
§2.1
Fitting a
linear model

Monthly average temperatures in Cambridge, UK
What’s a good model for this dataset?

Climate is stable?

Temp 𝑡 ∼ 𝑎 + 𝑏 sin 2𝜋 𝑡 + 𝜙 + 𝑁(0, 𝜎2)

Temperatures are increasing?

Temperatures are increasing,
and the increase is
accelerating?

The extremes are
getting worse?

There are so many possible models. We want
to make it easy to invent and fit new models,
so we have time to explore all the possibilities.

Example 2.1.1
The Iris dataset has 50 records of iris
measurements, from three species.

How does Petal.Length depend on
Sepal.Length?

Petal.

Length

Petal.

Width

Sepal.

Length

Sepal.

Width Species

1.0 0.2 4.6 3.6 setosa

5.0 1.9 6.3 2.5 virginica

5.8 1.6 7.2 3.0 virginica

4.2 1.2 5.7 3.0 versicolor

…

Dataset collected by Edgar Anderson and popularized by Ronald Fisher in 1936

Let’s guess that for parameters 𝛼, 𝛽, 𝛾, 𝜎 (to be estimated),
Petal.Length ≈ 𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2

§2.1

Example 2.1.1
The Iris dataset has 50 records of iris
measurements, from three species.

How does Petal.Length depend on
Sepal.Length?

Petal.

Length

Petal.

Width

Sepal.

Length

Sepal.

Width Species

1.0 0.2 4.6 3.6 setosa

5.0 1.9 6.3 2.5 virginica

5.8 1.6 7.2 3.0 virginica

4.2 1.2 5.7 3.0 versicolor

…

Dataset collected by Edgar Anderson and popularized by Ronald Fisher in 1936

Let’s guess that for parameters 𝛼, 𝛽, 𝛾, 𝜎 (to be estimated),
Petal.Length ≈ 𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2

response
vector

PL1

PL2

⋮
PL𝑛

≈ 𝛼

1
1
⋮
1

+ 𝛽

SL1

SL2

⋮
SL𝑛

+ 𝛾

SL1
2

SL2
2

⋮
SL𝑛

2

unknown parameters
to be estimated

feature
vectors

§2.1

PL1

PL2

⋮
PL𝑛

≈ 𝛼

1
1
⋮
1

+ 𝛽

SL1

SL2

⋮
SL𝑛

+ 𝛾

SL1
2

SL2
2

⋮
SL𝑛

2

Models of this form are called linear models
(because they’re based on linear algebra).

They are flexible, and very fast to optimize.

§2.1Let’s guess that for parameters 𝛼, 𝛽, 𝛾, 𝜎 (to be estimated),
Petal.Length ≈ 𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2

A linear model is

❖ a supervised-learning model
[it has a response variable, and feature
variables]

❖ in which the response and the
features are numeric

❖ and the response vector is
predicted by a linear
combination of (known) feature
vectors weighted by (unknown)
parameters

NOTATION WARNING!

This is a vector
equation describing
my dataset, one row
per datapoint

This is a scalar
equation that I
can use to make
predictions

Petal.Length ≈ 𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2

Least squares estimation

Consider a linear model
𝑦 ≈ 𝛽1𝑒1 + ⋯ + 𝛽𝐾𝑒𝐾

“All models are wrong.”

The vector of prediction errors is called the residual vector,
𝜀 = 𝑦 − (𝛽1𝑒1 + ⋯ + 𝛽𝐾𝑒𝐾)

We can fit the model using least squares estimation. This means finding
parameters 𝛽1, … , 𝛽𝐾 to minimize the mean square error

mse =
1

𝑛
෍

𝑖=1

𝑛

𝜀𝑖
2

§2.1

1 iris = pandas.read_csv(...)

