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Two models of concurrency

Shared-memory concurrency:

One big computer

Shared memory (single address space)

T T T

| CPU core 1 | | CPU core 2 | | CPU core 3 |

Message-passing distributed systems:

Node 1 Node 2 Node 3

| Memory | | Memory | | Memory |
T T T

| cpu | | cpu | | cru |
[ [ [

Network
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A distributed system is. ..

» Multiple “nodes” (computers, servers, phones, . ..)

» communicating via an unreliable network

» trying to achieve some task together

shared memory

distributed system

hardware fails
= all threads stop

reliable communication
between CPU cores

locks, semaphores, atomic
instructions (e.g. CAS)

one machine fails
= others continue running

unreliable network

only message-passing




Recommended reading

» van Steen & Tanenbaum.
“Distributed Systems”
(any ed), free ebook available

» Cachin, Guerraoui & Rodrigues.
“Introduction to Reliable and Secure Distributed
Programming” (2nd ed), Springer 2011

» Kleppmann.
“Designing Data-Intensive Applications”,
O'Reilly 2017

» Bacon & Harris.
“Operating Systems: Concurrent and Distributed
Software Design”, Addison-Wesley 2003



Relationships with other courses

» Concurrent Systems — Part IB
(every distributed system is also concurrent)

» Operating Systems — Part |A
(inter-process communication, scheduling)
» Databases — Part |A
(many modern databases are distributed)
» Computer Networking — Part IB Lent term
(distributed systems involve network communication)
» Cybersecurity — Part IB Easter term
(web and internet security)

» Cloud Computing — Part |l
(distributed systems for processing large amounts of data)
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Why make a system distributed?

» It’s inherently distributed:
e.g. sending a message from your mobile phone to your
friend’s phone

» For better reliability:
even if one node fails, the system as a whole keeps
functioning

» For better performance:
get data from a nearby node rather than one halfway
round the world

» To solve bigger problems:
e.g. huge amounts of data, can't fit on one machine
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Why NOT make a system distributed?

The trouble with distributed systems:

» Communication may fail (and we might not even know it
has failed).

» Processes may crash (and we might not know).

» All of this may happen nondeterministically and without
warning.



Why NOT make a system distributed?

The trouble with distributed systems:
» Communication may fail (and we might not even know it
has failed).
» Processes may crash (and we might not know).

» All of this may happen nondeterministically and without
warning.

Fault tolerance: we want the system as a whole to continue
working, even when some parts are faulty.

This is hard.

Writing a program to run on a single computer is
comparatively easy?!
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Theory and practice

Practice:
How can we achieve good performance in the common case?

Theory:
How can we guarantee correctness in all possible scenarios?

Build a system without understanding the theory?
» works fine for a while. ..

» but one day it fails catastrophically due to some weird

P3N

edge case, and corrupts all your data %

I Distributed systems are notoriously hard to get right.
The theory helps us build robust systems.
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Abstracting over networking details

Network packets are too much low-level detail.
We use a simple abstraction of communication:

message m N .
node i > node )

Reality is much more complex:
> Node:
server, desktop computer, phone, car, robot, sensor, ...

» Various network operators:
eduroam, home DSL, cellular data, coffee shop wifi,
submarine cable, satellite. ..

» Physical communication:

electric current, radio waves, laser, hard drives in a van. ..



Hard drives in a van?!

https://docs.aws.amazon.com/snowball /latest /ug/using-device.html

High latency, high bandwidth!
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Latency and bandwidth

Latency: time until message arrives
» In the same datacenter: =~ 100 ps
» One continent to another: ~ 100 ms

» Hard drives in a van: =~ 1 day

Bandwidth: data volume per unit time
» 4G cellular data: ~ 10 Mbit/s
» Home broadband: ~ 100 Mbit/s
» Hard drives in a van: 50 TB/box ~ 1 Gbit/s
» In the same datacenter: =~ 10 Gbit/s

(Very rough numbers, vary hugely in practice!)
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Distributed Systems and Networking

networking

distributed systems

how to get data from A to B
(packets, routing, .. .)

“TCP is reliable”
(dropped packets are auto-
matically retransmitted)

how to achieve some goal by
sending/receiving messages

any message can be lost
(unplug the network cable
= TCP timeout)
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Online shop wants to sell stuff 24 /7!
Service unavailability = downtime = losing money

Availability = uptime = fraction of time that a service is
functioning correctly

» “Two nines” = 99% up = down 3.7 days/year

» “Three nines” = 99.9% up = down 8.8 hours/year

» “Four nines” = 99.99% up = down 53 minutes/year
» “Five nines” = 99.999% up = down 5.3 minutes/year



Availability

Online shop wants to sell stuff 24 /7!
Service unavailability = downtime = losing money

Availability = uptime = fraction of time that a service is
functioning correctly

» “Two nines” = 99% up = down 3.7 days/year

» “Three nines” = 99.9% up = down 8.8 hours/year

» “Four nines” = 99.99% up = down 53 minutes/year
» “Five nines” = 99.999% up = down 5.3 minutes/year

Service-Level Objective (SLO):
e.g. “99.9% of requests in a day get a response in 200 ms’

Service-Level Agreement (SLA):
contract specifying some SLO, penalties for violation
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Achieving high availability: fault tolerance

Failure: system as a whole isn't working
Fault: some part of the system isn't working
» Node fault: crash, deadlock, ...

» Network fault: dropping or significantly delaying messages
To increase availability: have fewer faults, or tolerate faults

Fault tolerance:
system as a whole continues working, despite faults
(up to some maximum number of faults)

Single point of failure (SPOF):
node/network link whose fault leads to failure

Fault tolerance is also useful for software updates:
reboot one node at a time while continuing to serve users
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Remote Procedure Call (RPC) example

// Online shop handling customer's card details
Card card = new Card();

card.setCardNumber ("1234 5678 8765 4321");
card.setExpiryDate("10/2024") ;
card.setCVC("123");

Result result = paymentsService.processPayment(card,
3.99, Currency.GBP);

if (result.isSuccess()) {
fulfilOrder();
}



Remote Procedure Call (RPC) example

// Online shop handling customer's card details
Card card = new Card();

card.setCardNumber ("1234 5678 8765 4321");
card.setExpiryDate("10/2024") ;
card.setCVC("123");

Result result = paymentsService.processPayment(card,
3.99, Currency.GBP);

if (result.isSuccess()) {
fulfilOrder();
}

Implementation of this function is on another node!
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online shop | |RPC client RPC server
1

processPayment () stub

T marshal args mi
8 unmarshal args

waiting
{
"request": "processPayment",
"card": {
"number": "1234567887654321",
_ "expiryDate": "10/2024",
my = "cve": "123"
1,
"amount": 3.99,
"currency": "GBP"

payment service




online shop| | RPC client payment service

1

processPayment () stub

. marshal args m
8 T——— unmarshal args —_—

processPayment ()

waiting implementation

{
"request": "processPayment",
"card": {

"number": "1234567887654321",
_ "expiryDate": "10/2024",
my = "Cvec": "123"

g
"amount": 3.99,
"currency": "GBP"

}




online shop| | RPC client payment service

1

processPayment () stub

. marshal args m
8 T——— unmarshal args —_—

processPayment ()

waiting implementation
e hal result ——
unmarshal result <— Torone result
{
"request": "processPayment",
"card": {
"number": "1234567887654321", {
_ "expiryDate": "10/2024", o "result": "success",
my = "Cvec": "123" ma = "id": "XP61hHw2Rvo"
g ¥
"amount": 3.99,
"currency": "GBP"
¥




online shop| | RPC client payment service

1

processPayment () stub

. marshal args m
8 T——— unmarshal args —_—

processPayment ()
implementation

-

waiting

mo
— marshal result
unmarshal result

P

function returns

{
"request": "processPayment",
"card": {
"number": "1234567887654321", {
_ "expiryDate": "10/2024", o "result": "success",
my = "cve": "123" ma = "id": "XP61hHw2Rvo"
3, }
"amount": 3.99,
"currency": "GBP"
}
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Remote Procedure Call (RPC)

Ideally, RPC makes a call to a remote function look the same
as a local function call.

“Location transparency”:
system hides where a resource is located.

In practice. ..
» what if the service crashes during the function call?
» what if a message is lost?
» what if a message is delayed?
>

if something goes wrong, is it safe to retry?



RPC history

vVvvyVvYvYyVvyYVvyyYy

SunRPC/ONC RPC (1980s, basis for NFS)

CORBA: object-oriented middleware, hot in the 1990s
Microsoft's DCOM and Java RMI (similar to CORBA)
SOAP /XML-RPC: RPC using XML and HTTP (1998)
Thrift (Facebook, 2007)

gRPC (Google, 2015)

REST (often with JSON)

JavaScript in web browsers making server requests
(XMLHttpRequest, AJAX, fetch API, ...)



RPC/REST in JavaScript

let args = {amount: 3.99, currency: 'GBP', /*...*/};
let request = {

method: 'POST',

body: JSON.stringify(args),

headers: {'Content-Type': 'application/json'}
s

fetch('https://example.com/payments', request)
.then((response) => {
if (response.ok) success(response.json());
else failure(response.status); // server error
b))
.catch((error) => {
failure(error); // network error

1
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splitting a large software application into multiple services
(on multiple nodes) that communicate via RPC.
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RPC in enterprise systems

“Service-oriented architecture” (SOA) / “microservices”:

splitting a large software application into multiple services
(on multiple nodes) that communicate via RPC.

