
§1.5 Better notation for likelihood

by maximizing the likelihood

Step 1.5. Find an expression
for the likelihood



The likelihood function for a random variable 𝑋 
is written Pr𝑋 𝑥  and defined as

 Pr𝑋 𝑥 = ℙ(𝑋 = 𝑥) in the case where 𝑋 is discrete

and as

 Pr𝑋 𝑥 = pdf(𝑥) in the case where 𝑋 is continuous
  with prob. density function pdf(𝑥)

For parameterized random variables, write
 Pr𝑋(𝑥 ; 𝜃)

§1.5



The likelihood notation has two parts: 
a random variable i.e. a RNG, and a value.
e.g. Pr𝑋+𝑌(0.2)

Pairs of random variables:
Pr𝑋,𝑌 𝑥, 𝑦  is called the joint likelihood of 𝑋 and 𝑌

For discrete random variables, 
ℙ 𝑋 = 𝑥, 𝑌 = 𝑦 = Pr𝑋,𝑌 𝑥, 𝑦

ℙ 𝑋 ∈ 𝐴, 𝑌 ∈ 𝐵 = ෍

𝑥∈𝐴,𝑦∈𝐵

Pr𝑋,𝑌(𝑥, 𝑦)

I have a RNG called “X+Y”, which calls 
the X RNG and the Y RNG and adds 
their outputs together. What’s the 
chance that “X+Y” gives output 0.2?
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Independent random variables:
Pr𝑋,𝑌 𝑥, 𝑦 = Pr𝑋 𝑥  Pr𝑌(𝑦)

Independent identically-distributed (IID) sample from 𝑋:
Pr 𝑥1, … , 𝑥𝑛 = Pr𝑋 𝑥1 × ⋯ × Pr𝑋(𝑥𝑛)

Sequential generation of 𝑋, then 𝑌 based on 𝑋:
Pr𝑋,𝑌 𝑥, 𝑦 = Pr𝑋 𝑥  Pr𝑌(𝑦 ; 𝑥)

For continuous random variables, 

ℙ 𝑋 ∈ 𝐴, 𝑌 ∈ 𝐵 = න
𝑥∈𝐴,𝑦∈𝐵

Pr𝑋,𝑌 𝑥, 𝑦 𝑑𝑥𝑑𝑦

TECHNICAL ASIDE

See IA Probability lecture 6



Maximum Likelihood Estimation, again

If we've seen an outcome 𝑥, and we've proposed a probability 
model 𝑋, and if its distribution involves some unknown 
parameters 𝜃,

the maximum likelihood estimator for 𝜃 is

መ𝜃 = arg max
𝜃

Pr𝑋(𝑥 ; 𝜃)
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▪ x could be discrete or continuous
▪ x could be a single observation or a dataset with many observations

The point of the likelihood notation is so that we can write 
down a single equation and have it cover all these cases.



Rules of Probability

Pr𝑋,𝑌 𝑥, 𝑦 = Pr𝑋 𝑥  Pr𝑌(𝑦)

Pr𝑋 𝑥 = ෍
𝑦

Pr𝑋,𝑌(𝑥, 𝑦)

Pr𝑋 𝑥 = න
𝑦

Pr𝑋,𝑌 𝑥, 𝑦  𝑑𝑦

The fundamental rules of 
probability still hold, 
they’re just written 
different in likelihood 
notation.

here, A and B are events here, X and Y are random variables



Brain teaser

For this random variable 𝑋, what is Pr𝑋(𝑋) ?

𝑋 = ቐ

cat with prob. 1/6
stoat with prob. 3/6
dog with prob. 2/6

Pr𝑋(⋅) is a function, 
Pr𝑋: Ω → ℝ≥0   where Ω is the sample space of 𝑋.



There are standard numerical random variables that you should know:

DISCRETE RANDOM VARIABLES

Binomial
𝑋~Bin(𝑛, 𝑝) 

ℙ 𝑋 = 𝑥 =
𝑛
𝑥

𝑝𝑥 1 − 𝑝 𝑛−𝑥

𝑥 ∈ {0,1, … , 𝑛}

For count data, e.g. number of heads in 𝑛 coin tosses

Poisson
𝑋~Pois(𝜆) 

ℙ 𝑋 = 𝑥 =
𝜆𝑥𝑒−𝜆

𝑥!
𝑥 ∈ {0,1, … }

For count data, e.g. number of buses passing a spot

Categorical
𝑋~Cat( 𝑝1, … , 𝑝𝑘 ) 

ℙ 𝑋 = 𝑥 = 𝑝𝑥

𝑥 ∈ {1, … , 𝑘}
For picking one of a fixed number of choices

CONTINUOUS RANDOM VARIABLES

Uniform
𝑋~𝑈[𝑎, 𝑏] 

pdf 𝑥 =
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

A uniformly-distributed floating point value

Normal / Gaussian
𝑋~𝑁(𝜇, 𝜎2) 

pdf 𝑥 =
1

2𝜋𝜎2
𝑒− 𝑥−𝜇 2/2𝜎2

𝑥 ∈ ℝ

For data about magnitudes, e.g. temperature or height

Pareto
𝑋~Pareto(𝛼) 

pdf 𝑥 = 𝛼 𝑥−(𝛼+1)

𝑥 ≥ 1
For data about “cascade” magnitudes, e.g. forest fires

Exponential
𝑋~Exp(λ) 

pdf 𝑥 = 𝜆 𝑒−𝜆𝑥

𝑥 > 0
For waiting times, e.g. time until next bus

Beta
𝑋~Beta(𝑎, 𝑏) 

pdf 𝑥 ∝ 𝑥𝑎−1 1 − 𝑥 𝑏−1

𝑥 ∈ (0,1)
Arises in Bayesian inference
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A histogram of radial velocities of 120 galaxies in the Corona Borealis region
Postman, Huchra, Geller (1986)

§1.1Image: Richard Powell, Creative Commons Attribution-
Share Alike 2.5 Generic license.