2
3
4
5

one, SL, PL = np.ones(len(iris)), iris['Sepal.Length'], iris['Petal.Length']
model = sklearn.linear_model.LinearRegression(fit_intercept=False)
model.fit(np.column_stack([one, SL, SL**2]), PL)
(α,β,γ) = model.coef_

6
7

newSL = np.linspace(4.2, 8.2, 20)
predPL = α + β*newSL + γ*(newSL**2)

Making predictions / getting fitted values from the model

Fitting the model

PL1

PL2

⋮
PL𝑛

≈ 𝛼

1
1
⋮
1

+ 𝛽

SL1

SL2

⋮
SL𝑛

+ 𝛾

SL1
2

SL2
2

⋮
SL𝑛

2

Petal.Length ≈ 𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2

§2.1

2
3
4
5

SL, PL = iris['Sepal.Length'], iris['Petal.Length']
model = sklearn.linear_model.LinearRegression()
model.fit(np.column_stack([SL, SL**2]), PL)
α,(β,γ) = model2.intercept_, model2.coef_

6
7

newSL = np.linspace(4.2, 8.2, 20)
predPL = model.predict(np.column_stack([newSL, newSL**2]))

Making predictions / getting fitted values from the model (cleaner code)

Fitting the model (cleaner code)

PL1

PL2

⋮
PL𝑛

≈ 𝛼

1
1
⋮
1

+ 𝛽

SL1

SL2

⋮
SL𝑛

+ 𝛾

SL1
2

SL2
2

⋮
SL𝑛

2

Petal.Length ≈ 𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2

§2.11 iris = pandas.read_csv(...)

sklearn.linear_model puts in the
[1,...,1] feature for us by default. If we
don’t want it, we have to specify
fit_intercept=False.

This saves us from having to
explicitly code up the
prediction formula – less
chance we introduce bugs

§2.2 Feature design

How do we design features,
so that linear models
answer the questions we
want answered?

machine
learning

data
science

building
models

from data

Build a model to
make predictions

Build a model to
answer science
questions

ONE-HOT CODING

PL1

PL2

PL3

PL4

PL5

⋮

0
1
1
0
0
⋮

0
0
0
0
1
⋮

SL1

0
0

SL4

0
⋮

0
SL2

SL3

0
0
⋮

0
0
0
0

SL5

⋮

+𝛽vers+𝛽virg+𝛽seto≈ 𝛼seto +𝛼virg +𝛼vers

seto

virg

virg

seto

vers

1
0
0
1
0
⋮

§2.2EXERCISE. Fit three straight lines, one per species.

▪ 1 is the constant vector [1,1,1,1,1]

▪ spec is a vector from the dataset, [“seto”, “virg”, “virg”, “seto”, ...]

▪ 𝑓(Ԧ𝑥) means “apply the function to each element of Ԧ𝑥”

▪ 1spec ="seto" means “apply the indicator to each element of spec”

▪ SL ∗ 1spec ="seto" uses element-wise multiplication

I’m using numpy’s notation for handling vectors:

import sklearn.linear_model

species, SL, PL = iris['Species'], iris['Petal.Length'], iris['Sepal.Length']

species_levels = ['setosa', 'virginica', 'versicolor']
i1,i2,i3 = [np.where(species==k, 1, 0) for k in species_levels]

X = np.column_stack([i1, i2, i3, i1*SL, i2*SL, i3*SL])
m = sklearn.linear_model.LinearRegression(fit_intercept=False)
m.fit(X, PL)
m.coef_

EXERCISE
Fit the model with three parallel straight lines.

§2.2

NON-LINEAR RESPONSE

Petal.Length ≈
zinger𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2

Petal.Length ≈

𝑧𝑖𝑛𝑔𝑒𝑟𝛽0 + ෍
𝑘=1

𝐾

𝛽𝑘 Sepal.Length 𝑘

§2.2

quadratic

cubic

polynomial
degree 10

𝑦 ≈ 𝛽0 + 𝛽1𝑥 + ⋯ + 𝛽10𝑥10

𝑥

𝑦

Q. Should we just keep adding more
and more features to our model?

A. No. If we did, we’d overfit.

(seeing as the more features we add,
the better we can fit the dataset)

Only add in features that you (as a
scientist) believe are relevant.