(Server-to-server RPC within the same company)

Different services implemented in different languages:
» interoperability: datatype conversions

» Interface Definition Language (IDL):
language-independent API specification



gRPC IDL example

message PaymentRequest {
message Card {

string cardNumber 1;
int32 expirylMonth = 2;
int32 expiryYear = 3;
int32 CVC = 4;
}
enum Currency { GBP = 1; USD = 2; }
Card card =1;
int64 amount = 2;

Currency currency

]
w

}

message PaymentStatus {
bool success 1;
string errorMessage = 2;

}

service PaymentService {
rpc ProcessPayment (PaymentRequest) returns (PaymentStatus) {}
}
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The two generals problem
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attack? .-~ ">~ _attack?
army 1 & > army 2
YN messengers 4 y
army 1 army 2 outcome
does not attack | does not attack | nothing happens
attacks does not attack | army 1 defeated
does not attack attacks army 2 defeated
attacks attacks city captured

Desired: army 1 attacks if and only if army 2 attacks
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The Romeo and Juliet problem

- ~
- ~
~

meet at? .-°" ~~._meet at?

- ~
- ~

Romeo £ > Juliet

messenger doves

Romeo Juliet outcome
does not go | does not go nothing happens
goes does not go | Romeo gets desperate
does not go goes Juliet gets desperate
goes goes happy ever after

Desired: Romeo goes to the forest if and only if Juliet goes
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Reaching agreement with message loss

Romeo Juliet

T m
et 10 Noy, okay?
10 Nov agreed!

From Romeo's point of view, this is indistinguishable from:

T Meet 10 Nov, Okay?



How should Romeo and Juliet decide?

1. Romeo always goes into the forest, even if no response is
received?
» Send lots of messages to increase probability that one
will get through
» If all are lost, Juliet does not know about the meeting,
so Romeo is alone
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How should Romeo and Juliet decide?

1. Romeo always goes into the forest, even if no response is
received?
» Send lots of messages to increase probability that one
will get through
» If all are lost, Juliet does not know about the meeting,
so Romeo is alone

2. Romeo only goes into the forest if positive response from
Juliet is received?
» Now Romeo is safe
» But Juliet knows that Romeo will only go if Juliet's
response gets through
» Now Juliet is in the same situation as Romeo in option 1

No common knowledge: the only way of knowing
something is to communicate it
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The two generals problem applied

dispatch goods’,/” "~~._ charge credit card
online shop [€ > payments service
) RPC g
online shop payments service outcome
does not dispatch does not charge nothing happens
dispatches does not charge shop loses money
does not dispatch charges customer complaint
dispatches charges everyone happy

Desired: online shop dispatches if and only if payment made
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Online shopping can use the following protocol:
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Two generals # online shopping

Analysing more carefully, we find that online shopping is not
like the two generals after all.

Online shopping can use the following protocol:
1. Try to charge customer’s credit card
2. If charge was successful, try dispatching goods

3. If dispatch was unsuccessful (e.g. out of stock):
refund the credit card payment

The fact that one of the actions (payment) can be undone
makes the problem solveable.

Defeat of an army cannot be undone.
Dispatching goods cannot be undone.



The Byzantine generals problem

army 3

T

1

1

1

I

1

attack? .

1
messengers @ messengers

.- attack? attack? -

army 1 & > army 2
YR messengers 714rmy

Problem: some of the generals might be traitors
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Generals who might lie

general 1 general 2 general 3

attack!
8eneral 1 s3id retreat!

From general 3's point of view, this is indistinguishable from:

general 1 general 2 general 3

attack!
8eneral 1 saig retreat!
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Each general is either malicious or honest

Up to f generals might be malicious

>
>
» Honest generals don't know who the malicious ones are
» The malicious generals may collude

>

Nevertheless, honest generals must agree on plan



The Byzantine generals problem

vV vy Vv Vvyy

Each general is either malicious or honest

Up to f generals might be malicious

Honest generals don't know who the malicious ones are
The malicious generals may collude

Nevertheless, honest generals must agree on plan

Theorem: need 3f + 1 generals in total to tolerate f
malicious generals (i.e. < 3 may be malicious)

Cryptography (digital signatures) helps — but problem
remains hard



Trust relationships and malicious behaviour

online shop

customer

h\'d

RPC

Who can trust whom?

payments service




The Byzantine empire (650 CE)

Byzantium/Constantinople/Istanbul

Mediterranean Sea

Source: https://commons.wikimedia.org/wiki/File:Byzantiumby650AD.svg

“Byzantine” has long been used for “excessively complicated,
bureaucratic, devious” (e.g. “the Byzantine tax law")

m]

=


https://commons.wikimedia.org/wiki/File:Byzantiumby650AD.svg

System models

We have seen two thought experiments:
» Two generals problem: a model of networks
» Byzantine generals problem: a model of node behaviour

In real systems, both nodes and networks may be faulty!



System models

We have seen two thought experiments:
» Two generals problem: a model of networks
» Byzantine generals problem: a model of node behaviour

In real systems, both nodes and networks may be faulty!

Capture assumptions in a system model consisting of:
» Network behaviour (e.g. message loss)
» Node behaviour (e.g. crashes)
» Timing behaviour (e.g. latency)

Choice of models for each of these parts.



Networks are unreliable

In the sea, sharks bite fibre optic cables
https://www.theguardian.com/technology/2014/aug/14/

google-undersea-fibre-optic-cables-shark-attacks

On land, cows step on the cables
https:/ /twitter.com/uhoelzle/status/1263333283107991558


https://www.theguardian.com/technology/2014/aug/14/google-undersea-fibre-optic-cables-shark-attacks
https://www.theguardian.com/technology/2014/aug/14/google-undersea-fibre-optic-cables-shark-attacks
https://twitter.com/uhoelzle/status/1263333283107991558
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System model: network behaviour

Assume bidirectional point-to-point communication between
two nodes, with one of:

» Reliable (perfect) links:
A message is received if and only if it is sent.

Messages may be reordered. retry +

» Fair-loss links: dedup

Messages may be lost, duplicated, or reordered.

If you keep retrying, a message eventually gets through®
» Arbitrary links (active adversary): s

A malicious adversary may interfere with messages
(eavesdrop, modify, drop, spoof, replay).

Network partition: some links dropping/delaying all
messages for extended period of time
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System model: node behaviour

Each node executes a specified algorithm,
assuming one of the following:

» Crash-stop (fail-stop):
A node is faulty if it crashes (at any moment).
After crashing, it stops executing forever.

» Crash-recovery (fail-recovery):
A node may crash at any moment, losing its in-memory
state. It may resume executing sometime later.
Data stored on disk survives the crash.

» Byzantine (fail-arbitrary):
A node is faulty if it deviates from the algorithm.
Faulty nodes may do anything, including crashing or
malicious behaviour.

A node that is not faulty is called “correct”
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Message latency no greater than a known upper bound.
Nodes execute algorithm at a known speed.
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System model: timing assumptions

Assume one of the following for network and nodes:

» Synchronous:
Message latency no greater than a known upper bound.
Nodes execute algorithm at a known speed.

» Partially synchronous:
The system is asynchronous for some finite (but
unknown) periods of time, synchronous otherwise.

» Asynchronous:
Messages can be delayed arbitrarily.
Nodes can pause execution arbitrarily.
No timing guarantees at all.

Note: other parts of computer science use the terms
“synchronous” and “asynchronous” differently.
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occasionally increase:
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Violations of synchrony in practice

Networks usually have quite predictable latency, which can
occasionally increase:

» Message loss requiring retry
» Congestion/contention causing queueing

» Network/route reconfiguration

Nodes usually execute code at a predictable speed, with
occasional pauses:

» Operating system scheduling issues, e.g. priority inversion
» Stop-the-world garbage collection pauses
» Page faults, swap, thrashing

Real-time operating systems (RTOS) provide scheduling
guarantees, but most distributed systems do not use RTOS



System models summary

For each of the three parts, pick one:

» Network:
reliable, fair-loss, or arbitrary

» Nodes:
crash-stop, crash-recovery, or Byzantine

» Timing:
synchronous, partially synchronous, or asynchronous

This is the basis for any distributed algorithm.
If your assumptions are wrong, all bets are off!
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Failure detectors

Failure detector:
algorithm that detects whether another node is faulty

Perfect failure detector:
labels a node as faulty if and only if it has crashed

Typical implementation for crash-stop/crash-recovery:
send message, await response, label node as crashed if no
reply within some timeout

Problem:
cannot tell the difference between crashed node, temporarily
unresponsive node, lost message, and delayed message



Failure detection and partial synchrony

Perfect timeout-based failure detector exists only in a
synchronous crash-stop system with reliable links.

