§1.5 Better notation for likelihood

All of machine learning is based on a single idea:

- 1. Write out a probability model
- 2. Fit the model from data by maximizing the likelihood

This is behind

- A-level statistics formulae
- our climate model
- ChatGPT training

Step 1.5. Find an expression for the likelihood

The *likelihood function* for a random variable X is written $Pr_X(x)$ and defined as

 $\Pr_X(x) = \mathbb{P}(X = x)$ in the case where X is discrete and as

$$Pr_X(x) = pdf(x)$$
 in the case where X is continuous with prob. density function $pdf(x)$

For parameterized random variables, write

$$Pr_X(x;\theta)$$
 or $Pr_X(x|\theta)$ or $Pr_X(x)$

The likelihood notation has two parts:

a random variable i.e. a RNG, and a value.

e.g.
$$Pr_{X+Y}(0.2)$$

I have a RNG called "X+Y", which calls the X RNG and the Y RNG and adds their outputs together. What's the chance that "X+Y" gives output 0.2?

Pairs of random variables:

 $Pr_{X,Y}(x,y)$ is called the *joint likelihood* of X and Y

Independent random variables:

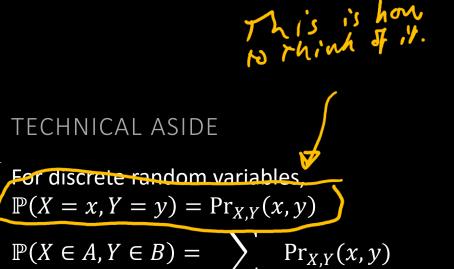
$$Pr_{X,Y}(x,y) = Pr_X(x) Pr_Y(y)$$

Independent identically-distributed (IID) sample from X:

$$\Pr(x_1, ..., x_n) = \Pr_X(x_1) \times \cdots \times \Pr_X(x_n)$$

Sequential generation of X, then Y based on X:

$$Pr_{X,Y}(x,y) = Pr_X(x) Pr_Y(y;x)$$



For continuous random variables,

$$\mathbb{P}(X \in A, Y \in B) = \int_{x \in A, y \in B} \Pr_{X,Y}(x, y) dx dy$$

 $x \in A, y \in B$

See IA Probability lecture 6

Maximum Likelihood Estimation, again

If we've seen an outcome x and we've proposed a probability model X, and if its distribution involves some unknown parameters θ ,

the maximum likelihood estimator for θ is

$$\hat{\theta} = \arg\max_{\theta} \Pr_X(x;\theta)$$

- x could be discrete or continuous
- x could be a single observation or a dataset with many observations

The point of the likelihood notation is so that we can write down a single equation and have it cover all these cases.

Rules of Probability

Understand what is meant by sample space, written Ω , and know that $\mathbb{P}(\Omega) = 1$. Be able to reason about probabilities of events with Venn diagrams. Know the core definitions and laws ...

Conditional probability, or equivalently the chain rule:

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A, B)}{\mathbb{P}(B)} \text{ if } \mathbb{P}(B) > 0$$

$$\mathbb{P}(B, A) = \mathbb{P}(B) \mathbb{P}(A \mid B) \quad \text{(chain rule)}$$

If A and B are independent: here, A and B are events

$$\mathbb{P}(A, B) = \mathbb{P}(A) \, \mathbb{P}(B) = \mathbb{P}(A \mid B) = \mathbb{P}(A)$$

Sum rule, and the law of total probability, for events $\{B_1, B_2, \dots\}$ that partition the sample space (i.e. for events that are mutually exclusive and where $\bigcup_i B_i = \Omega$):

$$\mathbb{P}(A) = \sum_{i} \mathbb{P}(A, B_{i})$$

$$\mathbb{P}(A) = \sum_{i} \mathbb{P}(A \mid B_{i}) \mathbb{P}(B_{i}) \quad \text{(law of total probability)}$$

Bayes's rule:

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A) \, \mathbb{P}(A)}{\mathbb{P}(B)} \text{ if } \mathbb{P}(B) > 0.$$

The fundamental rules of probability still hold, they're just written different in likelihood notation.

here, X and Y are random variables $Pr_{X,Y}(x,y) = Pr_X(x) Pr_Y(y)$

$$\int \Pr_{X}(x) = \sum_{y} \Pr_{X,Y}(x,y)$$

$$\Pr_{Y}(x) = \int \Pr_{Y,Y}(x,y) dx$$

$$\Pr_{X}(x) = \int_{y} \Pr_{X,Y}(x,y) \, dy$$

$\Pr_X(\cdot)$ is a function, $\Pr_X: \Omega \to \mathbb{R}_{\geq 0}$ where Ω is the sample space of X.

