§1.5 Better notation for likelihood

1. Write out a probability model Step 1.5. Find an expression
b-_—__‘-ﬁ—_—— " "
2. Fit the model from data for the likelihood

by maximizing the likelihood
This is behind
= A-level statistics formulae
= our climate model
* ChatGPT training
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The likelihood function for a random variable X
is written Pry (x) and defined as

Pry(x) = P(X = x) inthe case where X is discrete

and as

Pry(x) = pdf(x) in the case where X is continuous
with prob. density function pdf(x)

For parameterized random variables, write
Pry(x;60) or P, (= [9) or  Pr, (=)




The likelihood notation has two parts: §1.5
a random variable i.e. a RNG, and a value.

TECHNICAL ASIDE

P(X =x,Y =y) =Pryy(x,y)
Pairs of random variables: P(X €AY €B) = Pryy(x,y)

X€EA,YEB

Independent random variables: For continuous random variables,

P(X €AY €B) = j Pry y(x,y)dxdy
X€EA,YEB

Independent identically-distributed (l1ID) sample from X: See IA Probability lecture 6

Sequential generation of X, then Y based on X:




Maximum Likelihood Estimation, again

If we've seen an(outcome x)and we've proposed a probability
model X, and if its digtribution involves some unknown

parameters 0,

the maximum likelihood estimator for 6 is

f = arg max Pry(x;6)
0

= X could be discrete or continuous
= X could be a single observation or a dataset with many observations

The point of the likelihood notation is 50 that we can write
down a single equation and have it cover all these cases.




Rules of Probability

Understand what is meant by sample space, written €2, and know that P(€)) = 1. Be able
to reason about probabilities of events with Venn diagrams. Know the core definitions
and laws ...

Conditional probability, or equivalently the chain rule:
P(A, B)
P(B)
P(B,A) =DP(B) P(A| B) (chain rule)

P(A|B) if P(B) >0

If A and B are independent: here. A and B are events
)

P(A, B) = P(A)P(B)
P(A|B) = P(A)

Sum rule, and the law of total probability, for events {B;, Bs, ...} that partition the
sample space (i.e. for events that are mutually exclusive and where |, B; = ):

P(4) = ) P(4,B;)

P(A) Z[P[A | B;) P(B;) (law of total probability)

Bayves's rule:

P(B | A)P(A)
P(B)

P(A|B) if P(B) > 0.

The fundamental rules of
probability still hold,
they're just written

dif ferent in likelihood
notation.

here, X and Y are random variables
Pry y(x,y) = Pry(x) Pry(y)




Pry(-) is a function,

Pry: Q) — R,y where (}is the sample space of X.
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There are standard numerical random variables that you should know:

§1.2

DISCRETE RANDOM VARIABLES
Binomial P(X =x) = (Z) p*(1 —p)n=* For count data, e.g. number of heads in n coin tosses
X~Bin(n, p) x € {0,1,...,n}
Poisson P(X = x) = e~ For count data, e.g. number of buses passing a spot
X~Pois(1) I

x €{0,1,..}
Categorical P(X = x) = psx For picking one of a fixed number of choices

X~Cat([pq, -, Pr]) x€{1,..,k}

CONTINUOUS RANDOM VARIABLES

Uniform pdf(x) = ! A uniformly-distributed floating point value
X~U[a,b] b—
x € [a,b]
Normal / Gaussian pdf(x) = o~ (x—)? /202 For data about magnitudes, e.g. temperature or height
X~N(u,0?%) V2ma?
x €ER
Pareto pdf(x) = a x~(@*D) For data about “cascade” magnitudes, e.g. forest fires
X~Pareto(a) x=1
Exponential pdf(x) = 1e For waiting times, e.g. time until next bus
X~Exp(A) x>0
Beta pdf(x) o x*71(1 — x)P~* Arises in Bayesian inference

X~Beta(a, b) x € (0,1)
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- . 4 A histogram of radial velocities of 120 galaxies in the Corona Borealis region
- } ' ., Postman, Huchra, Geller (1986)
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A histogram of radial velocities of 120 galaxies
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How might you complete this code? 3 WP Ps

def rgalaxy(...): 2
# TODO: return a single random galaxy speed X ~ N <f}\k: G-K)

def rgalaxies(size):
return [rgalaxy(..) for _ in range(size)]




George Box
1919-2013

“All models are wrong,
but some are useful”

There's no “right” model. Don't be shy,
just go ahead and invent a model!