Eventually perfect failure detector:

» May temporarily label a node as crashed,
even though it is correct

» May temporarily label a node as correct,
even though it has crashed

» But eventually, labels a node as crashed
if and only if it has crashed

Reflects fact that detection is not instantaneous, and we may
have spurious timeouts



Time, clocks, and ordering of events
Dr. Martin Kleppmann
martin.kleppmann@cst.cam.ac.uk

University of Cambridge
Computer Science Tripos, Part IB



A detective story

In the night from 30 June to 1 July 2012 (UK time), many
online services and systems around the world crashed
simultaneously.

Servers locked up and stopped responding.

Some airlines could not process any reservations or check-ins
for several hours.

What happened?
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Clocks and time in distributed systems

Distributed systems often need to measure time, e.g.:
» Schedulers, timeouts, failure detectors, retry timers
» Performance measurements, statistics, profiling
» Log files & databases: record when an event occurred
» Data with time-limited validity (e.g. cache entries)

» Determining order of events across several nodes

We distinguish two types of clock:

» physical clocks: count number of seconds elapsed

» logical clocks: count events, e.g. messages sent

NB. Clock in digital electronics (oscillator)
# clock in distributed systems (source of timestamps)



Quartz clocks

» Quartz crystal
laser-trimmed to
mechanically resonate at a
specific frequency

» Piezoelectric effect:
mechanical force <
electric field

» Oscillator circuit produces
signal at resonant
frequency

» Count number of cycles to
measure elapsed time




Quartz clock error: drift

» One clock runs slightly fast, another slightly slow
» Drift measured in parts per million (ppm)
» 1 ppm = 1 microsecond/second = 86 ms/day = 32 s/year

» Most computer clocks correct within & 50 ppm

0
-20
g 40
Temperature =
A £ 60
significantly 5
affects drift 80
-100

0 10 20 30 40 50 60 70
Temperature [°C]



Atomic clocks

» Caesium-133 has a
resonance (“hyperfine
transition”) at ~ 9 GHz

» Tune an electronic
oscillator to that resonant
frequency

» 1 second = 9,192,631,770
periods of that signal

» Accuracy &~ 1in 107" (1

https:
second in 3 million years) //www.microsemi.com/product-directory/
. cesium-frequency-references/
» Price ~ £20,000 (?) 4115-5071a-cesium-primary-frequency-standard

(can get cheaper rubidium
clocks for ~ £1,000)


https://www.microsemi.com/product-directory/cesium-frequency-references/4115-5071a-cesium-primary-frequency-standard
https://www.microsemi.com/product-directory/cesium-frequency-references/4115-5071a-cesium-primary-frequency-standard
https://www.microsemi.com/product-directory/cesium-frequency-references/4115-5071a-cesium-primary-frequency-standard
https://www.microsemi.com/product-directory/cesium-frequency-references/4115-5071a-cesium-primary-frequency-standard

GPS as time source

» 31 satellites, each carrying
an atomic clock

» satellite broadcasts
current time and location

» calculate position from
speed-of-light delay
between satellite and
receiver

» corrections for
. W Troposphere
atmospheric effects, lonosphere

relativity, etc.

https://commons.wikimedia.org/wiki/File:

> in datacenters' need Gps-atmospheric-efects.png

antenna on the roof


https://commons.wikimedia.org/wiki/File:Gps-atmospheric-efects.png
https://commons.wikimedia.org/wiki/File:Gps-atmospheric-efects.png
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south, as seen from the Greenwich meridian




Coordinated Universal Time (UTC)

Greenwich Mean Time (GMT, solar
time): it's noon when the sun is in the
south, as seen from the Greenwich meridian

International Atomic Time (TAIl): 1 day
is 24 x 60 x 60 x 9,192,631,770 periods of
caesium-133's resonant frequency




Coordinated Universal Time (UTC)

Greenwich Mean Time (GMT, solar
time): it's noon when the sun is in the
south, as seen from the Greenwich meridian

International Atomic Time (TAIl): 1 day
is 24 x 60 x 60 x 9,192,631,770 periods of
caesium-133's resonant frequency

Problem: speed of Earth's rotation is not
constant




Coordinated Universal Time (UTC)

Greenwich Mean Time (GMT, solar
time): it's noon when the sun is in the
south, as seen from the Greenwich meridian

International Atomic Time (TAIl): 1 day
is 24 x 60 x 60 x 9,192,631,770 periods of
caesium-133's resonant frequency

Problem: speed of Earth's rotation is not
constant

Compromise: UTC is TAIl with corrections
to account for Earth rotation




Coordinated Universal Time (UTC)

Greenwich Mean Time (GMT, solar
time): it's noon when the sun is in the
south, as seen from the Greenwich meridian

International Atomic Time (TAIl): 1 day
is 24 x 60 x 60 x 9,192,631,770 periods of
caesium-133's resonant frequency

Problem: speed of Earth's rotation is not
constant

Compromise: UTC is TAIl with corrections
to account for Earth rotation

Time zones and daylight savings time
are offsets to UTC



Leap seconds
Every year, on 30 June and 31 December at 23:59:59 UTC,
one of three things happens:

» The clock immediately jumps forward to 00:00:00,
skipping one second (negative leap second)

» The clock moves to 00:00:00 after one second, as usual

» The clock moves to 23:59:60 after one second, and then
moves to 00:00:00 after one further second
(positive leap second)

This is announced several months beforehand.

Agilent SOT1A

PRIMARY FREQUENCY STAMDARD

http://leapsecond.com/notes/leap-watch.htm


http://leapsecond.com/notes/leap-watch.htm

How computers represent timestamps

Two most common representations:
» Unix time: number of seconds since 1 January 1970
00:00:00 UTC (the “epoch™), not counting leap seconds
» I1SO 8601: year, month, day, hour, minute, second, and

timezone offset relative to UTC
example: 2021-11-09T09:50:17+00:00



How computers represent timestamps

Two most common representations:
» Unix time: number of seconds since 1 January 1970
00:00:00 UTC (the “epoch™), not counting leap seconds

» I1SO 8601: year, month, day, hour, minute, second, and
timezone offset relative to UTC
example: 2021-11-09T09:50:17+00:00

Conversion between the two requires:

» Gregorian calendar: 365 days in a year, except leap years
(year % 4 == 0 && (year % 100 !'= 0 ||
year % 400 == 0))

» Knowledge of past and future leap seconds. .. 7!



How most software deals with leap seconds

By ignoring them!

https://www.flickr.com/
photos/ru_boff/
37915499055/
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How most software deals with leap seconds

By ignoring them!

However, OS and DistSys often need
timings with sub-second accuracy.

30 June 2012: bug in Linux kernel caused
livelock on leap second, causing many
Internet services to go down

https://www.flickr.com/
photos/ru_boff/
37915499055/
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How most software deals with leap seconds

By ignoring them!

However, OS and DistSys often need
timings with sub-second accuracy.

30 June 2012: bug in Linux kernel caused
livelock on leap second, causing many
Internet services to go down

Pragmatic solution: “smear” (spread out)
the leap second over the course of a day

https://www.flickr.com/
photos/ru_boff/
37915499055/


https://www.flickr.com/photos/ru_boff/37915499055/
https://www.flickr.com/photos/ru_boff/37915499055/
https://www.flickr.com/photos/ru_boff/37915499055/
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Clock synchronisation

Computers track physical time/UTC with a quartz clock
(with battery, continues running when power is off)

Due to clock drift, clock error gradually increases
Clock skew: difference between two clocks at a point in time

Solution: Periodically get the current time from a server that
has a more accurate time source (atomic clock or GPS
receiver)

Protocols: Network Time Protocol (NTP),
Precision Time Protocol (PTP)



Date & Time Q Search

PEICEAENEE Time Zone  Clock

Set date and time automatically: ‘Apple Europe (time.euro.apple.com.)

Mo TuWe Th Fr Sa Su

12 3 4 5 6
7 8 910 11 12 13
14 15 16 17 18 19 20
21 22gk) 24 25 26 27
28 29 30

To set date and time formats, use Language & Region preferences. Open Language & Region...

é Click the lock to prevent further changes.
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Network Time Protocol (NTP)

Many operating system vendors run NTP servers,
configure OS to use them by default

Hierarchy of clock servers arranged into strata:
» Stratum 0: atomic clock or GPS receiver
» Stratum 1: synced directly with stratum 0 device
» Stratum 2: servers that sync with stratum 1, etc.

May contact multiple servers, discard outliers, average rest

Makes multiple requests to the same server, use statistics to
reduce random error due to variations in network latency

Reduces clock skew to a few milliseconds in good network
conditions, but can be much worse!
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Estimating time over a network

NTP client NTP server

t réquest: ¢,

\ t2
response: (t1, t2; t3) s

ty

Round-trip network delay: 6 = (t4 —t1) — (t3 — t2)

. : : : J
Estimated server time when client receives response: t3 + 3

) to — 1t ts — 1
Estimated clock skew: 0 = t3 + 3~ ty = 2 ;— L




Correcting clock skew

Once the client has estimated the clock skew 0, it needs to
apply that correction to its clock.

> If |#] < 125 ms, slew the clock:
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(brings clocks in sync within ~ 5 minutes)
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Correcting clock skew

Once the client has estimated the clock skew 0, it needs to
apply that correction to its clock.

