
§1.3 Maximum likelihood estimation
§1.3

The model typically has unknown parameters.

i.e. estimate its parameters
using Maximum Likelihood
Estimation (mle)

The likelihood is the probability of
seeing the data that we actually saw.

It depends on the parameters.

Let’s simply pick the parameters that
maximize the likelihood!

Exercise 1.3.1 (Coin tosses)
Suppose we take a biased coin, and tossed it 𝑛 = 10 times,
and observe 𝑥 = 6 heads. Let’s use the probability model

𝑋 ~ Binom(𝑛, 𝑝)

where 𝑝 is the probability of heads. Estimate 𝑝.

Likelihood of the observed data:

Parameter that maximizes it:

§1.3

There are standard numerical random variables that you should know:

DISCRETE RANDOM VARIABLES

Binomial
𝑋~Bin(𝑛, 𝑝)

ℙ 𝑋 = 𝑥 =
𝑛
𝑥

𝑝𝑥 1 − 𝑝 𝑛−𝑥

𝑥 ∈ {0,1, … , 𝑛}

For count data, e.g. number of heads in 𝑛 coin tosses

Poisson
𝑋~Pois(𝜆)

ℙ 𝑋 = 𝑥 =
𝜆𝑥𝑒−𝜆

𝑥!
𝑥 ∈ {0,1, … }

For count data, e.g. number of buses passing a spot

Categorical
𝑋~Cat(𝑝1, … , 𝑝𝑘)

ℙ 𝑋 = 𝑥 = 𝑝𝑥

𝑥 ∈ {1, … , 𝑘}
For picking one of a fixed number of choices

CONTINUOUS RANDOM VARIABLES

Uniform
𝑋~𝑈[𝑎, 𝑏]

pdf 𝑥 =
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

A uniformly-distributed floating point value

Normal / Gaussian
𝑋~𝑁(𝜇, 𝜎2)

pdf 𝑥 =
1

2𝜋𝜎2
𝑒− 𝑥−𝜇 2/2𝜎2

𝑥 ∈ ℝ

For data about magnitudes, e.g. temperature or height

Pareto
𝑋~Pareto(𝛼)

pdf 𝑥 = 𝛼 𝑥−(𝛼+1)

𝑥 ≥ 1
For data about “cascade” magnitudes, e.g. forest fires

Exponential
𝑋~Exp(λ)

pdf 𝑥 = 𝜆 𝑒−𝜆𝑥

𝑥 > 0
For waiting times, e.g. time until next bus

Beta
𝑋~Beta(𝑎, 𝑏)

pdf 𝑥 ∝ 𝑥𝑎−1 1 − 𝑥 𝑏−1

𝑥 ∈ (0,1)
Arises in Bayesian inference

§1.2

Exercise 1.3.1 (Coin tosses)
Suppose we take a biased coin, and tossed it 𝑛 = 10 times,
and observe 𝑥 = 6 heads. Let’s use the probability model

𝑋 ~ Binom(𝑛, 𝑝)

where 𝑝 is the probability of heads. Estimate 𝑝.

Log likelihood of the observed data:

Parameter that maximizes it:

§1.3

[it depends on the data 𝑥 but doesn’t depend on 𝑝, so for the
purposes finding the mle for 𝑝 it’s a constant]

Exercise 1.3.6 (Handling boundaries)
We throw a 𝑘-sided dice, and get the answer 𝑥=10.
Estimate 𝑘, using the probability model

ℙ throw 𝑥 =
1

𝑘
, 𝑥 ∈ {1, … , 𝑘}

SANITY CHECK
Does our answer
depend on the
data? In the way
we’d expect it to?

§1.3

But this is daft! How can it be that our estimate of
the number of sides (k) doesn’t depend on the value
we saw (x)? And what even is a 1-sided dice?

§1.3 Maximum likelihood estimation
§1.3

The model typically has unknown parameters.

i.e. estimate its parameters
using Maximum Likelihood
Estimation (mle)

The likelihood is the probability of
seeing the data that we actually saw.

It depends on the parameters.

Let’s simply pick the parameters that
maximize the likelihood!

§1.3

The model typically has unknown parameters.

i.e. estimate its parameters
using Maximum Likelihood
Estimation (mle)

The likelihood is the probability of
seeing the data that we actually saw.

