§1.3 Maximum likelihood estimation

/ The model typically has unknown parameters.
1. Write out a probability model

2. Fit the model from data The likelihood is the probability of
‘) seeing the data that we actually saw.

This is behind
= A-level statistics formulae

;o climte model i.e. estimate ite parameters [t depends on the parameters.
using MaXimum Likelihood
Estimation (mle) Let's simply pick the parameters that

maXximize the likelihood!



Exercise 1.3.1 (Coin tosses)
Suppose we take a biased coin, and tossed it n = 10 times,
and observe x = 6 heads. Let’s use the probability model

X ~ Binom(n, p)
where p is the probability of heads. Estimate p.

Likelihood of the observed data: Iik
'k = P(X=x) > € /\‘
= (%) P (- /1},7
o . P

Parameter that maximizes it:
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There are standard numerical random variables that you should know:

DISCRETE RANDOM VARIABLES

Binomial P(X =x) = (Z) p*(1—p)n—> For count data, e.g. number of heads in n coin tosses
X~Bin(n, p) x € {0,1,...,n}
Poisson P(X = x) = e~ For count data, e.g. number of buses passing a spot
X~Pois(1) x!

x €{0,1,..}
Categorical IP’(X{= x) :}px For picking one of a fixed number of choices

x €{1,...,

X~Cat([p1, ..., P

CONTINUOUS RANDOM VARIABLES

Uniform pdf(x) = ! A uniformly-distributed floating point value
X~U[a,b] b—
x € [a,b]
Normal / Gaussian pdf(x) = o~ (x—)? /202 For data about magnitudes, e.g. temperature or height
X~N(u,02) V2ma?
x €ER
Pareto pdf(x) = a x~(@*D) For data about “cascade” magnitudes, e.g. forest fires
X~Pareto(a) x=1
Exponential pdf(x) = 1e For waiting times, e.g. time until next bus
X~Exp(A) x>0
Beta pdf(x) o x*71(1 — x)P~* Arises in Bayesian inference

X~Beta(a, b) x € (0,1) §1.2




Exercise 1.3.1 (Coin tosses)
Suppose we take a biased coin, and tossed it n = 10 times,

and observe x = 6 heads. Let’s use the probability model
X ~ Binom(n, p)
where p is the probability of heads. Estimate p.

Log likelihood of the observed data:
" x ([~ h=X ,l\t
ik = P(X=%x) = (z) p™ (FP) " |
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Exercise 1.3.6 (Handling boundaries) e SANITY CHECK
We throw a k-sided dice, and get the answer x=10. e S N Does our answer
Estimate k, using the probability model 7, _N%\& % < depend on the
1 el G B el data? In the way
P(thFOW X) = E, % € {1, rery kj . "‘a’i Vh'd:: Loy Fﬁ = We’d eXpeCt it tO?
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But this is daft! How can it be that our estimate of
the number of sides (k) doesn’t depend on the value
we saw (X)? And what even is a |I-sided dice?
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Example sheet 1
Learning with probability models
Data Science—DJW-—2025 /2026

Some of the questions ask for pseudocode. [ suggest you implement your code, and test it using the
online tester. There is a notebook with templates for answers and instructions for submission on
the course materials webpage.

Question 1. Given a dataset [z, ...,: Tn], we wish to fit a Poisson distribution. This is a discrete
random variable with a single parameter A > 0, called the rate, and
}‘.r'(,—)\
Pr(z; \) = —— forz €{0,1,2,...}.

x!
Show that the maximum likelihood estimator for A is A =n='Y " | z;.

Question 2. Give pseudocode to fit the model of question 1, using scipy.optimize.fmin.
[Optional.] If you want to test your code using the online tester, fill in the answer template for
PoissonModel.

In practice it
answer. But it’s

roblem where ya L ;
pre vere y Hints and comments

Question 3. G

is unknown. Shoy it’s unsupervised learning. There are more examples in section 1.7.

Question 1. This is a question about fitting parameters from a dataset, as in section 1.3. Formally

Question 4 (A Question 2. See section 1.4. What parameter transform is needed here, to perform a maximization
B. It has asked j over the restricted domain A > 07 How many maxima does the likelihood function have, and how
from system A an might you choose a sensible starting point for the numerical optimization to make sure it finds a
T = m~ L Z:_” L T global maximum? Also, if yon use numpy, watch out for which variables in your numpy code are
power of Machin{ vectors and which are scalars.

Suppose the 2 Question 3. This is another guestion about maximum likelihood estimation on datasets, also
5, a2 ), and all the known as unsupervised learning, like question 1. You will also need to use the indicator function

—

trick, from se 1.3 exercise 1.3.6

estimators for thy




§1.3 Maximum likelihood estimation

/ The model typically has unknown parameters,
1. Write out a probability model

2. Fit the model from data The likelihood is the probability of
‘) seeing the data that we actually saw.

This is behind
= A-level statistics formulae

;o climte model i.e. estimate ite parameters [t depends on the parameters.
using MaXimum Likelihood
Estimation (mle) Let's simply pick the parameters that

maXximize the likelihood!