> If |#] < 125 ms, slew the clock:
slightly speed it up or slow it down by up to 500 ppm
(brings clocks in sync within &~ 5 minutes)

> If 125 ms < |#] < 1,000 s, step the clock:
suddenly reset client clock to estimated server timestamp

» If |#] > 1,000 s, panic and do nothing
(leave the problem for a human operator to resolve)

Systems that rely on clock sync need to monitor clock skew!



Initial run of NTP 3,5f on HP L2000-44/2

10 T T T T T
: : . : Offset [ms] ——

Frequency [PPH] ——

I .
T S P U B T I R
_&50 i i i i i i

0 100 200 300 400 500 600 700

http://www.ntp.org/ntpfaq/NTP-s-algo.htm


http://www.ntp.org/ntpfaq/NTP-s-algo.htm

Monotonic and time-of-day clocks

// BAD:

long startTime = System.currentTimeMillis();
doSomething() ;

long endTime = System.currentTimeMillis();
long elapsedMillis = endTime - startTime;
// elapsedMillis may be negative!
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Monotonic and time-of-day clocks

// BAD:
long startTime = System.currentTimeMillis();
doSomething() ;
long endTime = System.current Millis();
long elapsedMillis = endTime - staf;Time;
// elapsedMillis may be negative!

NTP client steps the clock during this
// GOOD:
long startTime = System.nanoTime();
doSomething() ;
long endTime = System.nanoTime();
long elapsedNanos = endTime - startTime;
// elapsedNanos is always >= 0
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Monotonic and time-of-day clocks
Time-of-day clock:
» Time since a fixed date (e.g. 1 January 1970 epoch)

» May suddenly move forwards or backwards (NTP
stepping), subject to leap second adjustments

» Timestamps can be compared across nodes (if synced)
» Java: System.currentTimeMillis()
» Linux: clock_gettime (CLOCK_REALTIME)

Monotonic clock:
» Time since arbitrary point (e.g. when machine booted up)

Always moves forwards at near-constant rate

>
» Good for measuring elapsed time on a single node
» Java: System.nanoTime()

>

Linux: clock_gettime (CLOCK_MONOTONIC)
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Ordering of messages

user A user B user C

my1 = "A says: The moon is made of cheese!”
msy = "B says: Oh no it isn't!”

C sees my first, m; second,
even though logically m; happened before m;.



Ordering of messages using timestamps?

user A

1]

user B

to

user C

my = (t1, “A says: The moon is made of cheese!")

ma = (t2, "B says: Oh no it isn't!")



Ordering of messages using timestamps?

user A user B user C

tl my

my = (t1, “A says: The moon is made of cheese!")
ma = (t2, "B says: Oh no it isn't!")

Problem: even with synced clocks, 5 < t; is possible.
Timestamp order is inconsistent with expected order!
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An event is something happening at one node (sending or
receiving a message, or a local execution step).

We say event a happens before event b (written a — b) iff:
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The happens-before relation

An event is something happening at one node (sending or
receiving a message, or a local execution step).

We say event a happens before event b (written a — b) iff:

» a and b occurred at the same node, and a occurred
before b in that node’'s local execution order; or

» event a is the sending of some message m, and event b is
the receipt of that same message m (assuming sent
messages are unique); or

» there exists an event ¢ such that a — ¢ and ¢ — b.

The happens-before relation is a partial order: it is possible
that neither @ — b nor b — a. In that case, a and b are
concurrent (written a || b).
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Happens-before relation example

» a — b, ¢c—d, and e — f due to node execution order
» b — cand d — f due to messages m; and msy

» a >c,a—d,a— f,b—d, b— f,and ¢ — f due to
transitivity

> alle ble clle andd| e
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Causality

Taken from physics (relativity).

» When a — b, then a might have caused b.

» When a || b, we know that a cannot have caused b.
Happens-before relation encodes potential causality.

distance in space _
@ @ time

light from a @ light from b

Let < be a strict total order on events.

If (@ — b) = (a < b) then < is a causal order
(or: < is “consistent with causality”).

NB. “causal” # “casual”!
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Physical timestamps inconsistent with causality

user A user B user C

tl my

my = (t1, “A says: The moon is made of cheese!")
ma = (t2, "B says: Oh no it isn't!")

Problem: even with synced clocks, 5 < t; is possible.
Timestamp order is inconsistent with expected order!
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Logical vs. physical clocks

» Physical clock: count number of seconds elapsed
» Logical clock: count number of events occurred

Physical timestamps: useful for many things, but may be
inconsistent with causality.

Logical clocks: designed to capture causal dependencies.
(e1 = e3) = (T'(e1) < T'(e2))

We will look at two types of logical clocks:
» Lamport clocks
» Vector clocks



Lamport clocks algorithm

on initialisation do
t:=0 > each node has its own local variable ¢
end on

on any event occurring at the local node do
ti=t+1
end on

on request to send message m do
t:=t+1; send (t,m) via the underlying network link
end on

on receiving (t',m) via the underlying network link do
t:= max(t,t') + 1
deliver m to the application

end on



Lamport clocks in words

» Each node maintains a counter ¢,
incremented on every local event e

Let L(e) be the value of t after that increment
Attach current ¢ to messages sent over network

vy

» Recipient moves its clock forward to timestamp in the
message (if greater than local counter), then increments
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Lamport clocks in words

» Each node maintains a counter ¢,
incremented on every local event e

Let L(e) be the value of t after that increment
Attach current ¢ to messages sent over network

vy

» Recipient moves its clock forward to timestamp in the
message (if greater than local counter), then increments

Properties of this scheme:
» If @ — b then L(a) < L(b)
» However, L(a) < L(b) does not imply a — b
» Possible that L(a) = L(b) for a # b
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Lamport clocks example

Let N(e) be the node at which event e occurred.
Then the pair (L(e), N(e)) uniquely identifies event e.

Define a total order < using Lamport timestamps:
(a <b) <= (L(a) < L(b) V (L(a) = L(b) A N(a) < N(b)))

This order is causal: (a — b) = (a < b)
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Vector clocks

Given Lamport timestamps L(a) and L(b) with L(a) < L(b)
we can't tell whether a — b or a || b.

If we want to detect which events are concurrent, we need
vector clocks:

» Assume n nodes in the system, N = (Ng, Ny,..., Ny_1)
Vector timestamp of event a is V(a) = (to,t1,...,tn-1)
t; is number of events observed by node N;

Each node has a current vector timestamp T'

On event at node NV;, increment vector element T'[i]

Attach current vector timestamp to each message

vvyVvyvyyy

Recipient merges message vector into its local vector



Vector clocks algorithm

on initialisation at node N; do
T :=(0,0,...,0) > local variable at node NV,
end on

on any event occurring at node N; do
Ti]:=T[i]+1
end on

on request to send message m at node N; do
Ti] :=T[i] + 1; send (T, m) via network
end on

on receiving (7", m) at node N; via the network do
T[j] := max(T[j],T"[j]) for every j € {0,...,n — 1}
T|i] := T[i] + 1; deliver m to the application

end on



Vector clocks example

Assuming the vector of nodes is N = (A, B, C):




Vector clocks example

Assuming the vector of nodes is N = (A, B, C):

The vector timestamp of an event e represents a set of events,
e and its causal dependencies: {e}U{a | a — e}

For example, (2,2, 0) represents the first two events from A,
the first two events from B, and no events from C.
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(in a system with n nodes):

> T =T"iff T[i] = T"[] for all : € {0,...,n— 1}
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Vector clocks ordering

Define the following order on vector timestamps
(in a system with n nodes):

> T =T"iff T[i] = T"[] for all : € {0,...,n— 1}
> T <T'iff T[i] <T'[i] for all i € {0,...,n — 1}
> T <T' iff T <T and T # T’
> T T ffTLT and T £ T

Via) <V (b)iff {a}U{e|e—a}) C({b}U{e|e—b})

Properties of this order:
» (V(a) < V(b)) < (a =)
>(V()=V()) (a =)
> (V(a) [| V(b)) <= (a | b)
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Broadcast protocols

Broadcast (multicast) is group communication:
» One node sends message, all nodes in group deliver it
» Set of group members may be fixed (static) or dynamic
» If one node is faulty, remaining group members carry on

» Note: concept is more general than IP multicast
(we build upon point-to-point messaging)

Build upon system models from earlier lecture:

» Can be best-effort (may drop messages) or
reliable (non-faulty nodes deliver every message,
by retransmitting dropped messages)

» Asynchronous/partially synchronous timing model
=—> no upper bound on message latency
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Receiving versus delivering

Node A:

Application

s

Broadcast algorithm
(middleware)

send receive
~N

Node B:

Application

Broadcast algorithm
(middleware)

send receive
~N

|

Network

Assume network provides point-to-point send/receive




Receiving versus delivering

Node A: Node B:
’ Application ‘ ’ Application ‘
N
deliver
N
Broadcast algorithm Broadcast algorithm
(middleware) (middleware)
send receive send receive
A\ A4

’ Network ‘

Assume network provides point-to-point send/receive

After broadcast algorithm receives message from network, it
may buffer/queue it before delivering to the application
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Forms of reliable broadcast

FIFO broadcast:

If m; and my are broadcast by the same node, and
broadcast(m;) — broadcast(ms), then m; must be delivered
before ms

Causal broadcast:
If broadcast(m;) — broadcast(my) then m; must be delivered
before ms

Total order broadcast:
If m; is delivered before ms on one node, then m; must be
delivered before my on all nodes

FIFO-total order broadcast:
Combination of FIFO broadcast and total order broadcast
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FIFO broadcast

{/}/ ma  my
=
ms \

Messages sent by the same node must be delivered in the

order they were sent.
Messages sent by different nodes can be delivered in any order.