If the data consists of many datapoints [𝑥1, … , 𝑥𝑛]
and our model says they’re independent, then

lik data = ෑ
𝑖=1

𝑛

lik(𝑥𝑖)

§1.3 Maximum likelihood estimation

§1.3

The model typically has unknown parameters.

i.e. estimate its parameters
using Maximum Likelihood
Estimation (mle)

The likelihood is the probability of
seeing the data that we actually saw.

If the data consists of many datapoints [𝑥1, … , 𝑥𝑛]
and our model says they’re independent, then

lik data = ෑ
𝑖=1

𝑛

lik(𝑥𝑖)

ℙ(data) if our model is a discrete rand.var.
pdf(data) if our model is a continuous rand.var.

§1.3 Maximum likelihood estimation

Exercise 1.3.2 (Exponential sample)
Let the dataset be a list of real numbers, 𝑥1, … , 𝑥𝑛, all > 0.
Use the probability model that says they’re all independent
Exp(𝜆) random variables, where 𝜆 is unknown. Estimate 𝜆.

Log likelihood of the observed data:

Parameter that maximizes it:

CONTINUOUS RANDOM VARIABLES (real-valued)

Exponential pdf 𝑥 = 𝜆𝑒−𝜆𝑥

𝑋~Exp 𝜆 𝑥 > 0
np.random.exponential(scale=1/𝜆)

§1.3

WARNING
Watch out copy-paste-
itis. Your likelihood must
describe the data in the
question!

Exercise 1.3.8
Consider a dataset consisting of two collections of real numbers, 𝑥1, … , 𝑥𝑛
and 𝑦1, … , 𝑦𝑛. Model the first collection as Normal(𝜇, 𝜎2) and the second
as Normal(𝜈, 𝜎2), where 𝜇, 𝜈, 𝜎 are all unknown. Estimate σ.

SANITY CHECK
Does my likelihood
use all the parameters
and all the data?

§1.3

Log likelihood of the observed data:

Parameter that maximizes it: SANITY CHECK
Does my answer
depend only on the
data, or also on
unknown
parameters?

Exercise 1.3.8
Consider a dataset consisting of two collections of real numbers, 𝑥1, … , 𝑥𝑛
and 𝑦1, … , 𝑦𝑛. Model the first collection as Normal(𝜇, 𝜎2) and the second
as Normal(𝜈, 𝜎2), where 𝜇, 𝜈, 𝜎 are all unknown. Estimate 𝜇 − 𝜈.

§1.3

THE PLUG-IN PRINCIPLE
If the unknown parameters are 𝜃
and I want to estimate 𝜙 =

𝑓(𝜃), then the mle for 𝜙 is 𝑓(መ𝜃)

There are standard numerical random variables that you should know:

DISCRETE RANDOM VARIABLES

Binomial
𝑋~Bin(𝑛, 𝑝)

ℙ 𝑋 = 𝑥 =
𝑛
𝑥

𝑝𝑥 1 − 𝑝 𝑛−𝑥

𝑥 ∈ {0,1, … , 𝑛}

For count data, e.g. number of heads in 𝑛 coin tosses

Poisson
𝑋~Pois(𝜆)

ℙ 𝑋 = 𝑥 =
𝜆𝑥𝑒−𝜆

𝑥!
𝑥 ∈ {0,1, … }

For count data, e.g. number of buses passing a spot

Categorical
𝑋~Cat(𝑝1, … , 𝑝𝑘)

ℙ 𝑋 = 𝑥 = 𝑝𝑥

𝑥 ∈ {1, … , 𝑘}
For picking one of a fixed number of choices

CONTINUOUS RANDOM VARIABLES

Uniform
𝑋~𝑈[𝑎, 𝑏]

pdf 𝑥 =
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

A uniformly-distributed floating point value

Normal / Gaussian
𝑋~𝑁(𝜇, 𝜎2)

pdf 𝑥 =
1

2𝜋𝜎2
𝑒− 𝑥−𝜇 2/2𝜎2

𝑥 ∈ ℝ

For data about magnitudes, e.g. temperature or height

Pareto
𝑋~Pareto(𝛼)

pdf 𝑥 = 𝛼 𝑥−(𝛼+1)