Or, evaluate your model on a holdout set.
If your model is overfitted to the training data,
it’ll perform poorly on holdout data.
[§4, 8–10]

§2.3

NON-LINEAR RESPONSE via one-hot coding §2.2

PL ≈ 𝛼41 SL ≤4 + 𝛼51 SL =5 + 𝛼61 SL =6 + 𝛼71 SL ≥7

COMPARING GROUPS
Measurements for condition 𝐴: a = [a1,a2,…,am]
Measurements for condition 𝐵: b = [b1,b2,…,bn]

Can we use a linear model to compare 𝐴 and 𝐵?

§2.2

PERIODIC PATTERN

We'd like to fit the model:
temp ≈ 𝛼 + 𝛽 sin 2𝜋(t+𝜑)

It looks like we can’t use
sklearn.LinearRegression.
That’s only for linear models,
e.g.

temp ≈ 𝛼 + 𝛽e + 𝛾f
Instead, we could just brute-
force optimize it with
scipy.optimize.fmin.

§2.2

PERIODIC PATTERN

We'd like to fit the model:
temp ≈ 𝛼 + 𝛽 sin 2𝜋t+𝜑

From secondary school trigonometry,

sin 𝐴 + 𝐵
 = sin 𝐴 cos 𝐵 + cos 𝐴 sin(𝐵)

≈ 𝛼 + 𝛽 sin 2𝜋t cos 𝜙 + cos 2𝜋t sin 𝜙

= 𝛼 + 𝛽 cos 𝜙 sin 2𝜋t + 𝛽 sin 𝜙 cos 2𝜋t

= 𝛼 + 𝛽1 sin 2πt + 𝛽2 cos 2𝜋t

= 𝛼 + 𝛽1𝑒 + 𝛽2𝑓

a linear model with feature
vectors 1, sin(2𝜋t), cos(2𝜋t)

§2.2

PERIODIC PATTERN
temp ≈ 𝛼 + 𝛽1 sin 2πt + 𝛽2 cos 2𝜋t

PERIODIC PATTERN + SECULAR TREND
temp ≈ 𝛼 + 𝛽1 sin 2πt + 𝛽2 cos 2𝜋t + 𝛾t

§2.2

§2.2PERIODIC PATTERN
temp ≈ 𝛼 + 𝛽1 sin 2πt + 𝛽2 cos 2𝜋t

PERIODIC PATTERN + SECULAR TREND
temp ≈ 𝛼 + 𝛽1 sin 2πt + 𝛽2 cos 2𝜋t + 𝛾t
PERIODIC PATTERN + SECULAR TREND
temp ≈ 𝛼 + 𝛽1 sin 2πt + 𝛽2 cos 2𝜋t + 𝛾t

Linear models are
easily composable.
Here I added on the “linear trend”
feature. We could easily have stuck
in the step-function response
instead.

Upload your answers to
Moodle by Sunday
for presentation / discussion
next week

You’ve got to have models in your head. And you’ve got
to array your experience – both vicarious and direct –
on this latticework of models.

You may have noticed students who just try to
remember and pound back what is remembered. Well,
they fail in school and in life. You’ve got to hang
experience on a latticework of models in your head.

Charlie Munger (business partner of Warren Buffet),
A lesson on elementary, worldly wisdom as it relates to
investment management & business.

	Slide 1
	Slide 2: Monthly average temperatures in Cambridge, UK
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: §2.2 Feature design
	Slide 12: ONE-HOT CODING
	Slide 13
	Slide 14
	Slide 15
	Slide 16: NON-LINEAR RESPONSE
	Slide 17
	Slide 18: NON-LINEAR RESPONSE via one-hot coding
	Slide 19: COMPARING GROUPS
	Slide 21: PERIODIC PATTERN
	Slide 22: PERIODIC PATTERN
	Slide 23: PERIODIC PATTERN
	Slide 24: PERIODIC PATTERN
	Slide 25
	Slide 26