Valid orders: (msq, my,mg3) or (my, mg, ms) or (my, ms, ms)
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Causal broadcast
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ms

Causally related messages must be delivered in causal order.
Concurrent messages can be delivered in any order.

Here: broadcast(m;) — broadcast(ms) and
broadcast(m;) — broadcast(ms)
= valid orders are: (my,ma, m3) or (my, ms,ms)



Causal broadcast

[A]

ms G ms

m GQ\

mo

ms

Causally related messages must be delivered in causal order.
Concurrent messages can be delivered in any order.

Here: broadcast(m;) — broadcast(ms) and
broadcast(m;) — broadcast(ms)
= valid orders are: (my,ma, m3) or (my, ms,ms)
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A] B8] <]

m GQ\




Total order broadcast (1)

Al B <]

N




Total order broadcast (1)

B Iy

ms

ms3




Total order broadcast (1)

All nodes must deliver messages in the same order
(here: my, mg, m3)

B I
my \




Total order broadcast (1)

B I
my \

All nodes must deliver messages in the same order
(here: my, mg, m3)

This includes a node’s deliveries to itself!



Total order broadcast (2)

Al B

B GQ\

ms G s e

ms

All nodes must deliver messages in the same order
(here: my, ms3, ms)

This includes a node’s deliveries to itself!




Relationships between broadcast models

FIFO-total order broadcast

i AN

Total order
broadcast

Causal broadcast

A

FIFO broadcast

A

Reliable broadcast

A

Best-effort
broadcast

—> = stronger than
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Broadcast algorithms

Break down into two layers:

1. Make best-effort broadcast reliable by retransmitting
dropped messages

2. Enforce delivery order on top of reliable broadcast

First attempt: broadcasting node sends message directly
to every other node

» Use reliable links (retry + deduplicate)
» Problem: node may crash before all messages delivered
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Eager reliable broadcast

Idea: the first time a node receives a particular message, it
re-broadcasts to each other node (via reliable links).

Al B <l

my
— |

Reliable, but... up to O(n?) messages for n nodes!
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Gossip protocols

Useful when broadcasting to a large number of nodes.
Idea: when a node receives a message for the first time,
forward it to 3 other nodes, chosen randomly.

Eventually reaches all nodes (with high probability).



FIFO broadcast algorithm

on initialisation do
sendSeq := 0; delivered := (0,0, ...,0); buffer := {}
end on

on request to broadcast m at node N; do
send (i, sendSeq, m) via reliable broadcast
sendSeq := sendSeq + 1

end on

on receiving msg from reliable broadcast at node N; do
buffer := buffer U {msg}
while Jsender, m. (sender, delivered[sender],m) € buffer do
deliver m to the application
delivered[sender] := delivered[sender] + 1
end while
end on



Causal broadcast algorithm

on initialisation do
sendSeq := 0; delivered := (0,0, ...,0); buffer :=={}
end on

on request to broadcast m at node N; do
deps := delivered; depsli] := sendSeq
send (i, deps, m) via reliable broadcast
sendSeq := sendSeq + 1

end on

on receiving msg from reliable broadcast at node N; do
buffer := buffer U {msg}
while 3(sender, deps, m) € buffer. deps < delivered do
deliver m to the application
buffer := buffer \ {(sender, deps,m)}
delivered[sender] := delivered[sender] + 1
end while
end on



Vector clocks ordering

Define the following order on vector timestamps
(in a system with n nodes):

> T =T"iff T[i] = T"[] for all : € {0,...,n— 1}
> T <T'iff T[i] <T'[i] for all i € {0,...,n — 1}
> T <T' iff T <T and T # T’
> T T ffTLT and T £ T
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Total order broadcast algorithms

Single leader approach:
» One node is designated as leader (sequencer)

» To broadcast message, send it to the leader;
leader broadcasts it via FIFO broadcast.

» Problem: leader crashes = no more messages delivered
» Changing the leader safely is difficult

Lamport clocks approach:
» Attach Lamport timestamp to every message
» Deliver messages in total order of timestamps

» Problem: how do you know if you have seen all messages
with timestamp < 7?7 Need to use FIFO links and wait
for message with timestamp > T from every node
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Replication

Keeping a copy of the same data on multiple nodes
Databases, filesystems, caches, ...

A node that has a copy of the data is called a replica
If some replicas are faulty, others are still accessible
Spread load across many replicas

Easy if the data doesn’t change: just copy it

vVvyVvyvVvyVvyYyvyy

We will focus on data changes

Compare to RAID (Redundant Array of Independent Disks):
replication within a single computer

» RAID has single controller; in distributed system, each
node acts independently

» Replicas can be distributed around the world, near users
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Retrying state updates

User A: The moon is not actually made of cheese!

12,300 people like this.

Increment post.likes

\
— 12,301
increment post.likes
— > 12,302

Deduplicating requests requires that the database tracks which
requests it has already seen (in stable storage)
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|dempotence

A function f is idempotent if f(x) = f(f(x)).
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A function f is idempotent if f(x) = f(f(x)).
» Not idempotent: f(likeCount) = likeCount + 1
» Idempotent: f(likeSet) = likeSet U {userD}
Idempotent requests can be retried safely.

Choice of retry behaviour:
» At-most-once semantics:
send request, don't retry, update may not happen
» At-least-once semantics:
retry request until acknowledged, may repeat update
» Exactly-once semantics:
retry 4+ idempotence or deduplication



Adding and then removing again

client 1

.

client 2




Adding and then removing again

client 1

S add like

§

f(likes) = likes U {userID}

client 2




Adding and then removing again

client 1

S add like

§

f(likes) = likes U {userID}

S

S

client 2

et of [ikes




Adding and then removing again

client 1 8 client 2

S add like

ack
w set of likes
—

>

f(likes) = likes U {userID}
g(likes) = likes \ {userID}



Adding and then removing again

client 1 8 client 2

S add like

ack
J: add like </ack/

S

ack

DB

f(likes) = likes U {userID}
g(likes) = likes \ {userID}




Adding and then removing again

client 1 8 client 2

S add like

ack
/1 add like </ack/

S

ack

DB

f(likes) = likes U {userID}
g(likes) = likes \ {userID}

Idempotent? f(f(z)) = f(x) but f(g(f(x)) # g(f(x))
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Another problem with adding and removing

!
g E
add(x)

Final state (x ¢ A, = € B) is the same as in this case:

- -
add(z)

add(x)
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“remove(x)" doesn't actually remove z: it labels = with
“false” to indicate it is invisible (a tombstone)
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Timestamps and tombstones

'
client u B
" (%1, add(z))

(t1, add(z \ T 1, true
@) {z > (t1,true)} to (i troe))

i

(ts, remove(z))

Mﬂ

X (2 (b, false)}

“remove(x)" doesn't actually remove z: it labels = with
“false” to indicate it is invisible (a tombstone)

123

Every record has logical timestamp of last write
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Reconciling replicas

Replicas periodically communicate among themselves
to check for any inconsistencies.

reconcile state

{z = (t,false)} € - > {x > (t1,true)}
\l, (anti-entropy) \l,
{z — (ts,false)} t1 < to {z — (ts,false)}

Propagate the record with the latest timestamp,
discard the records with earlier timestamps
(for a given key).
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Concurrent writes by different clients

client 1 client 2

51 (tl’set(l', 1)) (‘T’mﬂ )

Two common approaches:
» Last writer wins (LWW) register:
Use timestamps with total order (e.g. Lamport clock)
Keep v, and discard vy if t5 > t;. Note: data loss!
» Multi-value register:
Use timestamps with partial order (e.g. vector clock)
v replaces vy if t9 > t;; preserve both {vy, v} if £ || t2
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Probability of faults

A replica may be unavailable due to network partition or
node fault (e.g. crash, hardware problem).

Assume each replica has probability p of being faulty or
unavailable at any one time, and that faults are independent.
(Not actually true! But okay approximation for now.)

