
Distributed Systems
University of Cambridge

Computer Science Tripos, Part IB
Michaelmas term 2025/26

https://www.cst.cam.ac.uk/teaching/2526/ConcDisSys/

Dr. Martin Kleppmann
martin.kleppmann@cst.cam.ac.uk

Contents

1 Introduction 2
1.1 About distributed systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Distributed systems and computer networking . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Availability and fault tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Example: Remote Procedure Calls (RPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Models of distributed systems 15
2.1 The two generals problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 The Byzantine generals problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Describing nodes and network behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Failure detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Time, clocks, and ordering of events 27
3.1 Physical clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Clock synchronisation and monotonic clocks . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Causality and happens-before . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Logical time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Broadcast 43
4.1 Delivery order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Broadcast algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Replication 50
5.1 Manipulating remote state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Quorums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Replication using broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Replica consistency 60
6.1 Two-phase commit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Linearizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7 Consensus and total order broadcast 69
7.1 Introduction to consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.2 The Raft consensus algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8 Eventual consistency 80
8.1 Conflict resolution and CRDTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.2 Collaborative text editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.3 Wrapping up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Thank you to Jean-Pascal Billaud, Alexandre Fruchaud, Leela Venkaiah Gangavarapu, Joshua George,
David Greaves, Rishabh Jain, and Jorn Janneck for reporting mistakes in earlier versions of these notes.

This work is published under a Creative Commons BY-SA license.

https://www.cst.cam.ac.uk/teaching/2526/ConcDisSys/
https://creativecommons.org/licenses/by-sa/4.0/


1 Introduction

This 8-lecture course on distributed systems forms the second half of Concurrent and Distributed Sys-
tems. While the first half focussed on concurrency among multiple processes or threads running on
the same computer, this second half takes things further by examining systems consisting of multiple
communicating computers.

Concurrency on a single computer is also known as shared-memory concurrency, since multiple threads
running in the same process have access to the same address space. Thus, data can easily be passed
from one thread to another: a variable or pointer that is valid for one thread is also valid for another.
To coordinate, threads often use primitives such as locks, semaphores, or atomic instructions such as
compare-and-swap. Threads communicate by reading and writing to the shared memory.

This situation changes when we move to distributed systems. We still have concurrency in a distributed
system, since different computers can execute programs in parallel. However, we don’t typically have
shared memory, since each computer in a distributed system runs its own operating system with its own
address space, using the memory built into that computer. Different computers can only communicate
by sending each other messages over a network.

Two models of concurrency
Shared-memory concurrency:

One big computer

Shared memory (single address space)

CPU core 1 CPU core 2 CPU core 3

Message-passing distributed systems:

Node 1 Node 2 Node 3

Memory Memory Memory

CPU CPU CPU

Network

Slide 1

(Message-passing is sometimes also used among threads on the same machine. Conversely, limited
forms of distributed shared memory exist in some supercomputers and research systems, and there are
technologies like remote direct memory access (RDMA) that allow computers to access each others’
memory over a network. Also, databases can in some sense be regarded as shared memory, but with a
different data model compared to byte-addressable memory. However, most practical distributed systems
are based on message-passing.)

A distributed system is. . .

▶ Multiple “nodes” (computers, servers, phones, . . . )

▶ communicating via an unreliable network

▶ trying to achieve some task together

shared memory distributed system

hardware fails
⇒ all threads stop

one machine fails
⇒ others continue running

reliable communication
between CPU cores

unreliable network

locks, semaphores, atomic
instructions (e.g. CAS)

only message-passing

Slide 2

2



Each of the computers in a distributed system is called a node. Here, “computer” is interpreted quite
broadly: nodes might be desktop computers, servers in datacenters, mobile devices, internet-connected
cars, industrial control systems, sensors, or many other types of device. In this course we don’t distinguish
them: a node can be any type of communicating computing device.

In a single computer, if one component fails (e.g. one of the RAM modules develops a fault), we
normally don’t expect the computer to continue working nevertheless: it will probably just crash. Software
does not need to be written in a way that explicitly deals with faulty RAM. However, in a distributed
system we often do want to tolerate some parts of the system being broken, and for the rest to continue
working. For example, if one node has crashed (a partial failure), the remaining nodes may still be able
to continue providing the service.

