes are
getting worse?

Temperatures are increasing,
and the increase is
accelerating?

There are so many possible models. We want
to make it easy to invent and fit new models,
so we have time to explore all the possibilities.



Example 2.1.1
The Iris dataset has 50 records of iris
measurements, from three species.

How does Petal .Length depend on
Sepal.Length?

Petal.Length
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Petal. Petal. Sepal. Sepal.
Length Width Length Width Species
1.0 0.2 4.6 3.6 setosa
5.0 1.9 6.3 2.5 virginica
5.8 1.6 7.2 3.0 virginica
4.2 1.2 5.7 3.0 versicolor

Let’s guess that for parameters «, 3, v, o (to be estimated),
Petal.Length = a + B Sepal.lLength + y(Sepal.Length)?

Dataset collected by Edgar Anderson and popularized by Ronald Fisher in 1936




Example 2.1.1 Let’s guess that for parameters «, 3, v, o (to be estimated),
The Iris dataset has 50 records of iris ~a+f + ¥( )?
measurements, from three species.
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Dataset collected by Edgar Anderson and popularized by Ronald Fisher in 1936



A linear model is

R

»* a supervised-learning model

/

** in which the response and the
features are numeric

L)

» and the response vector is
predicted by a linear
combination of (known) feature
vectors weighted by (unknown)
parameters

L)

Let’s guess that for parameters «, 3, v, o (to be estimated),
~a+f +( )?

Models of this form are called linear models
(because they’re based on linear algebra).

They are flexible, and very fast to optimize.



AOTATION WARNING

Petal.Length =~ a + B Sepal.Length + y(Sepal.Length)?

This is a vector This is a scalar
equation describing equation that |
can vse to make

my dataset, one row
@] per datapoint predictions




Least squares estimation

Consider a linear model
y = p1e; + -+ Pgex

“All models are wrong.”

The vector of prediction errors is called the residual vector,
e =y —(Bres + -+ Prex)

We can fit the model using least squares estimation. This means finding
parameters (34, ..., Bx to minimize the mean square error

1 n
mse = —2 £f
N é—di=1



iris = pandas.read_csv(...)

~a+f +vy

Fitting the model
one, SL, PL = np.ones(len(iris)), iris['Sepal.Length'], iris['Petal.Length']
model = sklearn.linear_model.LinearRegression(fit_intercept=False)
model.fit(np.column_stack([one, SL, SL*x2]), PL)
(o, B,y) = model.coef_

Making predictions / getting fitted values from the model

newSL = np.linspace(4.2, 8.2, 20)
predPL = o + B*newSL + y*(newSL*%*2)



iris = pandas.read_csv(...)

Petal.Length =~ a + B Sepal.Length + y(Sepal.Length)?
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sklearn.linear_model puts in the
[I,...,1] feature for vs by default. If we

. don't want it, we have to specif
Fitting the model (cleaner code) f:: inzzrce’ptﬂ:lvse 0 opetity

SL, PL = iris['Sepal.Length'], iris['Petal.Length']
model = sklearn.linear_model.LinearRegression®
model.fit(np.column_stack([SL, SL*%x2]), PL)

o, (B,y) = model2.intercept_, model2.coef_

This saves vs from having to

Making predictions / getting fitted values from the model (cleaner gode)  explicitly code vp the
prediction formula — less

newSL = np.linspace(4.2, 8.2, 20) chance we introduce buas
predPL = model.predict(np.column_stack([newSL, newSL*%*21])) 9



Exampl
Learning with p
Data Science—L

Some of the questions ask for pseudocode. I sugg
online tester. There is a notebook with template
the course materials webpage.

Question 1. Given a dataset [z,...,: Ty, We W
random variable with a single parameter A > 0,
AT (_,—}'\
PI‘[.L’: /\} = _T
!

Show that the maximum likelihood estimator fo

Question 2. Give pseudocode to fit the mod
[Optional.] If you want to test your code using
PoissonModel.

In practice it’d be daft to use numerical opt
answer. But it’s good to get used to numerical |
problem where you what the answer should be.

Question 3. Given a dataset [z,,...,7,], we |
is unknown. Show that the maximum likelihood

ex1: practical exercises for Example Sheet 1.

The example sheet asks you to implement the three classes given below: PoissonModel , PiecewiselinearModel , and
StepPeriodModel . The class skeletons are given, and you should fill in the missing pieces. To test your answers on Moodle,

please upload either a Jupyter notebook called ex1.ipynb or a plain Python file called ex1.py .

import numpy as np
import scipy.optimize
import sklearn.linear_model

Poisson model. Suppose we're given a dataset [z1, . . ., y]. We wish to fit the model that says each z; is an independent
sample from the Poisson(A) distribution. Estimate A using scipy.optimize.fmin .