Probability of all n replicas being faulty: p"
Probability of > 1 out of n replicas being faulty: 1 — (1 — p)”

Example with p = 0.01:

replicas n | P(> 1 faulty) | P(> ™ faulty) | P(all n faulty)
1 0.01 0 01 0.01
3 0.03 3-1074 1076
5 0.049 1-107° 10~
100 0.63 6-10"™ 10200
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Read-after-write consistency

client

t (1, set(z, v, ))

I
get(x)

%ﬁ(
to, Vo

JECSDI

Writing to one replica, reading from another: client does not
read back the value it has written

Require writing to/reading from both replicas = cannot
write/read if one replica is unavailable
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Quorum (2 out of 3)

. 5 5 5
e 5 I R

t (1, set(x, v)))

Write succeeds on B and C'; read succeeds on A and B
Choose between (g, vg) and (¢, v1) based on timestamp
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Read and write quorums
In a system with n replicas:

>

>
>
>

vy

If a write is acknowledged by w replicas (write quorum),
and we subsequently read from r replicas (read quorum),
and r +w > n,

... then the read will see the previously written value
(or a value that subsequently overwrote it)

Read quorum and write quorum share > 1 replica

Typical: 7 =w = "5 for n = 3,5,7,... (majority)

» Reads can tolerate n — r unavailable replicas, writes n —w

read quorum write quorum



Read repair

client




Read repair

client

get(x)

YM




Read repair

: 5 5 5
= i @ [

get(x)
N—————x
(t(), U0> (tl, Ul)

é//—/

Update (¢, v1) is more recent than (¢, vg) since tg < t;.



Read repair

client

(t(), U0>
o)
 —

(1, set(x, v,))

(tl, Ul)

\

I

Update (¢, v1) is more recent than (¢, vg) since tg < t;.
Client helps propagate (¢, v1) to other replicas.
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State machine replication

So far we have used best-effort broadcast for replication.
What about stronger broadcast models?

Total order broadcast: every node delivers the same
messages in the same order

State machine replication (SMR):
» FIFO-total order broadcast every update to all replicas
» Replica delivers update message: apply it to own state
» Applying an update is deterministic

» Replica is a state machine: starts in fixed initial state,
goes through same sequence of state transitions in the
same order = all replicas end up in the same state
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State machine replication

on request to perform update u do
send w via FIFO-total order broadcast
end on

on delivering u through FIFO-total order broadcast do
update state using arbitrary deterministic logic!
end on

Closely related ideas:
» Serializable transactions (execute in delivery order)
» Blockchains, distributed ledgers, smart contracts
Limitations:

» Cannot update state immediately, have to wait for
delivery through broadcast

» Need fault-tolerant total order broadcast: see next lecture
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Database leader rep

lica

Leader database replica L ensures total order broadcast

client 1 client 2

1

ok

o —

15

Commiit

commit

Follower F' applies transaction log in commit order
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Replication using causal (and weaker) broadcast

State machine replication uses (FIFO-)total order broadcast.
Can we use weaker forms of broadcast too?

If replica state updates are commutative, replicas can process
updates in different orders and still end up in the same state.

Updates f and g are commutative if f(g(x)) = g(f(x))

broadcast | assumptions about state update function
total order | deterministic (SMR)

causal deterministic, concurrent updates commute
reliable deterministic, all updates commute

best-effort

deterministic, commutative, idempotent,
tolerates message loss
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“Consistency”
A word that means many different things in different contexts!

» ACID: a transaction transforms the database from one
“consistent” state to another

Here, “consistent” = satisfying application-specific
invariants

e.g. “every course with students enrolled must have at
least one lecturer”

» Read-after-write consistency

» Replication: replica should be “consistent” with other

replicas
“consistent” = in the same state? (when exactly?)
“consistent” = read operations return same result?

» Consistency model: many to choose from
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Distributed transactions

Recall atomicity in the context of ACID transactions:
» A transaction either commits or aborts
» If it commits, its updates are durable
» If it aborts, it has no visible side-effects

» ACID consistency (preserving invariants) relies on
atomicity

If the transaction updates data on multiple nodes, this implies:

» Either all nodes must commit, or all must abort

» If any node crashes, all must abort

Ensuring this is the atomic commitment problem.
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Two-phase commit
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The coordinator in two-phase commit

What if the coordinator crashes?

>
| 4

Coordinator writes its decision to disk

When it recovers, read decision from disk and send it to
replicas (or abort if no decision was made before crash)

Problem: if coordinator crashes after prepare, but before
broadcasting decision, other nodes do not know what it
has decided

Replicas participating in transaction cannot commit or
abort after responding “ok” to the prepare request
(otherwise we risk violating atomicity)

Algorithm is blocked until coordinator recovers



Fault-tolerant two-phase commit (1/2)

on initialisation for transaction 17" do
commitVotes[T] := {}; replicas[T] := {}; decided[T] := false
end on

on request to commit transaction T" with participating nodes R do
for each r € R do send (Prepare, T, R) to r
end on

on receiving (Prepare, T', R) at node replicald do
replicas[T] := R

ok = "is transaction T able to commit on this replica?”
total order broadcast (Vote, T replicald, ok) to replicas[T]
end on

on a node suspects node replicald to have crashed do
for each transaction T in which replicald participated do
total order broadcast (Vote, T, replicald, false) to replicas|T
end for
end on



Fault-tolerant two-phase commit (2/2)

on delivering (Vote, T, replicald, ok) by total order broadcast do
if replicald ¢ commitVotes[T] N replicald € replicas[T] A
—decided[T] then
if ok = true then
commitVotes|[T] := commitVotes[T| U {replicald}
if commitVotes[T| = replicas[T] then
decided|T] := true
commit transaction 1" at this node
end if
else
decided[T] := true
abort transaction T at this node
end if
end if
end on
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Linearizability

Multiple nodes concurrently accessing replicated data.
How do we define “consistency” here?

The strongest option: linearizability

» Informally: every operation takes effect atomically
sometime after it started and before it finished

» All operations behave as if executed on a single copy of
the data (even if there are in fact multiple replicas)

» Consequence: every operation returns an “up-to-date”
value, a.k.a. “strong consistency”

» Not just in distributed systems, also in shared-memory
concurrency (memory on multi-core CPUs is not
linearizable by default!)

Note: linearizability # serializability!
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» Focus on client-observable
behaviour: when and what an
operation returns

» Ignore how the replication
system is implemented internally

? » Did operation A finish before

Y~ real time operation B started?

» Even if the operations are on
different nodes?
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» This is not happens-before:
we want client 2 to read value
written by client 1, even if the
clients have not communicated!
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Operations overlapping in time

client 1

(Ta‘w)19s

]

client 2

0 + (7)198

Client 2's get operation
overlaps in time with
client 1's set operation
Maybe the set operation
takes effect first?

Just as likely, the get
operation may be
executed first

Either outcome is fine in
this case
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Not linearizable, despite quorum reads/writes

client 1 ’ client 2 ‘ ’client 3 ‘

» Client 2's operation finishes
before client 3's operation %
starts &

1
A

(ta‘x)198

» Linearizability therefore
requires client 3's operation

to observe a state no older - rltime
than client 2's operation @
» This example violates &
linearizability because vy is i
older than v, °
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Linearizability for different operations

This ensures linearizability of get (quorum read) and
set (blind write to quorum)

» When an operation finishes, the value read/written is
stored on a quorum of replicas

» Every subsequent quorum operation will see that value

» Multiple concurrent writes may overwrite each other

What about an atomic compare-and-swap operation?

» CAS(z, oldValue, newValue) sets = to new Value iff
current value of x is old Value

» Previously discussed in shared-memory concurrency

» Can we implement linearizable compare-and-swap in a
distributed system?

» Yes: total order broadcast to the rescue again!



Linearizable compare-and-swap (CAS)

on request to perform get(z) do
total order broadcast (get, ) and wait for delivery
end on

on request to perform CAS(x, old, new) do
total order broadcast (CAS, x, old, new) and wait for delivery
end on

on delivering (get, z) by total order broadcast do
return localState|x] as result of operation get(x)
end on

on delivering (CAS, z, old, new) by total order broadcast do
success := false
if localState[x] = old then
localState|r] := new; success := true
end if
return success as result of operation CAS(z, old, new)
end on
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Fault-tolerant total order broadcast

Total order broadcast is very useful for state machine
replication.

Can implement total order broadcast by sending all messages
via a single leader.

Problem: what if leader crashes/becomes unavailable?

» Manual failover: a human operator chooses a new
leader, and reconfigures each node to use new leader

Used in many databases! Fine for planned maintenance.

Unplanned outage? Humans are slow, may take a long
time until system recovers. . .

» Can we automatically choose a new leader?
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Consensus and total order broadcast

» Traditional formulation of consensus: several nodes want
to come to agreement about a single value

» |n context of total order broadcast: this value is the next
message to deliver

» Once one node decides on a certain message order, all
nodes will decide the same order

» Consensus and total order broadcast are formally
equivalent

Common consensus algorithms:

» Paxos: single-value consensus

Multi-Paxos: generalisation to total order broadcast
» Raft, Viewstamped Replication, Zab:

FIFO-total order broadcast by default
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Atomic commit

Atomic commit versus consensus

Consensus

Every node votes whether to
commit or abort

Must commit if all nodes
vote to commit; must abort
if > 1 nodes vote to abort

Must abort if a participating
node crashes

One or more nodes propose
a value

Any one of the proposed
values is decided

Crashed nodes can be
tolerated, as long as a
quorum is working
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How total order broadcast should behave

Properties of total order broadcast fall into two categories:

» Safety: “nothing bad happens”

1. Let N7 and N5 be two nodes that each deliver two
messages m1 and mo, and assume that N7 delivers m
before my. Then Ny also delivers my before ms.