1.1 About distributed systems

These notes and lectures should be self-contained, but if you would like to read up on further detail, there
are several suggested textbooks:

• Maarten van Steen and Andrew S. Tanenbaum. Distributed Systems. ISBN 978-1543057386. Free
download from https://www.distributed-systems.net/index.php/books/ds3/ (third edition, 2017).

This book gives a broad overview over a large range of distributed systems topics, with lots of
examples from practical systems.

• Christian Cachin, Rachid Guerraoui, and Lúıs Rodrigues. Introduction to Reliable and Secure
Distributed Programming. Second edition, Springer, 2011. ISBN 978-3-642-15259-7.

Ebook download for Cambridge users: https://link.springer.com/book/10.1007/978-3-642-15260-3
then click Log in → via your Institution → type University of Cambridge → log in with Raven.

This book is more advanced, going into depth on several important distributed algorithms, and
proving their correctness. Recommended if you want to explore the theory in greater depth than
this course covers.

• Martin Kleppmann. Designing Data-Intensive Applications, O’Reilly, 2017. ISBN 978-1449373320.

This book goes more in the direction of databases, but also covers a number of distributed systems
topics. It is designed for software engineers in industry working with distributed databases.

• Jean Bacon and Tim Harris. Operating Systems: Concurrent and Distributed Software Design.
Addison-Wesley, 2003. ISBN 978-0321117892.

This book provides a link to the concurrent systems half of the course, and to operating systems
topics. It is now sadly out of print, but you can find copies in many college libraries.

Where appropriate, these lecture notes also contain references to research papers and other useful
background reading (these are given in square brackets, and the details appear at the end of this docu-
ment). However, only material covered in the lectures and these notes is examinable.

Recommended reading

▶ van Steen & Tanenbaum.
“Distributed Systems”
(any ed), free ebook available

▶ Cachin, Guerraoui & Rodrigues.
“Introduction to Reliable and Secure Distributed
Programming” (2nd ed), Springer 2011

▶ Kleppmann.
“Designing Data-Intensive Applications”,
O’Reilly 2017

▶ Bacon & Harris.
“Operating Systems: Concurrent and Distributed
Software Design”, Addison-Wesley 2003

Slide 3

3

https://www.distributed-systems.net/index.php/books/ds3/
https://link.springer.com/book/10.1007/978-3-642-15260-3


As for other courses, past exam questions are available at https://www.cl.cam.ac.uk/teaching/exams/
pastpapers/t-ConcurrentandDistributedSystems.html. The syllabus, slides, and lecture notes for this course
were substantially updated and revised in 2020/21. Because of syllabus changes, the following past exam
questions are no longer applicable: 2018 P5 Q8; 2015 P5 Q8; 2014 P5 Q9 (a); 2013 P5 Q9; 2011 P5 Q8 (b).

These notes also contain exercises, which are suggested material for discussion in supervisions. Solu-
tion notes for supervisors are available from the course web page.

This course is related to several other courses in the tripos, as shown on Slide 4.

Relationships with other courses

▶ Concurrent Systems – Part IB
(every distributed system is also concurrent)

▶ Operating Systems – Part IA
(inter-process communication, scheduling)

▶ Databases – Part IA
(many modern databases are distributed)

▶ Computer Networking – Part IB Lent term
(distributed systems involve network communication)

▶ Cybersecurity – Part IB Easter term
(web and internet security)

▶ Cloud Computing – Part II
(distributed systems for processing large amounts of data)

Slide 4

There are a number of reasons for creating distributed systems. Some applications are intrinsically
distributed : if you want to send a message from your phone to your friend’s phone, that operation
inevitably requires those phones to communicate via some kind of network.

Some distributed systems do things that in principle a single computer could do, but they do it
more reliably. A single computer can fail and might need to be rebooted from time to time, but if you
are using multiple nodes, then one node can continue serving users while another node is rebooting.
Thus, a distributed system has the potential to be more reliable than a single computer, at least if it is
well-designed!