𝑥 ≥ 1
For data about “cascade” magnitudes, e.g. forest fires

Exponential
𝑋~Exp(λ)

pdf 𝑥 = 𝜆 𝑒−𝜆𝑥

𝑥 > 0
For waiting times, e.g. time until next bus

Beta
𝑋~Beta(𝑎, 𝑏)

pdf 𝑥 ∝ 𝑥𝑎−1 1 − 𝑥 𝑏−1

𝑥 ∈ (0,1)
Arises in Bayesian inference

§1.2

DISCRETE RANDOM VARIABLES

Binomial
𝑋~Bin(𝑛, 𝑝)

ℙ 𝑋 = 𝑥 =
𝑛
𝑥

𝑝𝑥 1 − 𝑝 𝑛−𝑥

𝑥 ∈ {0,1, … , 𝑛}

For count data, e.g. number of heads in 𝑛 coin tosses

Poisson
𝑋~Pois(𝜆)

ℙ 𝑋 = 𝑥 =
𝜆𝑥𝑒−𝜆𝑥

𝑥!
𝑥 ∈ {0,1, … }

For count data, e.g. number of buses passing a spot

Categorical
𝑋~Cat(𝑝1, … , 𝑝𝑘)

ℙ 𝑋 = 𝑥 = 𝑝𝑥

𝑥 ∈ {1, … , 𝑘}
For picking one of a fixed number of choices

CONTINUOUS RANDOM VARIABLES

Uniform
𝑋~𝑈[𝑎, 𝑏]

pdf 𝑥 =
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

A uniformly-distributed floating point value

Normal / Gaussian
𝑋~𝑁(𝜇, 𝜎2)

pdf 𝑥 =
1

2𝜋𝜎2
𝑒− 𝑥−𝜇 2/2𝜎2

𝑥 ∈ ℝ

For data about magnitudes, e.g. temperature or height

Pareto
𝑋~Pareto(𝛼)

pdf 𝑥 = 𝛼 𝑥−(𝛼+1)

𝑥 ≥ 1
For data about “cascade” magnitudes, e.g. forest fires

Exponential
𝑋~Exp(λ)

pdf 𝑥 = 𝜆 𝑒−𝜆𝑥

𝑥 > 0
For waiting times, e.g. time until next bus

Beta
𝑋~Beta(𝑎, 𝑏)

pdf 𝑥 ∝ 𝑥𝑎−1 1 − 𝑥 𝑏−1

𝑥 ∈ (0,1)
Arises in Bayesian inference

There are standard numerical random variables that you should know:

Useful properties of the Normal distribution:

▪ If we rescale a Normal, we get a Normal

▪ If we add independent Normals, we get a Normal

These two properties are known as “linearity of the Normal distribution”.

§1.2

§1.3

The model typically has unknown parameters.

i.e. estimate its parameters
using Maximum Likelihood
Estimation (mle)

The likelihood is the probability of
seeing the data that we actually saw.

If the data consists of many datapoints [𝑥1, … , 𝑥𝑛]
and our model says they’re independent, then

lik data = ෑ
𝑖=1

𝑛

lik(𝑥𝑖)

ℙ(data) if our model is a discrete rand.var.
pdf(data) if our model is a continuous rand.var.

When there are multiple unknown parameters, we
must maximize over all of them simultaneously
(even if we’re only interested in one).

§1.3 Maximum likelihood estimation

§1.4 Numerical optimization §1.4

i.e. estimate its parameters
using Maximum Likelihood
Estimation (mle)

with numerical optimization

(since the likelihood function is usually
far too complex for exact optimization)

Numerical optimization with Python / scipy

To find the minimum of a smooth function 𝑓: ℝ𝐾 → ℝ,

1 import scipy.optimize
2

3 def f(x):
4 return …
5

6 x0 = […] # initial guess
7 ොx = scipy.optimize.fmin(f, x0)

†

† There is no scipy.optimize.fmax. To maximize f, scipy.optimize.fmin(lambda x: -f(x), x0)

The initial guess will influence which local
minimum the fmin ends up finding.

a local minimum

How does numerical optimization work?
Animations by Lili Jiang, Towards Data Science

GRADIENT DESCENT
Find the gradient of the
function, and take a step in the
direction of steepest descent

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Exercise 1.4.2 (Constraints / softmax transformation)
Find the maximum of

𝑓 𝑝1, 𝑝2, 𝑝3 = 0.2 log 𝑝1 + 0.5 log 𝑝2 + 0.3 log 𝑝3

over 𝑝1, 𝑝2, 𝑝3 ∈ (0,1) such that 𝑝1 + 𝑝2 + 𝑝3 = 1.