Brain teaser

For this random variable X, what is $Pr_X(X)$?

$$X = \begin{cases} \text{cat} & \text{with prob. } 1/6 \\ \text{stoat} & \text{with prob. } 3/6 \\ \text{dog} & \text{with prob. } 2/6 \end{cases}$$

Prx is a deterministic function, call it
$$f: \Omega \to R$$
.

When I apply a deterministic function to a random value, my answer is random,

[e.g. $Y \sim N(0,1)$]

 $\Rightarrow sin(Y)$ is a random value.

What is the deterministic function
$$f$$
?

$$f(cat) = Pr_x(cat) = P(x = cat) = \frac{1}{6}$$

$$f(sfoot) = \frac{1}{2}$$

$$f(dog) = \frac{1}{3}$$

$$f(X) = \begin{cases} 1/6 & \text{w.pros.} \% \\ 1/2 & \text{w.p.} \% \end{cases}$$

DISCRETE RANDO	M VARIABLES	
Binomial $X \sim Bin(n, p)$	$\mathbb{P}(X = x) = \binom{n}{x} p^x (1 - p)^{n - x}$ $x \in \{0, 1, \dots, n\}$	For count data, e.g. number of heads in n coin tosses
Poisson $X \sim Pois(\lambda)$	$\mathbb{P}(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$ $x \in \{0, 1, \dots\}$	For count data, e.g. number of buses passing a spot
Categorical $X \sim Cat([p_1,, p_k])$	$\mathbb{P}(X = x) = p_x$ $x \in \{1,, k\}$ NDOM VARIABLES	For picking one of a fixed number of choices
Uniform $X \sim U[a, b]$	$pdf(x) = \frac{1}{b - a}$ $x \in [a, b]$	A uniformly-distributed floating point value
Normal / Gaussian $X \sim N(\mu, \sigma^2)$	$pdf(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$ $x \in \mathbb{R}$	For data about magnitudes, e.g. temperature or height
Pareto	$pdf(x) \equiv \alpha x^{-(\alpha+1)}$	For data about "cascade" magnitudes e g forest fires

 $X \sim \text{Exp}(\lambda)$

$$pdf(x) = \alpha x^{-(\alpha+1)}$$
$$x \ge 1$$

For data about "cascade" magnitudes, e.g. forest fires

$$X \sim \text{Pareto}(\alpha)$$

Exponential

 $X \sim \text{Beta}(a, b)$

$$pdf(x) = \lambda e^{-\lambda x}$$
$$x > 0$$

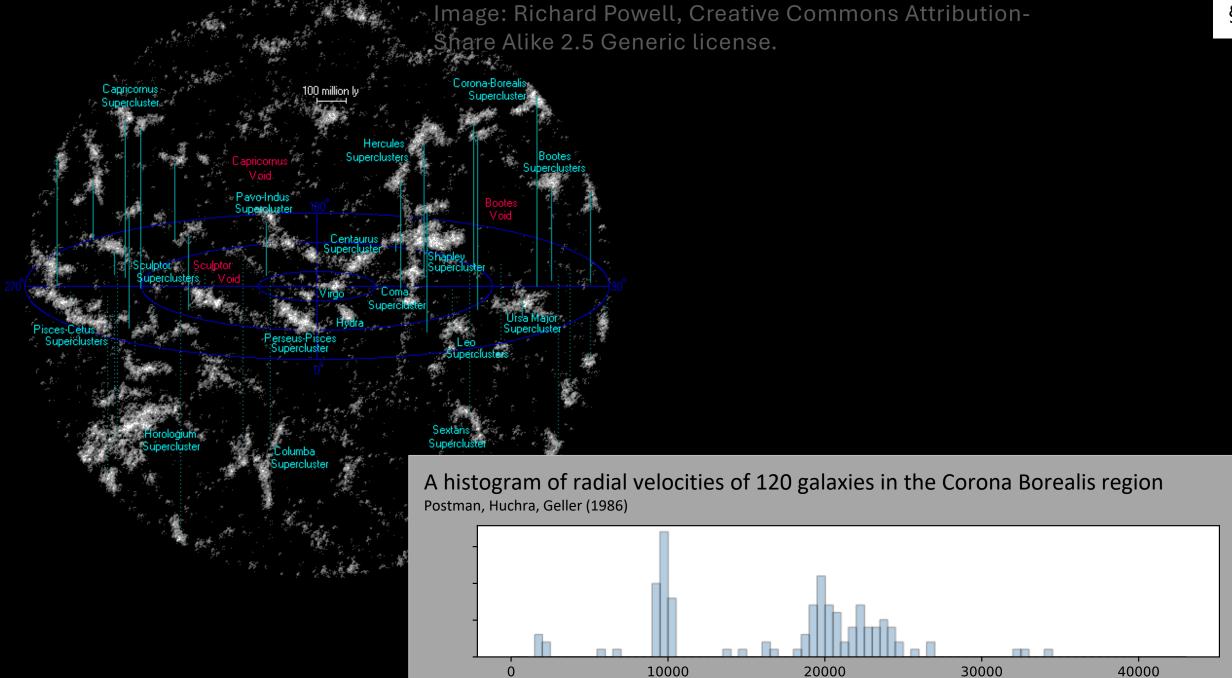
For waiting times, e.g. time until next bus