Note. If the tester reports that your answer (s a little bit off, try increasing the precision that scipy.optimize.fmin Is using by

e.g. passing in the argument xtol=e.eeee1 .

class PoissonModel():
def __init__(self):
self.A_ = np.nan
def fit(self, x):
Input: x is a numpy vector of integers
TODO: set self.A_

# H

Piecewise linear response. Suppose we're given a dataset of (z;,y;) pairs. We wish to fit a model for y as a function of z,
made up of two straight lines. The function must be continuous, i.e. the two straight lines must meet at an inflection point. The

x-coordinate of the inflection point is given.
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§2.2 Feature design

How do we design features,
so that linear models
answer the questions we
want answered?




ONE-HOT CODING EXERCISE. Fit three straight lines, one per species.
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I’'m using numpy’s notation for handling vectors:

—

= 1 isthe constant vector[1,1,1,1,1]

" specis avector from the dataset, [“seto”, “virg”, “virg”, “seto”,

= f(X) means “apply the function to each element of x”

" lspec="seto” Means “apply the indicator to each element of spec”

—

= SL * lggec="seto" USES element-wise multiplication




import sklearn.linear model

species, SL, PL = iris['Species'], iris['Petal.Length'], iris['Sepal.Length']

species levels = ['setosa', 'virginica', 'versicolor']
i1l,i2,i3 = [np.where(species==k, 1, @) for k in species levels]

S 3 3 X

= np.column_stack([il1, i2, i3, i1*SL, i2*SL, i3*SL])
= sklearn.linear_model.LinearRegression(fit_intercept=False)

Fit(X, PL)
.coef_



EXERCISE -
Fit the model with three parallel straight lines. P L ~ X

7 -
@, -
6 1 08" 3 ........... : zﬁ;ﬁflifr - “ L m 1 |

Bl e seto Lg% cun * Oy Lipauiy ™ Oy Lieoven

5.

85 -
2- = Lery #
114 gdwaa

4 é é | |

Sepal.Length

l\m—’\ﬁ @J(\Vj .



NON-LINEAR RESPONSE
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Q. Should we just keep adding more
and more features to our model?

guadratic

(seeing as the more features we add,
the better we can fit the dataset)

A. No. If we did, we'd overfit.

Only add in features that you (as a

scientist) believe are relevant. L "% | polynomial
. . degree 10

Or, evaluate your model on a holdout set. L L R Rt o
If your model is overfitted to the training data, :

it’ll perform poorly on holdout data.
(84, 8-10]




NON-LINEAR RESPONSE via one-hot coding
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COMPARING GROUPS

Measurements for condition 4: a = [a,,a,,..,a,,] :‘ %
51 T. Measurements for condition B: b = [b,,b,,..,b ] m/ A .
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PERIODIC PATTERN
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We'd like to fit the model:

It looks like we can’t use

a + B sin(r(t+¢))

~y
~

temp

sklearn.LinearRegression.
That’s only for linear models,

e.g.

a+ fe+yf
Instead, we could just brute-

force optimize it with

temp

scipy.optimize.fmin.



mean temp

RIODIC PATTERN
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We'd like to fit the model:
temp

Q

Q

From secondary school trigonometry,

sin(4 + B)
= sin(A4) cos(B) + cos(A) sin(B)

a + B sin(2rt+¢)
a+ B {sin(2mt) cos¢p + cos(2mt) sin ¢}
a + (B cos @) sin(2mt) + (B sin @) cos(2mt)
B sinz s cos2at)
a + sin(2mt + cos(2mt
)+ it

a + B¢ + B2/

a linear model with feature
vectors 1, sin(2mt), cos(2mt)
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PERIODIC PATTERN + SECULAR TREND

temp = a + By sin(2mt) + B, cos(2mt) + yt
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Linear models are
easily composable.

Here | added on the “linear trend”
feature. We could easily have stuck
in the step-function response
instead.

PERIODIC PATTERN + SECULAR TREND
temp = a + By sin(2mwt) + B, cos(2mt) + yt




§F climate X +

< C @ cl.cam.ac.uk ching ate.html

import numpy as np

import pandas

import matplotlib.pyplot as plt
import sklearn.linear_model

nm = np.pi

Climate dataset challenge

e What is the rate of temperature increase in Cambridge?
e Are temperatures increasing at a constant rate, or has the increase accelerated?

e How do results compare across the whole of the UK?

Upload your answers to

produce elegant plots to communicate your findings. Please submit a Jupyter Moodle by Sunday
notebook, or a pdf. Include explanations of what your models are, and of what for presentation / discussion
your plots show. next week

Your task is to answer these questions using appropriate linear models, and to

The dataset is from https w.metoffice.gov.uk/pub/data/weather/uk/climate/. Code

for retrieving the dataset is given at the bottom.




You’'ve got to have models in your head. And you’ve got
to array your experience — both vicarious and direct —
on this latticework of models.

You may have noticed students who just try to
remember and pound back what is remembered. Well,
they fail in school and in life. You’ve got to hang
experience on a latticework of models in your head.

Charlie Munger (business partner of Warren Buffet),
A lesson on elementary, worldly wisdom as it relates to
investment management & business.
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