§1.3 Maximum likelihood estimation

/ The model typically has unknown parameters,
1. Write out a probability model

2. Fit the model from data

The likelihood is the probability of
- ‘) seeing the data that we actually saw.
This is behind
+ our cimatemotel i.e. estimate its parameters If the data consists of many datapoints [xy, ..., xp]
" creierT N vusing Maximum Likelihood and our model says they re independent, then
- - n
Estimation (mle) lik(data) = 1_[ lik(x;)
i=1



§1.3 Maximum likelihood estimation

_/—V The model typically has unknown parameters,
1. Write out a probability model

2. Fit the model from da:a)

= A-level statistics formulae

* our climate model i.e. estimate its parameters
* ChatGPT training - - - -
using MaXimum Likelihood
Estimation (mle)

The likelihood is tire=prebabiliteeT™
92Linguthe.datasthatewe BT tOTIT ST,
IP(data) if our model is a discrete rand.var.

pdf(data) if our model is a continuous rand.var.

T X~ Wlpa® Heen P{x=x) = 0 fov oy X

Wiy is wb\J we howe b g PAf rokbun thew prob,
If the data consists of many datapoints [x4, ..., x;,]
and our model says they re independent, then

lik(data) = 1—[71 lik (x;)
=1

=



Exercise 1.3.2 (Exponential sample)

Let the dataset be a list of real numbers, x4, ..., x,,, all > 0.
Use the probability model that says they’re all independent
Exp(4) random variables, where 1 is unknown. Estimate /. WARNING

Watch out copy-paste-
itis. Your likelihood must
describe the data in the
guestion!

Log likelihood of the observed data:
s \ = Uk (x)x-- tik (%)

2(N) e = [ Ne
CONTINUOUS RANDOM VARIABLES (real-valued)

oy
- )\“ e e Exponential pdf(x) = le ’

= )\x,,)

X~Exp(1) x>0
. _ x: np.random.exponential(scale=1/1)
'aj I h = [ |03 A A i ¢
Parameter that maximizes it:
N m

ol . n - - - =
R S



Exercise 1.3.8

Consider a dataset consisting of two collections of real numbers‘ X1, ) X '
and'l@, ,yn? Model the first collection as Normal(y, 02) and thesécon

as Normal (v, 02), where 1, v, o are all unknown. Estimate o.

Log likelihood of the observed data: )

A (o) t -_—
ey lik (o) - ,{\.,(zm‘) —2 Z(Xc-f'f“ *?“J(Z"""\ 26" T,

\
SANITY CHECK - T\ -
Does my likelihood = —éh (2ws \ «

use all the parameters <
and all the data?

Parameter that maximizes it: ~ ) SANITY CHECK
A _ O Zn & . - [A (en1?, A Does my answer
— - - —_— (e' -p-ez) =0 = 0o - "M N depend only on the
ey = s * g3 / ’\'M"‘M = data, or also on
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s thd l""\h Y o;e&ss parameters?
05 an eShwate |
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Exercise 1.3.8

Consider a dataset consisting of two collections of real numbers, x4, ..., X,
and yy, ..., ¥,,. Model the first collection as Normal(y, %) and the second
as Normal(v, 02), where 1, v, o are all unknown. Estimate 11 —

n

-
Whan we fF ¥, we gt 5 1S e n DI

L]
& =

So ouf eimabe v mv = LoSH - w2y

THE PLUG-IN PRINCIPLE

If the unknown parameters are 6
and | want to estimate ¢ =

£(0), then the mle for ¢ is £(0)

8": M){]_




There are standard numerical random variables that you should know:

DISCRETE RANDOM VARIABLES

Binomial P(X =x) = (Z) p*(1—p)n—> For count data, e.g. number of heads in n coin tosses
X~Bin(n, p) x € {0,1,...,n}
Poisson P(X = x) = e~ For count data, e.g. number of buses passing a spot
X~Pois(1) x!

x €{0,1,..}
Categorical IP’(X{= x) :}px For picking one of a fixed number of choices

x €{1,...,

X~Cat([p1, ..., P

CONTINUOUS RANDOM VARIABLES

Uniform pdf(x) = ! A uniformly-distributed floating point value
X~U[a,b] b—
x € [a,b]
Normal / Gaussian pdf(x) = o~ (x—)? /202 For data about magnitudes, e.g. temperature or height
X~N(u,02) V2ma?
x €ER
Pareto pdf(x) = a x~(@*D) For data about “cascade” magnitudes, e.g. forest fires
X~Pareto(a) x=1
Exponential pdf(x) = 1e For waiting times, e.g. time until next bus
X~Exp(A) x>0
Beta pdf(x) o x*71(1 — x)P~* Arises in Bayesian inference