Beta

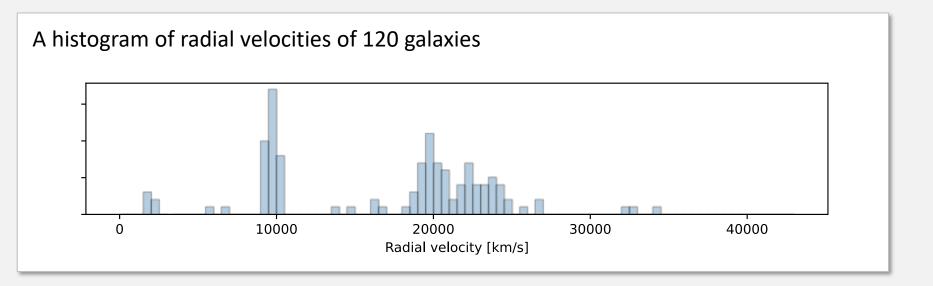
$$pdf(x) \propto x^{a-1}(1-x)^{b-1}$$

 $x \in (0,1)$

Arises in Bayesian inference



Radial velocity [km/s]



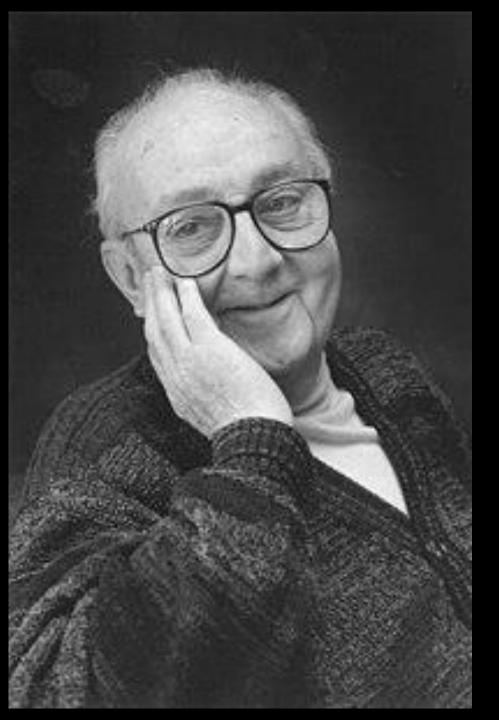
```
How might you complete this code?

def rgalaxy(...):
    # TODO: return a single random galaxy speed

def rgalaxies(size):
    return [rgalaxy(...) for _ in range(size)]
```

$$K = \begin{cases} 1 & w.p. & P_1 \\ 2 & w.p. & P_2 \\ 3 & w.p. & P_3 \end{cases}$$