dataset
a ‘ EXERCISE 1.1.3.
ol I ‘ B .IH‘-||||||- . Write this model in random
: . variable notation.
100000 simulated datapoints
10000 - EXERCISE 1.7.4.
What’s the likelihood?
° 0 10000 20000 30000 40000 EXERCISE 1.7.4. How would
Radial velocity [km/s] you fit this model?
- 3
def rgalaxy(p,u,o0): K~ (ot (P) p=C(Ps. fis p) € R

def

T~ T
i

k = np.random.choice([0,1,2], p=p)
X = np.random.normal(loc=p[k], scale=o[k])
return X

rgalaxies(size, p,l,0):

return [rgalaxy(p,u,o0) for _ in range(size)]

[0.28, ©.54, 0.18]
[9740, 21300, 15000]
[340, 1700, 10600]

r4
XK~ N (pe, o)
[by the rule for

ﬁk,x (R’OC) - Prl( (h) Prx (": ’ k) sequential generation]
~ (_z %Qa fZV:

[looking up the likelihood on
the r.v. reference sheet]

2
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probability]

P )

[since our rgalaxies function makes
the datapoints independent]
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algorithmic
ML



supervised learning

temp

2020 2021 2022 2023 2024 2025

Given a dataset of (t;, temp;) pairs, i € {1, ...,n},

I’d like to predict temp as a function of t.

I'd like to fit a probability model for Temp, where
the parameters of the distribution depend on t.

Some terminology:

unsupervised learning

[

0 10000 20000 30000 40000
Radial velocity [km/s]

Given a dataset [x4, ..., X, ] of galaxy speeds,

I’d like to identify the clusters.

I’d like to fit a probability model for speed X,
using a model that has clusters.

prediction, description, generation probabilistic modelling




supervised learning

unsupervised learning
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Given a dataset (x,y,), ..., (x,,, V,,) where y; is the label Given a dataset x, ..., x,:

in record i and x; is the predictor variable or variables:

0. Propose a probability model
Y ~ ... OrXN...

1. Write out the likelihood for a single datapoint:
Pry(y; x,8) or Pry(x;0)

2. Model the dataset as independent observations and write out the likelihood for the full dataset:

Pr(dataset) = [[%, Pry (y;; x;,0) or [I'-, Prx(x;; 60)

3. Learn 6 using maximum likelihood estimation




Terminology for supervised learning

station yyyy mm t af rain sun tmin  tmax temp
Cambridge 1985 1 1985.00 23 373 40.7 -2.2 3.4 0.6
Cambridge 1985 2 1985.08 13 14.6 79 -1.9 4.9 1.5
Cambridge 1985 3 1985.16 10 45.8 97.8 1.1 8.7 4.9

https://www.metoffice.gov.uk/research/climate/maps-and-data/historic-station-data



image  digit

Exercise 1.6.1 (types of model).

2
The MNIST database of handwritten

images consists of records (x;, y;) where
x; € R?8%28 js a greyscale image with
28x%28 pixels, and y; € {0, ..., 9} is the
digit.

Give examples of predictive and generative
modelling tasks based on this data.

x| — W%

Simple prediction (image classifier): given an image x, output the digit y
Generative prediction (probabilistic image classifier): given an image x, output a distribution over digits Y
Generative prediction (handwriting generator): given a digit y, generate a random image X
Generative prediction (image infill): given a partial image, generate a complete image X
Pure generation: generate a random image X, of any digit
Pure generation: generate a random pair (X,Y) witn jeist 1ikelilees  Fr, o (x,y)
Thew, rthe madgianl disenbubn  P(Y=y | K =) comesputs fo the prstabrlyt, imape claysifer

Pr x (x| Y=yg) corvesponds o rhe haudwriting geparator




On Friday we’ll do a mock exam question.
Have a look at it beforehand!

COMPUTER SCIENCE TRIPOS Part IB — mock — Paper 6
1 Foundations of Data Science (DJW)

(a) A 0/1 signal is being transmitted. The transmitted signal at timeslot i €
{1,..., n} is x; € {0,1}, and we have been told that this signal starts at 0
and then flips to 1, i.e. there is a parameter § € {1,...,n — 1} such that
x; = l,55. The value of this parameter is unknown. The channel is noisy, and
the received signal in timeslot 7 is

Y. ~ x; + Normal(0, ::‘2)

where £ is known.

2 -
1 .‘.. B -.”..-. R.0.4
. e o =
C| c-l‘-.lc..'-i-;
-1
0 5 10 15 20
(7) Given received signals (yq, .. ., Y, ), find an expression for the log likelihood,

log Pr(yy, . .., Y. ; 0). Explain your working. [5 marks]
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