X~Beta(a, b) x € (0,1) §1.2




There are standard numerical random variables that you should know:

a rbN@&I) ~ a+ N @, 82) ~ N (@,

d
Useful properties of the Normal distribution/ (ov consfomb AU om b

= |f we rescale a Normal, we get a Normal .
J Clibathe Unhifow)

= |f we add independent Normals, we get a Normal ~_~ N (}I‘. ™ W (~,
{ (ke the Portson, binomsad)

ra) A N().&-r\), O'z-i-Pa)

These two properties are known as “linearity of the Normal distribution”,

Normal / Gaussian 4,) =

X~N(u,0?) V2mo?
x €ER

o~ (x—1)2/20? For data about magnitudes, e.g. temperature or height




§1.3 Maximum likelihood estimation

o e e e b o 4 < e —/—V The model typically has unknown parameters,
1. Write out a probability model

2. Fit the model from da‘ta)

= A-level statistics formulae

* our climate model i.e. estimate its parameters
* ChatGPT training - - - -
using MaXimum Likelihood
Estimation (mle)

The likelihood is tre=probabiliteoT™
sceing=the.datasthat=we BT Couly STW.

IP(data) if our model is a discrete rand.var.
pdf(data) if our model is a continuous rand.var.

If the data consists of many datapoints [x4, ..., x;,]
and our model says they re independent, then

n
lik(data) = 1_[ lik(xy)
=1

When there are multiple unknown parameters, we
must maximize over all of them simultaneously
(even if we're only interested in one).



§1.4 Numerical optimization

1. Write out a probability model

2. Fit the model from da:a)

= A-level statistics formulae

= our climate model ;,e. eﬁt?mate ‘I.tﬁ paf‘ametef‘ﬁ
* ChatGPT training - - - -
using Maximum Likelihood
Estimation (mle)

with numerical optimization

(since the likelihood function is usually
far too complex for exact optimization)




a local minimum

Numgrical optimization with Python / scipy
To find the<minimum’ of a smooth function f: R¥ - R,
import scipy.optimize

def f(x):
return ..

Xg = [..] | # initial guess
X = scipy.optimize.fmin(f, Xx,)

The initial guess will influence which local
minimum the fmin ends up finding.

i

-y

|

ey e
] quesd

T Thereisno scipy.optimize.fmax. To maximize f, scipy.optimize.fmin(lambda x: -f(x), xg)



ow does numerical optimization work?

Animations by Lili Jiang, Towards Data Science

GRADIENT DESCENT

Find the gradient of the
function, and take a step in the
direction of steepest descent



https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Exercise 1.4.2 (Constraints / softmax transformation)
Find the maximum of

f1,p2,p3) = 0.2logp; + 0.5logp; + 0.3logps
over pq, 1,3 € (0,1) such that p; + p, + p; = 1.

f“""" is ne  able o hondl convfraing .

N / 4. p +P? :J
(opvu\j Gick: instead 4 ﬂ\aKIM:‘zl"y over Pl s 6'(0,) st.-ptPe? P

(gl'_( e X2 oV (S,,f“ 53)6‘ R; , ond  gef i 5_._- %
o'+e *4e
This parameter transformation trick works because (i) every
(,9,,93) yields a valid p, and (ii) every valid (p,p,,ps) Can be
achieved by some s,

def f(p):

P1>P2,P3 = P
return 0.2*np.log(p,) + ©.5*np.log(p,) + ©.3*np.log(p;)

defroftmax(s’j fr\‘-i-"‘-‘ y.u.-(! ﬁ = p2 :P3; é

= np.exp(s)
retur'n p / np.sum(p) /

scipy.optimize.fmin(lambda s: -f(softmax(s)), [0,0,0])
softmax(s)

v

Optimization terminated successfully. Current function value: 1.02965. Iterations: 63.

Function evaluations: 120
array([0.19999474, ©.49999912, ©.30000614])
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c 25 cl.cam.ac.uk/teaching/2526/DataSci/materials.html

1-84. Learning with probability models
Lecture 1 1. Learning with probability models
[slides] 1.1 Specifying probability models
Lecture . 1.2 Standard random variables

1.3 Maximum likelihood estimation

1.4 Numerical optimization with scipy
Lecture 3 1.5 Likelihood notation

1.6 Types of model

1.7 Supervised and unsupervised learning

Mock exam question 1

3.1, 3.2 Prediction accuracy versus probability modelling (* non-
examinable)
3.3 Neural networks (* non-examinable)
Lecture 2.1 Linear modelling
2.2 Feature design
2.3 Diagnosing a linear model