2. If some node delivers a message m, then m was
previously broadcast by some node.

3. A node does not deliver the same message more than
once.

» Liveness: ‘something good eventually happens”

4. If a node broadcasts a message m and does not crash,
then eventually that node delivers m.

5. If one node delivers a message m, then every other node
that does not crash eventually delivers m.
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Consensus system models

Paxos, Raft, etc. assume a partially synchronous,
crash-recovery system model.

Why not asynchronous?

» FLP result (Fischer, Lynch, Paterson):
There is no deterministic consensus algorithm that is
guaranteed to terminate in an asynchronous crash-stop
system model.

» Paxos, Raft, etc. use clocks only used for timeouts/failure
detector to ensure liveness. Safety does not depend on
timing.

There are also consensus algorithms for a partially synchronous
Byzantine system model (used in blockchains)
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| eader election
Multi-Paxos, Raft, etc. use a leader to sequence messages.
» Use a failure detector (timeout) to determine suspected
crash or unavailability of leader.
» On suspected leader crash, elect a new one.
» Prevent two leaders at the same time ( “split-brain”)!

Ensure < 1 leader per term:
» Term is incremented every time a leader election is started
» A node can only vote once per term
» Require a quorum of nodes to elect a leader in a term

elects a leader cannot elect a different leader
because C' already voted
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Can we guarantee there is only one leader?

Can guarantee unique leader per term.
Cannot prevent having multiple leaders from different terms.

Example: node 1 is leader in term ¢, but due to a network
partition it can no longer communicate with nodes 2 and 3:

Nodes 2 and 3 may elect a new leader in term ¢ + 1.

Node 1 may not even know that a new leader has been elected!
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Checking if a leader has been voted out

For every decision (message to deliver), the leader must first
get acknowledgements from a quorum.

leader follower 2

Shall | pe your leader jn term ¢?

yes yes

Can we def;
eliver mes
Sage m next j
In term ¢?

okay okay

Right, now deliver|y, please
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receives votes
from quorum

Candidate Leader

discovers
new term
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Raft (1/9): initialisation
on initialisation do
currentTerm := 0; votedFor := null
log := (); commitLength := 0
currentRole := follower; currentLeader := null
votesReceived := {}; sentLength := (); ackedLength = ()
end on

on recovery from crash do
currentRole := follower; currentLeader := null
votesReceived := {}; sentLength := (); ackedLength := ()
end on

on node nodeld suspects leader has failed, or on election timeout do
currentTerm := currentTerm + 1; currentRole := candidate
votedFor := nodeld; votesReceived := {nodeld}; lastTerm :=0
if log.length > 0 then lastTerm := log[log.length — 1].term; end if
msg := (VoteRequest, nodeld, currentTerm, log.length, last Term)
for each node € nodes: send msg to node
start election timer

end on



Raft (1/9) Inltlallsat|on log = my1| |Mm2| | M3 Kk— Msg

T 1 1 1 [ term
on initialisation do T T T
currentTerm := 0; votedFor := null log[0] log[1] log[2]

log := (); commitLength := 0

currentRole := follower; currentLeader := null

votesReceived := {}; sentLength := (); ackedLength = ()
end on

on recovery from crash do
currentRole := follower; currentLeader := null
votesReceived := {}; sentLength := (); ackedLength := ()
end on

on node nodeld suspects leader has failed, or on election timeout do
currentTerm := currentTerm + 1; currentRole := candidate
votedFor := nodeld; votesReceived := {nodeld}; lastTerm :=0
if log.length > 0 then lastTerm := log[log.length — 1].term; end if
msg := (VoteRequest, nodeld, current Term, log.length, last Term)
for each node € nodes: send msg to node
start election timer

end on



Raft (2/9): voting on a new leader

on receiving (VoteRequest, cId, cTerm, cLogLength, cLogTerm)
at node nodeld do
if cTerm > currentTerm then
currentTerm := cTerm; currentRole := follower
votedFor := null
end if
lastTerm =0
if log.length > 0 then lastTerm := log[log.length — 1].term; end if
logOFk := (cLogTerm > lastTerm) V
(cLogTerm = lastTerm A cLogLength > log.length)

if cTerm = currentTerm A logOk A votedFor € {cId,null} then
votedFor := cld
send (VoteResponse, nodeld, currentTerm, true) to node cld
else
send (VoteResponse, nodeld, current Term, false) to node cId
end if
end on
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Raft (3/9): collecting votes

on receiving (VoteResponse, voterld, term, granted) at nodeld do
if currentRole = candidate A term = currentTerm A granted then
votesReceived := votesReceived U {voterld}
if |votesReceived| > [(|nodes| + 1)/2] then
currentRole := leader; currentLeader := nodeld
cancel election timer
for each follower € nodes \ {nodeld} do
sentLength[follower] := log.length
ackedLength|follower] := 0
REPLICATELOG(nodeld, follower)
end for
end if
else if term > currentTerm then
currentTerm := term
currentRole := follower
votedFor := null
cancel election timer
end if
end on



Raft (4/9): broadcasting messages

on request to broadcast msg at node nodeld do
if currentRole = leader then
append the record (msg : msg, term : currentTerm) to log
ackedLength[nodeld) := log.length
for each follower € nodes \ {nodeld} do
REPLICATELOG(nodeld, follower)
end for
else
forward the request to currentLeader via a FIFO link
end if
end on

periodically at node nodeld do
if currentRole = leader then
for each follower € nodes \ {nodeld} do
REPLICATELOG(nodeld, follower)
end for
end if
end do



Raft (5/9): replicating to followers

Called on the leader whenever there is a new message in the log, and also
periodically. If there are no new messages, suffix is the empty list.

LogRequest messages with suffiz = () serve as heartbeats, letting
followers know that the leader is still alive.

function REPLICATELOG (leaderld, followerld)
prefizLen := sentLength[followerld]
suffiz := (log[prefixLen], log|prefizLen + 1], ...,
log[log.length — 1])
prefirTerm := 0
if prefizLen > 0 then
prefizTerm := log[prefizrLen — 1].term
end if
send (LogRequest, leaderld, current Term, prefixLen,

prefixTerm, commitLength, suffiz) to followerld
end function



Raft (6/9): followers receiving messages

on receiving (LogRequest, leaderld, term, prefixrLen, prefizTerm,
leaderCommit, suffiz) at node nodeld do
if term > currentTerm then
currentTerm := term; votedFor := null
end if
if term = currentTerm then
currentRole := follower; currentLeader := leaderld
cancel election timer
end if
logOk := (log.length > prefixLen) A
(prefizLen = 0V log[prefizLen — 1].term = prefixTerm)
if term = currentTerm A logOk then
APPENDENTRIES(prefizLen, leader Commyit, suffix)
ack := prefirLen + suffiz.length
send (LogResponse, nodeld, currentTerm, ack,true) to leaderld
else
send (LogResponse, nodeld, currentTerm, 0, false) to leaderld
end if
end on



Raft (7/9): updating followers' logs
function APPENDENTRIES(prefizLen, leaderCommit, suffiz)
if suffix.length > 0 A log.length > prefizLen then
index := min(log.length, prefizLen + suffiz.length) — 1
if loglindez].term # suffiz[index — prefizLen].term then
log := (log[0], log[1], ..., log[prefixLen — 1])
end if
end if
if preficLen + suffiz.length > log.length then
for i := log.length — prefirLen to suffiz.length — 1 do
append suffiz[i] to log
end for
end if
if leaderCommit > commitLength then
for i := commitLength to leaderCommit — 1 do
deliver log[i].msg to the application
end for
commitLength := leaderCommit
end if
end function



Raft (8/9): leader receiving acks

on receiving (LogResponse, follower, term, ack, success) at nodeld do
if term = currentTerm A currentRole = leader then
if success = true A ack > ackedLength[follower] then
sentLength[follower] := ack
ackedLength|follower| := ack
CoMMITLOGENTRIES()
else if sentLength[follower] > 0 then
sentLength[follower] := sentLength[follower] — 1
REPLICATELOG(nodeld, follower)
end if
else if term > currentTerm then
currentTerm := term
currentRole := follower
votedFor := null
cancel election timer
end if
end on



Raft (9/9): leader committing log entries

Any log entries that have been acknowledged by a quorum of nodes are
ready to be committed by the leader. When a log entry is committed, its
message is delivered to the application.

define acks(length) = [{n € nodes | ackedLength[n] > length}|

function CoMMITLOGENTRIES
minAcks := [(|nodes| +1)/2]
ready := {len € {1, ..., log.length} | acks(len) > minAcks}
if ready # {} A max(ready) > commitLength A
log[max(ready) — 1].term = currentTerm then
for i := commitLength to max(ready) — 1 do
deliver log[i].msg to the application
end for
commitLength := max(ready)
end if
end function



.and that was just the basic form of Raft!

A real implementation would need to do more:
» Efficient log reconciliation when —logOk
» Allow reconfiguration:
allow administrators to add or remove nodes, adjusting
quorums accordingly
» Better throughput:

avoid having to do everything through the leader?
(some Paxos variants are less leader-centric)



.and that was just the basic form of Raft!