Another reason for distribution is for better performance: if a service has users all over the world,
and they all have to access a single node, then either the users in the UK or the users in New Zealand
are going to find it slow (or both). By placing nodes in multiple locations around the world, we can get
around the slowness of the speed of light by routing each user to a nearby node.

Finally, some large-scale data processing or computing tasks are simply too big to perform on a single
computer, or would be intolerably slow. For example, the Large Hadron Collider at CERN is supported
by a worldwide computing infrastructure with 1 million CPU cores for data analysis, and 2 exabytes
(2 · 1018 bytes) of storage! See https://wlcg-public.web.cern.ch/.

Why make a system distributed?

▶ It’s inherently distributed:
e.g. sending a message from your mobile phone to your
friend’s phone

▶ For better reliability:
even if one node fails, the system as a whole keeps
functioning

▶ For better performance:
get data from a nearby node rather than one halfway
round the world

▶ To solve bigger problems:
e.g. huge amounts of data, can’t fit on one machine

Slide 5

4

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/t-ConcurrentandDistributedSystems.html
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/t-ConcurrentandDistributedSystems.html
https://wlcg-public.web.cern.ch/


However, there are also downsides to distributed systems, because things can go wrong, and the
system needs to deal with such faults. The network may fail, leaving the nodes unable to communicate.

Slide 6

Another thing that can go wrong is that a node may crash, or run much slower than usual, or
misbehave in some other way (perhaps due to a software bug or a hardware failure). If we want one node
to take over when another node crashes, we need to detect that a crash has happened; as we shall see,
even that is not straightforward. Network failures and node failures can happen at any moment, without
warning.

If one component of a system stops working, we call that a fault, and many distributed systems strive
to provide fault tolerance: that is, the system as a whole continues functioning despite the fault. Dealing
with faults is what makes distributed computing fundamentally different, and often harder, compared
to programming a single computer. Some distributed system engineers believe that if you can solve a
problem on a single computer, it is basically easy! Though, in fairness to our colleagues in other areas of
computer science, this is probably not true.

Why NOT make a system distributed?

The trouble with distributed systems:

▶ Communication may fail (and we might not even know it
has failed).

▶ Processes may crash (and we might not know).

▶ All of this may happen nondeterministically and without
warning.

Fault tolerance: we want the system as a whole to continue
working, even when some parts are faulty.

This is hard.

Writing a program to run on a single computer is
comparatively easy?!

Slide 7

A practical goal in many distributed systems is to ensure the system provides consistently good
performance and availability, especially as the system grows to handle larger volumes of requests and
data (scalability). On the other hand, the theory of distributed systems focuses primarily on ensuring
that certain correctness guarantees are always met. This difference in emphasis leads us to pay attention
to different things: to achieve good performance, what matters is to optimise the operations that happen
frequently; to achieve correctness, we have to also examine the obscure edge cases that occur infrequently
(but which cannot be ruled out entirely).

5



Theory and practice

Practice:
How can we achieve good performance in the common case?

Theory:
How can we guarantee correctness in all possible scenarios?

Build a system without understanding the theory?

▶ works fine for a while. . .

▶ but one day it fails catastrophically due to some weird
edge case, and corrupts all your data

Distributed systems are notoriously hard to get right.
The theory helps us build robust systems.

Slide 8

Many practical systems have suffered severe bugs, often causing data loss, because their designers
did not understand the theoretical foundations. Distributed systems are notoriously subtle and difficult
to get right, and theory is the best tool we have for making sense of this complexity. Having a good
grasp of distributed systems theory is very valuable for making practical systems reliable and preventing
catastrophic bugs. This course therefore places greater emphasis on the theory than on the practical
techniques for achieving high performance.

1.2 Distributed systems and computer networking

The web is an example of a distributed system that you use every day.

Slide 9

The computers that make up the web play two main roles: servers host websites, and clients (web
browsers) display them. When you load a web page, your web browser sends a HTTP request message to
the appropriate server. On receiving that request, the web server sends a response message containing the
page contents to the client that requested it. These messages are normally invisible, but we can capture
and visualise the network traffic with a tool such as Charles (https://www.charlesproxy.com/), shown on
Slide 11.