Lecture 2.5 The geometry of linear models " CODE SN I PPETS
2.6 Interpreting parameters from |ectures

Lecture 7 2.4 Probabilistic linear modelling
Code snippets: [fitting.ipynb] and [Im.ipynb]

Example sheet 1 u COD'NG EXERCISES

OPTIONAL ex1 practical exercises [ex1.ipynb] (for supervisions)

OPTIONAL PyTorch introduction and challenge on exam ple Sheets

N—

OPTIONAL climate dataset challenge [climate.ipynb]
Datasets investigated: [climate.ipynb], [stop-and-search.ipynb]

§5, §6, §8. Bayesian inference and Monte Carlo

Lecture 8 5.1 Bayes's rule for random variables
5.2 Bayes's rule calculations

Lecture 9 6.1 Monte Carlo integration
i 1 *




Visualizing the Loss
Landscape of Neural
Nets

Li, Xu, Taylor, Studer,
Goldstein (2018)

https://arxiv.org/abs/
1712.09913
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E% PyTorch introduction x + —

Cc 25 cleam.ac.uk/teaching/2526/DataSci/datasci/ex/pytorch.html @ ¥ D

Getting started with PyTorch

This is a brief introduction to PyTorch, designed to complement the IB Data Science course. It assumes
you’re familiar with the idea of maximum likelihood estimation. We'll use PyTorch to represent a
probability model for regression, and fit it.

There are many other tutorials on PyTorch, including the tutorial in the official documentation. They
typically present PyTorch as a software library, and go into much more depth on tensors and GPUs and
so on. But they often don’t give much guidance on how to use PyTorch for data science.

In this tutorial we'll work with the data behind the xkcd 2048 comic on curve-fitting. First, load the
dataset:

STEP 7. Using a neural network

A neural network is just another function! We can swap out the u(z) = a + bz + ca? function and
replace it by a neural network, i.e. a sequence of linear maps and nonlinear element-wise operations.

[:]
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Exercise

The observed data is [temp,,...,temp_]. Estimate y using the model
——» Temp; ~c + « sin(2m(t; + go)) + yt; + Normal(0, o), ie{l,..,n}

20 + £ * + #+ o+ + + + o4 ¥
§ # % * & H * g + * & A & * s B #
AEOAAARAARRAARARPARAARAARAALRNARA]

101 4 +F /% + bR i + 3 3 + &

+

1990 \ 1995 2000 2005 2010 2015 2020 2025

L‘I’ wh N (Pmd[, 0"&) W] brere Preo" = C ¥ o(g,’n (211 (;:7 d)\ ‘}'Zﬁ‘
Q = ~t
Pe by linearity of the Normal distribution: pred + N(0,02) ~ N(pred,o?)

‘ 5 O dence
Ve (dors) = (& (f'ewr,) X--. % (\h (fe)“r..\ MS"“Mj ‘ldlrﬂ/"'

since the likelihood of independent datapoints is a product

(¢
. - D ey lnt) — g O (fepp-prd)

by looking up the pdf, and avoiding copy—paste-itis
E )fexa\sc : MoXiMmiZe s '\Utm""&\% - N c, &, T, o, CP
(T ol obosl cengfral PR : 6‘70\
(Think sbovt it quas )




Tewpe ~ N (Pm'“' o)

[«
e =~z by ns?) ~ 3 2 (k- )

url = 'https://www.cl.cam.ac.uk/teaching/current/DataSci/data/climate_202510.csv'
climate = pandas.read_csv(url)

climate['t'] = (climate.yyyy + (climate.mm-1)/12)

climate[ "temp'] = (climate.tmin + climate.tmax) / 2

df = climate.loc[(climate.station=="Cambridge') & (climate.yyyy>=1985)]

def loglik(O,t,temp):
(c,a,0,y,T) = 6
02 = np.exp(t) ** 2
pred = ¢ + a * np.sin(2*m*(t+d)) + y*t
n = len(t)
return - n/2 * np.log(2*n*c2) - 1/(2*02) * np.sum((temp - pred)**2)

init_guess = [12, 7, -0.2, 0, np.log(1.5)]
Bhat = scipy.optimize.fmin(lambda p: -loglik(df.t,df.temp,0), init_guess, maxiter=5000)

pandas.DataFrame({'par': ['c','a','¢',"'y','t"','0c"],
"init guess': list(init _guess) + [np.exp(init _guess[-1])],
"fitted': list(phat) + [np.exp(phat[-1])]})

W brare PNJ": c * O(S:‘n (211 (1:7‘ dn ‘J'Z'f;

The fitted valve for ¢
comes out to be —67.5, which
is sUrprising compared to
our guess of 12. But when we
plot the fitted predictions,
it looks right. Can you
figure out why we got ¢ = -
67.5?
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