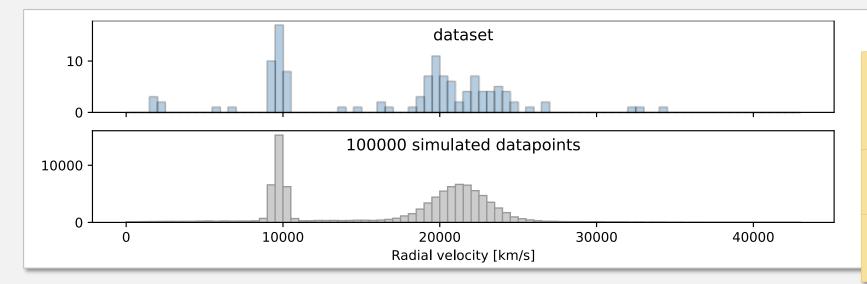
$$X \sim N \left(M_{K_1} \sigma_{K_2}^2 \right)$$



George Box 1919-2013

"All models are wrong, but some are useful"

There's no "right" model. Don't be shy, just go ahead and invent a model!



EXERCISE 1.1.3.

Write this model in random variable notation.

FXFRCISE 1.7.4.

What's the likelihood?

EXERCISE 1.7.4. How would you fit this model?

def rgalaxy(p, μ, σ): k = np.random.choice([0,1,2], p=p) $x = np.random.normal(loc=\mu[k], scale=\sigma[k])$ return x

def rgalaxies(size, p, μ, σ): return [rgalaxy(p,μ,σ) for in range(size)]

$$p = [0.28, 0.54, 0.18]$$

 $\mu = [9740, 21300, 15000]$
 $\sigma = [340, 1700, 10600]$

$$K \sim (\text{out}(P))$$
 $P = (P_0, P_1, P_2) \in \mathbb{R}^3$
 $X \sim N(M_K, \Gamma_K^2)$

 $P_{K,X}(k,\infty) = P_{K}(k) P_{X}(x;k)$ [by the rule for sequential generation] = PR = (x-mp²/26% [looking up the likelihood on the r.v. reference sheet]

 $P(\chi(\infty)) = \sum_{k} P_k \frac{1}{(2\pi\sigma^2)^k} e^{-(\chi-M_k)^2/2\sigma_k^2}$ [by the law of total probability]

 $Pr(x_1, \dots, x_n; p, \mu, \sigma) = \prod_{i=1}^n Pr_{x_i}(x_i; p, \mu, \sigma)$ [since our rgalaxies function makes

the datapoints independent]

To fit, we maximize this likelihood over the unknown parameters PIMIS

"Design an ML algorithm to find clusters"

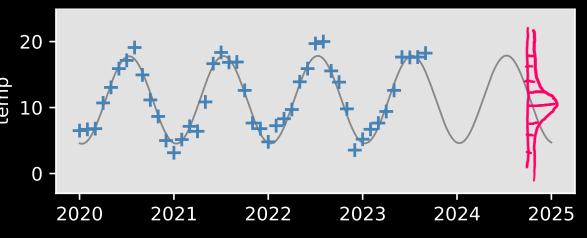
algorithmic ML

probabilistic ML, generative Al

building models from data data science

"Propose a probability model that expresses the idea of 'having clusters' and fit it"

supervised learning

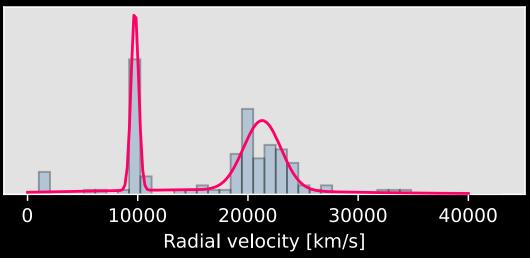


Given a dataset of $(t_i, temp_i)$ pairs, $i \in \{1, ..., n\}$,

I'd like to predict temp as a function of t.

I'd like to fit a probability model for Temp, where the parameters of the distribution depend on t.

unsupervised learning



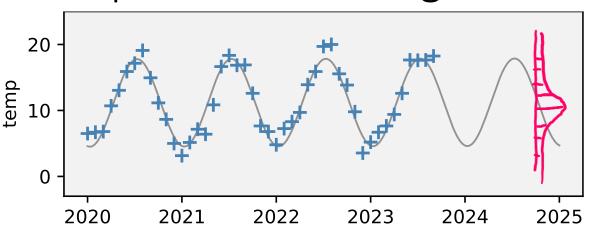
Given a dataset $[x_1, ..., x_n]$ of galaxy speeds,

I'd like to identify the clusters.