A real implementation would need to do more:
» Efficient log reconciliation when —logOk

» Allow reconfiguration:
allow administrators to add or remove nodes, adjusting
quorums accordingly

» Better throughput:
avoid having to do everything through the leader?
(some Paxos variants are less leader-centric)

Going even further:

» Raft assumes all nodes are honest;
Byzantine consensus required for blockchains
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Eventual consistency

Linearizability advantages:

» Makes a distributed system behave as if it were
non-distributed

» Simple for applications to use

Downsides:
» Performance cost: lots of messages and waiting for
responses
» Scalability limits: leader can be a bottleneck

» Availability problems: if you can't contact a quorum of
nodes, you can't process any operations

Eventual consistency: a weaker model than linearizability.
Different trade-off choices.
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The CAP theorem

A system can be either strongly Consistent (linearizable) or
Available in the presence of a network Partition

node B node C'

uonyiued yiomisu

— T+ (x)198 — (Ta‘z)1es

— Ta + (x)198
— 0a ¢+ (x)198

C' must either wait indefinitely for the network to recover, or
return a potentially stale value
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Eventual consistency

Replicas process operations based only on their local state.

If there are no more updates, eventually all replicas will be in
the same state. (No guarantees how long it might take.)
Strong eventual consistency:

» Eventual delivery: every update made to one non-faulty
replica is eventually processed by every non-faulty replica.

» Convergence: any two replicas that have processed the
same set of updates are in the same state
(even if updates were processed in a different order).
Properties:
» Does not require waiting for network communication
» Causal broadcast (or weaker) can disseminate updates
» Concurrent updates = conflicts need to be resolved
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Summary of minimum system model requirements

Problem Must wait for Requires
communication | synchrony
atomic commit all participating partially
nodes synchronous
consensus, quorum partially
total order broadcast, synchronous
linearizable CAS
linearizable get/set quorum asynchronous
eventual consistency, | local replica only | asynchronous

causal broadcast,
FIFO broadcast

strength of assumptions



Local-first software

End-user device is a full replica; servers are just for backup.
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Local-first software

End-user device is a full replica; servers are just for backup.
“Local-first”: a term introduced by me and my colleagues
https://www.inkandswitch.com /local-first/

Calendar app with cross-device sync is an example:

» App works offline (can both read and modify data)
Fast: no need to wait for network round-trip
Sync with other devices when online

Real-time collaboration with other users

vvyyvyy

Longevity: even if cloud service shuts down, you have a
copy of your files on your own computer

v

Supports end-to-end encryption for better security

\4

Simpler programming model than RPC

» User control and agency over their own data
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Collaboration and conflict resolution

Nowadays we use a lot of collaboration software:

» Examples: calendar sync, text editors (Google Docs),
spreadsheets, presentations, graphics apps. . .

» Several users/devices working on a shared file/document
» Each user device has local replica of the data

» Update local replica optimistically, sync with others
asynchronously (waiting for round trip is too slow)

» Challenge: how to reconcile concurrent updates?

Families of algorithms:
» Conflict-free Replicated Data Types (CRDTS)

» Operation-based
» State-based

» Operational Transformation (OT)



Conflicts due to concurrent updates

"title": "Lecture", "title": "Lecture",
"date": "2020-11-05", "date": "2020-11-05",
"time": "12:00" "time": "12:00"
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{
"title": "Lecture",
"date": "2020-11-05",
"time": "12:00"

}

title = "LLcture 1"

{
"title": "Lecture 1",
"date": "2020-11-05",
"time": "12:00"

}
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Conflicts due to concurrent updates

{

}

"title": "Lecture",
"date": "2020-11-05",
"time": "12:00"

title = "LLcture 1"

{

}

"title": "Lecture 1",
"date": "2020-11-05",
"time": "12:00"
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"title": "Lecture",
"date": "2020-11-05",
"time": "12:00"

time = "10:00"
"title": "Lecture",
"date": "2020-11-05",
"time": "10:00"




Conflicts due to concurrent updates

"date": "2020-11-05",
"time": "10:00"

1
1
1
1
{ S
"title": "Lecture", g: "title": "Lecture",
"date": "2020-11-05", g 1 "date": "2020-11-05",
"time": "12:00" }: "time": "12:00"
3 1
T
[N ]
title = "Lecture 1" =y time = "10:00"
.
Iy
{ =
O
n 5 n. n n
";lzlﬁ‘.‘?}(_)’;gf?ifoé", = : "title": "Lecture",
Jave = . ’ ' "date": "2020-11-05",
} time": "12:00 : "time": "10:00"
sync
Z Y \
N\ /|
{
"title": "Lecture 1", "title": "Lecture 1",

"date": "2020-11-05",
"time": "10:00"




Operation-based map CRDT

on initialisation do
values := {}
end on

on request to read value for key k do
if 3t,v. (¢, k,v) € values then return v else return null
end on

on request to set key k to value v do
t := newTimestamp() > globally unique, e.g. Lamport timestamp
broadcast (set,t, k,v) by reliable broadcast (including to self)

end on

on delivering (set, ¢, k,v) by reliable broadcast do
previous := {(t', k', v") € values | k' = k}
if previous = {} VvV V(t',k’,v") € previous. t' < t then
values := (values \ previous) U {(t,k,v)}
end if
end on
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Operation-based CRDTs

Reliable broadcast may deliver updates in any order:
» broadcast (set,?;, “title”, “Lecture 1")
» broadcast (set,ty, “time”, “10:00")

Recall strong eventual consistency:
» Eventual delivery: every update made to one non-faulty
replica is eventually processed by every non-faulty replica.

» Convergence: any two replicas that have processed the
same set of updates are in the same state

CRDT algorithm implements this:
» Reliable broadcast ensures every operation is eventually
delivered to every (non-crashed) replica
» Applying an operation is commutative: order of delivery
doesn’t matter



State-based map CRDT

The operator LI merges two states s; and sy as follows:
s1Use = {(t,k,v) € (s1Usa) | B, K, v) € (s1Usa). K =k At >t}

on initialisation do
values := {}
end on

on request to read value for key k do
if 3t,v. (¢, k,v) € values then return v else return null
end on

on request to set key k to value v do
t := newTimestamp() > globally unique, e.g. Lamport timestamp
values := {(t', k', v") € values | k' # k} U {(t,k,v)}
broadcast values by best-effort broadcast

end on

on delivering V' by best-effort broadcast do
values := values LUV
end on



State-based CRDTs

Merge operator LI must satisfy: Vsq, so, 3. ..
» Commutative: s; L sy = s9 LI 57.
» Associative: (s; L $y) Llsg =51 (s2Ls3).
» Idempotent: s; LI s; = s;.
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State-based CRDTs

Merge operator LI must satisfy: Vsq, so, 3. ..
» Commutative: s; L sy = s9 LI 57.
» Associative: (s; L $y) Llsg =51 (s2Ls3).
» Idempotent: s; LI s; = s;.

State-based versus operation-based:
» Op-based CRDT typically has smaller messages
» State-based CRDT can tolerate message loss/duplication

Not necessarily uses broadcast:

» Can also merge concurrent updates to replicas e.g. in
quorum replication, anti-entropy, ...
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Collaborative text editing: the problem
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Collaborative text editing: the problem
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Operational transformation

user A

insert(0, "A")

B

C

(insert, 0, “A")

T((insert, 2, “D"),
(insert, 0, “A")) =
(insert, 3, "D")

[

A

D

user B

insert(2, “D")

B|C|D

(insert, 2, “D")

T((insert, 0, “A"),
(insert, 2, "D")) =
(insert, 0, “A")
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Text editing CRDT
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Text editing CRDT
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Text editing CRDT
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Operation-based text CRDT (1/2)

function ELEMENTAT(chars, index)
min = the unique triple (p,n,v) € chars such that
B(p',n',v') € chars.p' <pV (p) =pAn’ <n)}
if index = 0 then return min
else return ELEMENTAT(chars \ {min}, index — 1)
end function

on initialisation do
chars := {(0, null,F), (1, null, )}
end on

on request to read character at index index do
let (p,n,v) := ELEMENTAT(chars, index + 1); return v
end on

on request to insert character v at index indezx at node nodeld do
let (p1,n1,v1) := ELEMENTAT(chars, index)
let (p2, no, v2) := ELEMENTAT(chars, index + 1)
broadcast (insert, (p1 + p2)/2, nodeld, v) by causal broadcast
end on



Operation-based text CRDT (2/2)

on delivering (insert, p, n, v) by causal broadcast do
chars := chars U {(p,n,v)}
end on

on request to delete character at index indexr do
let (p,n,v) := ELEMENTAT(chars, index + 1)
broadcast (delete, p,n) by causal broadcast
end on

on delivering (delete, p,n) by causal broadcast do
chars := {(p',n’,v") € chars | =(p' =pAn' =n)}
end on

» Use causal broadcast so that insertion of a character is
delivered before its deletion

» Insertion and deletion of different characters commute



That's all, folks!

Any questions? Email martin.kleppmann@cst.cam.ac.uk!

Summary:
Distributed systems are everywhere
You use them every day: e.g. web apps
Key goals: availability, scalability, performance

>
>
>
» Key problems: concurrency, faults, unbounded latency
» Key abstractions: replication, broadcast, consensus

>

No one right way, just trade-offs
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