6

https://www.charlesproxy.com/


Client-server example: the web

Time flows from top to bottom.

client server www.cst.cam.ac.uk

GET /teaching/2526/ConcDisSys/

<!DOCTYP
E html><ht

ml>...

Slide 10

In a URL such as https://www.cst.cam.ac.uk/teaching/2526/ConcDisSys/, the part between the //

and the following / is the hostname of the server to which the client is going to send the request
(www.cst.cam.ac.uk), and the rest (/teaching/2526/ConcDisSys/) is the path that the client asks
for in its request message. Besides the path, the request also contains some extra information, such as
the HTTP method (e.g. GET to load a page, or POST to submit a form), the version of the client software
(the user-agent), and a list of file formats that the client understands (the accept header). The response
message contains the file that was requested, and an indicator of its file format (the content-type); in the
case of a web page, this might be a HTML document, an image, a video, a PDF document, or any other
type of file.

request message response message

Slide 11

Since the requests and responses can be larger than we can fit in a single network packet, the HTTP
protocol runs on top of TCP, which breaks down a large chunk of data into a stream of small network
packets (see Slide 12), and puts them back together again at the recipient. (TCP will be discussed in
detail in the Computer Networking course.) HTTP also allows multiple requests and multiple responses
to be sent over a single TCP connection.

7

https://www.cst.cam.ac.uk/teaching/2526/ConcDisSys/
https://www.cl.cam.ac.uk/teaching/2526/CompNet/


Slide 12

Exercise 1. A TCP connection allows two nodes to send each other arbitrarily long sequences of bytes.
You decide that you want to send multiple requests and responses over the same TCP connection. What
do you need to do in order to implement such a request-response protocol using TCP?

However, when looking at this protocol from a distributed systems point of view, this detail is not
important: we treat the request as one message and the response as another message, regardless of the
number of physical network packets involved in transmitting them. This keeps things independent of the
underlying networking technology.

In the following lectures, we just assume that there is some way for one node to send a message
to another node. We don’t particularly care how messages are physically represented or encoded – the
network protocols, informally known as the bytes on the wire – because the basic principle of sending
and receiving messages remains the same, even as particular networking technologies come and go. The
“wire” may actually be radio waves, lasers, a USB thumb drive in someone’s pocket, or even hard drives
in a van.

Abstracting over networking details

Network packets are too much low-level detail.
We use a simple abstraction of communication:

node i node j
message m

Reality is much more complex:

▶ Node:
server, desktop computer, phone, car, robot, sensor, . . .

▶ Various network operators:
eduroam, home DSL, cellular data, coffee shop wifi,
submarine cable, satellite. . .

▶ Physical communication:
electric current, radio waves, laser, hard drives in a van. . .

Slide 13

8



Hard drives in a van?!

https://docs.aws.amazon.com/snowball/latest/ug/using-device.html

High latency, high bandwidth!

Slide 14

Indeed, if you want to send a very large message (think tens of terabytes), it would be slow to send
that data over the Internet, and it is in fact faster to write that data to a bunch of hard drives, load them
into a van, and to drive them to their destination. But from a distributed systems point of view, the
method of delivering the message is not important: we only see an abstract communication channel with
a certain latency (delay from the time a message is sent until it is received) and bandwidth (the volume
of data that can be transferred per unit time).

Latency and bandwidth

Latency: time until message arrives

▶ In the same datacenter: ≈ 100 µs
▶ One continent to another: ≈ 100 ms

▶ Hard drives in a van: ≈ 1 day

Bandwidth: data volume per unit time

▶ 4G cellular data: ≈ 10 Mbit/s

▶ Home broadband: ≈ 100 Mbit/s

▶ Hard drives in a van: 50 TB/box ≈ 1 Gbit/s

▶ In the same datacenter: ≈ 10 Gbit/s

(Very rough numbers, vary hugely in practice!)

Slide 15

The Computer Networking course (Part IB Lent term) focusses on the network protocols that enable
messages to get to their destination. Distributed systems build upon that facility, and instead focus on
how several nodes should coordinate in order to achieve some shared task. The design of distributed
algorithms is about deciding what messages to send, and how to process the messages when they are
received.