1
2
3
4
5
6
7
8
9
10

def f(p):
 p1,p2,p3 = p
 return 0.2*np.log(p1) + 0.5*np.log(p2) + 0.3*np.log(p3)

def softmax(s):
 p = np.exp(s)
 return p / np.sum(p)

ŝ = scipy.optimize.fmin(lambda s: -f(softmax(s)), [0,0,0])
ŝ = softmax(ŝ)

Optimization terminated successfully. Current function value: 1.02965. Iterations: 63.
Function evaluations: 120
array([0.19999474, 0.49999912, 0.30000614])

This parameter transformation trick works because (i) every
(s1,s2,s3) yields a valid p, and (ii) every valid (pI,p2,p3) can be
achieved by some s.

▪ CODE SNIPPETS
from lectures

▪ CODING EXERCISES
on example sheets

Visualizing the Loss
Landscape of Neural
Nets

Li, Xu, Taylor, Studer,
Goldstein (2018)

https://arxiv.org/abs/
1712.09913

Exercise

The observed data is [temp1,…,tempn]. Estimate 𝛾 using the model

Temp𝑖 ~ 𝑐 + 𝛼 sin 2𝜋 𝑡𝑖 + 𝜑 + 𝛾𝑡𝑖 + Normal 0, 𝜎2 , 𝑖 ∈ {1, … , 𝑛}

by linearity of the Normal distribution: pred + N(0,σ2) ~ N(pred,σ2)

since the likelihood of independent datapoints is a product

by looking up the pdf, and avoiding copy-paste-itis

url = 'https://www.cl.cam.ac.uk/teaching/current/DataSci/data/climate_202510.csv'
climate = pandas.read_csv(url)
climate['t'] = (climate.yyyy + (climate.mm-1)/12)
climate['temp'] = (climate.tmin + climate.tmax) / 2
df = climate.loc[(climate.station=='Cambridge') & (climate.yyyy>=1985)]

Transform parameters: let 𝜎 = 𝑒𝜏 for 𝜏 ∈ ℝ

def loglik(θ,t,temp):
 (c,α,φ,γ,τ) = θ
 σ2 = np.exp(τ) ** 2

pred = c + α * np.sin(2*π*(t+φ)) + γ*t
 n = len(t)
 return - n/2 * np.log(2*π*σ2) - 1/(2*σ2) * np.sum((temp - pred)**2)

init_guess = [12, 7, -0.2, 0, np.log(1.5)]
θhat = scipy.optimize.fmin(lambda p: -loglik(df.t,df.temp,θ), init_guess, maxiter=5000)

View the fitted parameters, compared to initial guess
pandas.DataFrame({'par': ['c','α','φ','γ','τ','σ'],

'init_guess': list(init_guess) + [np.exp(init_guess[-1])],
 'fitted': list(phat) + [np.exp(phat[-1])]})

The fitted value for c
comes out to be -67.5, which
is surprising compared to
our guess of 12. But when we
plot the fitted predictions,
it looks right. Can you
figure out why we got c = -
67.5?

	Slide 1: §1.3 Maximum likelihood estimation
	Slide 2
	Slide 3: There are standard numerical random variables that you should know:
	Slide 4
	Slide 5
	Slide 6
	Slide 7: §1.3 Maximum likelihood estimation
	Slide 8: §1.3 Maximum likelihood estimation
	Slide 9: §1.3 Maximum likelihood estimation
	Slide 10
	Slide 11
	Slide 12
	Slide 13: There are standard numerical random variables that you should know:
	Slide 14
	Slide 15: §1.3 Maximum likelihood estimation
	Slide 16: §1.4 Numerical optimization
	Slide 17
	Slide 18: How does numerical optimization work?
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