A histogram of radial velocities of 120 galaxies

How might you complete this code?

def rgalaxy(...):
# TODO: return a single random galaxy speed

def rgalaxies(size):
    return [rgalaxy(…) for _ in range(size)]
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George Box
1919–2013

“All models are wrong,
“but some are useful”

There’s no “right” model. Don’t be shy, 
just go ahead and invent a model!



§1.1 § 1.7

p = [0.28, 0.54, 0.18]
μ = [9740, 21300, 15000]
σ = [340, 1700, 10600]

EXERCISE 1.1.3. 
Write this model in random 
variable notation.

def rgalaxy(p,μ,σ):
    k = np.random.choice([0,1,2], p=p)
    x = np.random.normal(loc=μ[k], scale=σ[k])
    return x

def rgalaxies(size, p,μ,σ):
    return [rgalaxy(p,μ,σ) for _ in range(size)]

EXERCISE 1.7.4. 
What’s the likelihood?

EXERCISE 1.7.4. How would 
you fit this model?

[by the rule for 
sequential generation]

[looking up the likelihood on 
the r.v. reference sheet]

[by the law of total 
probability]

[since our rgalaxies function makes 
the datapoints independent]



data
science

algorithmic
ML

probabilistic ML,
generative AI

building 
models 

from data

“Design an ML algorithm to 
find clusters”

“Propose a probability model 
that expresses the idea of 
’having clusters‘ and fit it”



Given a dataset of (𝑡𝑖 , temp𝑖) pairs, 𝑖 ∈ {1, … , 𝑛}, Given a dataset [𝑥1, … , 𝑥𝑛] of galaxy speeds,

I’d like to fit a probability model for Temp, where 
the parameters of the distribution depend on 𝑡.

supervised learning unsupervised learning

I’d like to predict temp as a function of 𝑡.
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I’d like to fit a probability model for speed 𝑋,
using a model that has clusters.

I’d like to identify the clusters.

Some terminology:
prediction, description, generation probabilistic modelling



supervised learning unsupervised learning

Given a dataset 𝑥1, 𝑦1 , … , (𝑥𝑛, 𝑦𝑛) where 𝑦𝑖  is the label 
in record 𝑖 and 𝑥𝑖 is the predictor variable or variables:

0. Propose a probability model
𝑌 ∼ ⋯  or  𝑋 ∼ ⋯

1. Write out the likelihood for a single datapoint:
Pr𝑌(𝑦; 𝑥, 𝜃)  or Pr𝑋(𝑥; 𝜃)

2. Model the dataset as independent observations and write out the likelihood for the full dataset: 
Pr dataset = ς𝑖=1

𝑛 Pr𝑌(𝑦𝑖; 𝑥𝑖 , 𝜃)  or  ς𝑖=1
𝑛 Pr𝑋(𝑥𝑖; 𝜃)

3. Learn 𝜃 using maximum likelihood estimation

Given a dataset 𝑥1, … , 𝑥𝑛:
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Terminology for supervised learning

station yyyy mm t af rain sun tmin tmax temp

Cambridge 1985 1 1985.00 23 37.3 40.7 -2.2 3.4 0.6

Cambridge 1985 2 1985.08 13 14.6 79 -1.9 4.9 1.5

Cambridge 1985 3 1985.16 10 45.8 97.8 1.1 8.7 4.9

⋮

https://www.metoffice.gov.uk/research/climate/maps-and-data/historic-station-data

called the PREDICTOR variable,
or the FEATURE,
or the COVARIATE

called the RESPONSE,
or the LABEL variable,
or the GROUND TRUTH.
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▪ Here the response is real-valued, 
so we call it REGRESSION.

▪ If the response were categorical, 
we’d call it CLASSIFICATION.



Data from http://yann.lecun.com/exdb/mnist/

Exercise 1.6.1 (types of model).

The MNIST database of handwritten 
images consists of records (𝑥𝑖 , 𝑦𝑖) where 
𝑥𝑖 ∈ ℝ28×28 is a greyscale image with 
28×28 pixels, and 𝑦𝑖 ∈ {0, … , 9} is the 
digit.

Give examples of predictive and generative 
modelling tasks based on this data.

image digit

2

1

3

1

4
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▪ Simple prediction (image classifier): given an image 𝑥, output the digit 𝑦

▪ Generative prediction (probabilistic image classifier): given an image 𝑥, output a distribution over digits 𝑌

▪ Generative prediction (handwriting generator): given a digit 𝑦, generate a random image 𝑋

▪ Generative prediction (image infill): given a partial image, generate a complete image 𝑋

▪ Pure generation: generate a random image 𝑋, of any digit

▪ Pure generation: generate a random pair (𝑋, 𝑌)



On Friday we’ll do a mock exam question.
Have a look at it beforehand!
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