
§2.1 
Fitting a 
linear model



Monthly average temperatures in Cambridge, UK
What’s a good model for this dataset?

Climate is stable?

Temp 𝑡 ∼ 𝑎 + 𝑏 sin 2𝜋 𝑡 + 𝜙 + 𝑁(0, 𝜎2)

Temperatures are increasing?

Temperatures are increasing, 
and the increase is 
accelerating?

The extremes are 
getting worse?

There are so many possible models. We want 
to make it easy to invent and fit new models, 
so we have time to explore all the possibilities.



Example 2.1.1
The Iris dataset has 50 records of iris 
measurements, from three species.

How does Petal.Length depend on 
Sepal.Length? 

Petal.

Length

Petal.

Width

Sepal.

Length

Sepal.

Width Species

1.0 0.2 4.6 3.6 setosa

5.0 1.9 6.3 2.5 virginica

5.8 1.6 7.2 3.0 virginica

4.2 1.2 5.7 3.0 versicolor

…

Dataset collected by Edgar Anderson and popularized by Ronald Fisher in 1936

Let’s guess that for parameters 𝛼, 𝛽, 𝛾, 𝜎 (to be estimated), 
Petal.Length ≈ 𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2
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Models of this form are called linear models
(because they’re based on linear algebra).

They are flexible, and very fast to optimize.

§2.1Let’s guess that for parameters 𝛼, 𝛽, 𝛾, 𝜎 (to be estimated), 
Petal.Length ≈ 𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2

A linear model is

❖ a supervised-learning model
[it has a response variable, and feature 
variables]

❖ in which the response and the 
features are numeric

❖ and the response vector is 
predicted by a linear 
combination of (known) feature 
vectors weighted by (unknown) 
parameters



NOTATION WARNING!

This is a vector 
equation describing 
my dataset, one row 
per datapoint

This is a scalar 
equation that I 
can use to make 
predictions

Petal.Length ≈ 𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2



Least squares estimation

Consider a linear model 
𝑦 ≈ 𝛽1𝑒1 + ⋯ + 𝛽𝐾𝑒𝐾

“All models are wrong.”

The vector of prediction errors is called the residual vector,
𝜀 = 𝑦 − (𝛽1𝑒1 + ⋯ + 𝛽𝐾𝑒𝐾)

We can fit the model using least squares estimation. This means finding 
parameters 𝛽1, … , 𝛽𝐾 to minimize the mean square error

mse =
1

𝑛
෍

𝑖=1

𝑛

𝜀𝑖
2
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1 iris = pandas.read_csv(...)

2
3
4
5

one, SL, PL = np.ones(len(iris)), iris['Sepal.Length'], iris['Petal.Length']
model = sklearn.linear_model.LinearRegression(fit_intercept=False)
model.fit(np.column_stack([one, SL, SL**2]), PL)
(α,β,γ) = model.coef_

6
7

newSL = np.linspace(4.2, 8.2, 20)
predPL = α + β*newSL + γ*(newSL**2)

Making predictions / getting fitted values from the model

Fitting the model
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2
3
4
5

SL, PL = iris['Sepal.Length'], iris['Petal.Length']
model = sklearn.linear_model.LinearRegression()
model.fit(np.column_stack([SL, SL**2]), PL)
α,(β,γ) = model2.intercept_, model2.coef_

6
7

newSL = np.linspace(4.2, 8.2, 20)
predPL = model.predict(np.column_stack([newSL, newSL**2]))

Making predictions / getting fitted values from the model (cleaner code)

Fitting the model (cleaner code)
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Petal.Length ≈ 𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2

§2.11 iris = pandas.read_csv(...)

sklearn.linear_model puts in the 
[1,...,1] feature for us by default. If we 
don’t want it, we have to specify 
fit_intercept=False.

This saves us from having to 
explicitly code up the 
prediction formula – less 
chance we introduce bugs





§2.2 Feature design

How do we design features, 
so that linear models 
answer the questions we 
want answered?

machine
learning

data
science

building 
models 

from data

Build a model to 
make predictions

Build a model to 
answer science 
questions



ONE-HOT CODING
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§2.2EXERCISE. Fit three straight lines, one per species.



▪ 1 is the constant vector [1,1,1,1,1]

▪ spec is a vector from the dataset,  [“seto”, “virg”, “virg”, “seto”, ...]