There are also differences in perspective. For example, TCP is often described as providing a “reli-
able” way of transferring data over a network, in the sense that if packets are lost in transit, the TCP
implementation will automatically retransmit the lost packets and put them back in the correct order at
the recipient. However, if too many packets are lost, TCP gives up and returns a timeout error. Depend-
ing on the network, such extended packet loss might be a rare occurrence, but it can certainly happen –
for example, if someone unplugs the network cable. From a theoretical point of view, it is therefore not
correct to call TCP “reliable”, since there is a nonzero risk that it fails to correctly deliver a message.

9

https://www.cl.cam.ac.uk/teaching/2526/CompNet/


Distributed Systems and Networking

networking distributed systems

how to get data from A to B
(packets, routing, . . . )

how to achieve some goal by
sending/receiving messages

“TCP is reliable”
(dropped packets are auto-
matically retransmitted)

any message can be lost
(unplug the network cable
⇒ TCP timeout)

Slide 16

1.3 Availability and fault tolerance

Availability

Online shop wants to sell stuff 24/7!
Service unavailability = downtime = losing money

Availability = uptime = fraction of time that a service is
functioning correctly

▶ “Two nines” = 99% up = down 3.7 days/year

▶ “Three nines” = 99.9% up = down 8.8 hours/year

▶ “Four nines” = 99.99% up = down 53 minutes/year

▶ “Five nines” = 99.999% up = down 5.3 minutes/year

Service-Level Objective (SLO):
e.g. “99.9% of requests in a day get a response in 200 ms”

Service-Level Agreement (SLA):
contract specifying some SLO, penalties for violation

Slide 17

From a business point of view, what usually matters most is the availability of a service, such as a
website. For example, an online shop wants to be able to sell products at any time of day or night: any
outage of the website means a lost opportunity to make money. For other services, there may even be
contractual agreements with customers requiring the service to be available. If a service is unavailable,
this can also damage the reputation of the service provider.

The availability of a service is typically measured in terms of its ability to respond correctly to
requests within a certain time. The definition of whether a service is “available” or “unavailable” can be
somewhat arbitrary: for example, if it takes 5 seconds to load a page, do we still consider that website
to be available? What if it takes 30 seconds? An hour?

Typically, the availability expectations of a service are formalised as a service-level objective (SLO),
which typically specifies the percentage of requests that need to return a correct response within a specified
timeout, as measured by a certain client over a certain period of time. A service-level agreement (SLA)
is a contract that specifies some SLO, as well as the consequences if the SLO is not met (for example,
the service provider may need to offer a refund to its customers).

Faults (such as node crashes or network interruptions) are a common cause of unavailability. In order
to increase availability, we can reduce the frequency of faults, or we can design systems to continue working
despite some of its components being faulty; the latter approach is called fault tolerance. Reducing the
frequency of faults is possible through buying higher-quality hardware and introducing redundancy, but
this approach can never reduce the probability of faults to zero. Instead, fault tolerance is the approach
taken by many distributed systems.

10



Tolerating faults also makes day-to-day operations easier: for example, if a service can tolerate one
out of three nodes being unavailable, then a software upgrade can be rolled out by installing it and
restarting one node at a time, while the remaining two nodes continue providing the service. Being able
to roll out software upgrades in this way, without clients noticing any interruption, is important for many
organisations that are continually working to improve their software, because it allows the software to be
updated frequently.

Achieving high availability: fault tolerance

Failure: system as a whole isn’t working
Fault: some part of the system isn’t working

▶ Node fault: crash, deadlock, . . .

▶ Network fault: dropping or significantly delaying messages

To increase availability: have fewer faults, or tolerate faults

Fault tolerance:
system as a whole continues working, despite faults
(up to some maximum number of faults)

Single point of failure (SPOF):
node/network link whose fault leads to failure

Fault tolerance is also useful for software updates:
reboot one node at a time while continuing to serve users

Slide 18

Fault tolerance is always relative to the maximum number of faults that can be tolerated: for example,
some distributed algorithms are able to make progress provided that fewer than half of the nodes have
crashed, but they stop working if more than half the nodes crash. It does not make sense to want to
tolerate an unlimited number of faults: if all nodes crash and don’t recover, then no algorithm will be
able to get any work done, no matter how clever it might be.