I'd like to fit a probability model for speed X, using a model that has clusters.

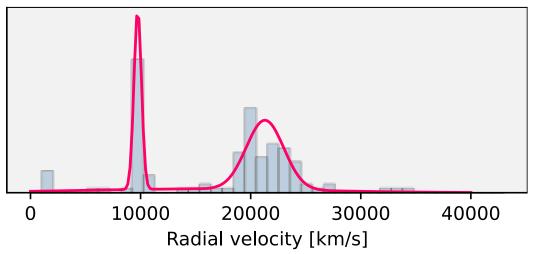
Some terminology: prediction, description, generation probabilistic modelling

supervised learning



Given a dataset $(x_1, y_1), ..., (x_n, y_n)$ where y_i is the label in record i and x_i is the predictor variable or variables:

unsupervised learning



Given a dataset x_1, \dots, x_n :

- 0. Propose a probability model $Y \sim \cdots$ or $X \sim \cdots$
- 1. Write out the likelihood for a single datapoint: $Pr_Y(y; x, \theta)$ or $Pr_X(x; \theta)$
- 2. Model the dataset as independent observations and write out the likelihood for the full dataset: $\Pr(\text{dataset}) = \prod_{i=1}^{n} \Pr_{Y}(y_i; x_i, \theta)$ or $\prod_{i=1}^{n} \Pr_{X}(x_i; \theta)$
- 3. Learn θ using maximum likelihood estimation

Terminology for supervised learning

station	уууу	mm	t	af	rain	sun	tmin	tmax	temp
Cambridge	1985	1	1985.00	23	37.3	40.7	-2.2	3.4	0.6
Cambridge	1985	2	1985.08	13	14.6	79	-1.9	4.9	1.5
Cambridge	1985	3	1985.16	10	45.8	97.8	1.1	8.7	4.9
:									

called the PREDICTOR variable, or the FEATURE, or the COVARIATE

called the RESPONSE, or the LABEL variable, or the GROUND TRUTH.

- Here the response is real-valued, so we call it REGRESSION.
- If the response were categorical, we'd call it CLASSIFICATION.

Exercise 1.6.1 (types of model).	image	digit
The MNIST database of handwritten	2	2
images consists of records (x_i, y_i) where $x_i \in \mathbb{R}^{28 \times 28}$ is a greyscale image with	1	1
28×28 pixels, and $y_i \in \{0,, 9\}$ is the	3	3
digit. Give examples of predictive and generative	1	1
modelling tasks based on this data.	4	4

Data from http://yann.lecun.com/exdb/mnist/

- Simple prediction (image classifier): given an image x, output the digit y
- Generative prediction (**probabilistic image classifier**): given an image x, output a distribution over digits Y
- Generative prediction (handwriting generator): given a digit y, generate a random image X
- Generative prediction (image infill): given a partial image, generate a complete image X
- Pure generation: generate a random image X, of any digit
- Pure generation: generate a random pair (X,Y) with joint likelihood P(x,y) (x,y).

 Then, the marginal distribution $P(Y=y \mid X=x)$ corresponds to the probabilistic image classifier P(x,y) corresponds to the handwriting generator.

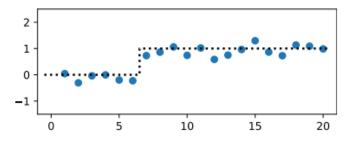
On Friday we'll do a mock exam question. Have a look at it beforehand!

COMPUTER SCIENCE TRIPOS Part IB - mock - Paper 6

- 1 Foundations of Data Science (DJW)
 - (a) A 0/1 signal is being transmitted. The transmitted signal at timeslot $i \in \{1, \ldots, n\}$ is $x_i \in \{0, 1\}$, and we have been told that this signal starts at 0 and then flips to 1, i.e. there is a parameter $\theta \in \{1, \ldots, n-1\}$ such that $x_i = 1_{i>\theta}$. The value of this parameter is unknown. The channel is noisy, and the received signal in timeslot i is

$$Y_i \sim x_i + \text{Normal}(0, \varepsilon^2)$$

where ε is known.



(i) Given received signals (y_1, \ldots, y_n) , find an expression for the log likelihood, $\log \Pr(y_1, \ldots, y_n; \theta)$. Explain your working. [5 marks]