▪ 𝑓( Ԧ𝑥) means “apply the function to each element of Ԧ𝑥”

▪ 1spec ="seto" means “apply the indicator to each element of spec”

▪ SL ∗ 1spec ="seto"  uses element-wise multiplication

I’m using numpy’s notation for handling vectors:



import sklearn.linear_model

species, SL, PL = iris['Species'], iris['Petal.Length'], iris['Sepal.Length']

species_levels = ['setosa', 'virginica', 'versicolor']
i1,i2,i3 = [np.where(species==k, 1, 0) for k in species_levels]

X = np.column_stack([i1, i2, i3, i1*SL, i2*SL, i3*SL])
m = sklearn.linear_model.LinearRegression(fit_intercept=False)
m.fit(X, PL)
m.coef_



EXERCISE
Fit the model with three parallel straight lines.
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NON-LINEAR RESPONSE

Petal.Length ≈
zinger𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2

Petal.Length ≈

𝑧𝑖𝑛𝑔𝑒𝑟𝛽0 + ෍
𝑘=1

𝐾

𝛽𝑘 Sepal.Length 𝑘
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quadratic

cubic

polynomial 
degree 10

𝑦 ≈ 𝛽0 + 𝛽1𝑥 + ⋯ + 𝛽10𝑥10

𝑥

𝑦

Q. Should we just keep adding more 
and more features to our model?

A. No. If we did, we’d overfit. 

(seeing as the more features we add, 
the better we can fit the dataset)

Only add in features that you (as a 
scientist) believe are relevant.

Or, evaluate your model on a holdout set. 
If your model is overfitted to the training data, 
it’ll perform poorly on holdout data.
[§4, 8–10]
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NON-LINEAR RESPONSE via one-hot coding §2.2

PL ≈ 𝛼41 SL ≤4 + 𝛼51 SL =5 + 𝛼61 SL =6 + 𝛼71 SL ≥7



COMPARING GROUPS
Measurements for condition 𝐴:  a = [a1,a2,…,am]
Measurements for condition 𝐵:  b = [b1,b2,…,bn]

Can we use a linear model to compare 𝐴 and 𝐵?
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PERIODIC PATTERN

We'd like to fit the model: 
temp ≈ 𝛼 + 𝛽 sin 2𝜋(t+𝜑 )

It looks like we can’t use 
sklearn.LinearRegression. 
That’s only for linear models, 
e.g.

temp ≈ 𝛼 + 𝛽e + 𝛾f 
Instead, we could just brute-
force optimize it with 
scipy.optimize.fmin.
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PERIODIC PATTERN

We'd like to fit the model: 
temp ≈ 𝛼 + 𝛽 sin 2𝜋t+𝜑

From secondary school trigonometry,

sin 𝐴 + 𝐵
 = sin 𝐴 cos 𝐵 + cos 𝐴 sin(𝐵)

≈ 𝛼 + 𝛽 sin 2𝜋t cos 𝜙  +  cos 2𝜋t sin 𝜙

= 𝛼 + 𝛽 cos 𝜙 sin 2𝜋t + 𝛽 sin 𝜙 cos 2𝜋t

= 𝛼 + 𝛽1 sin 2πt  +  𝛽2 cos 2𝜋t

= 𝛼 + 𝛽1𝑒 +  𝛽2𝑓

a linear model with feature 
vectors 1, sin(2𝜋t), cos(2𝜋t)
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PERIODIC PATTERN
temp ≈ 𝛼 + 𝛽1 sin 2πt + 𝛽2 cos 2𝜋t

PERIODIC PATTERN + SECULAR TREND
temp ≈ 𝛼 + 𝛽1 sin 2πt + 𝛽2 cos 2𝜋t + 𝛾t
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§2.2PERIODIC PATTERN
temp ≈ 𝛼 + 𝛽1 sin 2πt + 𝛽2 cos 2𝜋t

PERIODIC PATTERN + SECULAR TREND
temp ≈ 𝛼 + 𝛽1 sin 2πt + 𝛽2 cos 2𝜋t + 𝛾t
PERIODIC PATTERN + SECULAR TREND
temp ≈ 𝛼 + 𝛽1 sin 2πt + 𝛽2 cos 2𝜋t + 𝛾t

Linear models are 
easily composable. 
Here I added on the “linear trend” 
feature. We could easily have stuck 
in the step-function response 
instead.



Upload your answers to 
Moodle by Sunday
for presentation / discussion 
next week



You’ve got to have models in your head. And you’ve got 
to array your experience – both vicarious and direct – 
on this latticework of models.

You may have noticed students who just try to 
remember and pound back what is remembered. Well, 
they fail in school and in life. You’ve got to hang 
experience on a latticework of models in your head.

Charlie Munger (business partner of Warren Buffet), 
A lesson on elementary, worldly wisdom as it relates to 
investment management & business.
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