In some systems, a single component becoming faulty would cause an outage of the entire system.
Such a component is called a single point of failure (SPOF), and fault-tolerant generally systems try to
avoid having any SPOF. For example, the Internet is designed to have no SPOF: there is no one server
or router whose destruction would bring down the entire Internet (although the loss of some components,
such as key intercontinental fibre links, does cause noticeable disruption).

For safety-critical applications, such as air-traffic control systems, it is undoubtedly important to
invest in good fault-tolerance mechanisms. However, it is not always the case that higher availability
is better. Reaching extremely high availability requires a highly focussed engineering effort, and often
conservative design choices. For example, the old-fashioned fixed-line telephone network is designed for
“five nines” availability, but the downside of this focus on availability is that it has been very slow to
evolve. Most Internet services do not even reach four nines because of diminishing returns: beyond some
point, the additional cost of achieving higher availability exceeds the cost of occasional downtime, so it
is economically rational to accept a certain amount of downtime.

1.4 Example: Remote Procedure Calls (RPC)

Besides the web, another example of an everyday distributed system is when you buy something online
using a credit/debit card. When you enter your card number in some online shop, that shop will send a
payment request over the Internet to a service that specialises in processing card payments. The payments
service in turn communicates with a card network such as Visa or MasterCard, which communicates with
the bank that issued your card in order to take the payment. For the programmers who are implementing
the online shop, the code for processing the payment may look something like the code on Slide 20.

11



Client-server example: online payments

online shop payments service

charge £3.99 to credit card 1234. . .

success

Slide 19

Remote Procedure Call (RPC) example

// Online shop handling customer's card details

Card card = new Card();

card.setCardNumber("1234 5678 8765 4321");

card.setExpiryDate("10/2024");

card.setCVC("123");

Result result = paymentsService.processPayment(card,

3.99, Currency.GBP);

if (result.isSuccess()) {

fulfilOrder();

}

Implementation of this function is on another node!

Slide 20

Calling the processPayment function looks like calling any other function, but in fact, what is hap-
pening behind the scenes is that the shop is sending a request to the payments service, waiting for a
response, and then returning the response it received. The actual implementation of processPayment –
the logic that communicates with the card network and the banks – does not exist in the code of the
shop: it is part of the payments service, which is another program running on another node belonging to
a different company.

This type of interaction, where code on one node appears to call a function on another node, is called
a Remote Procedure Call (RPC). In Java, it is called Remote Method Invocation (RMI). The software
that implements RPC is called an RPC framework or middleware. (Not all middleware is based on RPC;
there is also middleware that uses different communication models.)

When an application wishes to call a function on another node, the RPC framework provides a stub
in its place. The stub has the same type signature as the real function, but instead of executing the
real function, it encodes the function arguments in a message and sends that message to the remote
node, asking for that function to be called. The process of encoding the function arguments is known
as marshalling. In the example on Slide 21, a JSON encoding is used for marshalling, but various other
formats are also used in practice.

12



online shop RPC client RPC server payment service

processPayment() stub

marshal args
unmarshal args

m1

processPayment()
implementation

marshal result
unmarshal result

m2

function returns

waiting

m1 =

{
"request": "processPayment",

"card": {

"number": "1234567887654321",

"expiryDate": "10/2024",

"CVC": "123"

},

"amount": 3.99,

"currency": "GBP"

}

m2 =

{
"result": "success",

"id": "XP61hHw2Rvo"

}

Slide 21

The sending of the message from the RPC client to the RPC server may happen over HTTP (in which
case this is also called a web service), or one of a range of different network protocols may be used. On
the server side, the RPC framework unmarshals (decodes) the message and calls the desired function
with the provided arguments. When the function returns, the same happens in reverse: the function’s
return value is marshalled, sent as a message back to the client, unmarshalled by the client, and returned
by the stub. Thus, to the caller of the stub, it looks as if the function had executed locally.

Remote Procedure Call (RPC)

Ideally, RPC makes a call to a remote function look the same
as a local function call.

“Location transparency”:
system hides where a resource is located.

In practice. . .

▶ what if the service crashes during the function call?

▶ what if a message is lost?

▶ what if a message is delayed?

▶ if something goes wrong, is it safe to retry?

Slide 22

The difficulty with RPC is that many things can go wrong, as networks and nodes might fail. If the
client sends an RPC request but receives no response, it doesn’t know whether or not the server received
and processed the request. It could resend the request if it doesn’t hear back for a while, but that might
cause the request to be performed more than once (e.g. charging a credit card twice). Even if we retry,
there is no guarantee that the retried messages will get through either. Waiting forever is not a good
approach, so in practice the client will have to give up after some timeout.

Exercise 2. How is RPC different from a local function call? Is location transparency achievable?

Over the decades many variants of RPC have been developed, with the goal of making it easier to
program distributed systems. This includes object-oriented middleware such as CORBA in the 1990s.
However, the underlying distributed systems challenges have remained the same [Waldo et al., 1994].

13



RPC history

▶ SunRPC/ONC RPC (1980s, basis for NFS)

▶ CORBA: object-oriented middleware, hot in the 1990s

▶ Microsoft’s DCOM and Java RMI (similar to CORBA)

▶ SOAP/XML-RPC: RPC using XML and HTTP (1998)

▶ Thrift (Facebook, 2007)

▶ gRPC (Google, 2015)

▶ REST (often with JSON)

▶ JavaScript in web browsers making server requests
(XMLHttpRequest, AJAX, fetch API, . . . )

Slide 23

Today, the most common form of RPC is implemented using JSON data sent over HTTP. A popular
set of design principles for such HTTP-based APIs is known as representational state transfer or REST
[Fielding, 2000], and APIs that adhere to these principles are called RESTful. These principles include:

• communication is stateless (each request is self-contained and independent from other requests),

• resources (objects that can be inspected and manipulated) are represented by URLs, and

• the state of a resource is updated by making a HTTP request with a standard method type, such
as POST or PUT, to the appropriate URL.

The popularity of REST is due to the fact that JavaScript code running in a web browser can easily
make this type of HTTP request, as shown on Slide 24. In modern websites it is very common to use
JavaScript to make HTTP requests to a server without reloading the whole page.

RPC/REST in JavaScript

let args = {amount: 3.99, currency: 'GBP', /*...*/ };

let request = {

method: 'POST',

body: JSON.stringify(args),

headers: {'Content-Type': 'application/json'}

};

fetch('https://example.com/payments', request)

.then((response) => {

if (response.ok) success(response.json());

else failure(response.status); // server error

})

.catch((error) => {

failure(error); // network error

});

Slide 24

The code on Slide 24 takes the arguments args, marshals them to JSON using JSON.stringify(),
and then sends them to the URL https://example.com/payments using a HTTP POST request. There
are three possible outcomes: either the server returns a status code indicating success (in which case
we unmarshal the response using response.json()), or the server returns a status code indicating an
error, or the request fails because no response was received from the server (most likely due to a network
interruption). The code calls either the success() or the failure() function in each of these cases.

Even though RESTful APIs and HTTP-based RPC originated on the web (where the client is
JavaScript running in a web browser), they are now also commonly used with other types of client
(e.g. mobile apps), or for server-to-server communication.

14



RPC in enterprise systems

“Service-oriented architecture” (SOA) / “microservices”:

splitting a large software application into multiple services
(on multiple nodes) that communicate via RPC.

(Server-to-server RPC within the same company)

Different services implemented in different languages:

▶ interoperability: datatype conversions

▶ Interface Definition Language (IDL):
language-independent API specification

Slide 25

Such server-to-server RPC is especially common in large enterprises, whose software systems are too
large and complex to run in a single process on a single machine. To manage this complexity, the system
is broken down into multiple services, which are developed and administered by different teams and
which may even be implemented in different programming languages. RPC frameworks facilitate the
communication between these services.

When different programming languages are used, the RPC framework needs to convert datatypes
such that the caller’s arguments are understood by the code being called, and likewise for the function’s
return value. A typical solution is to use an Interface Definition Language (IDL) to provide language-
independent type signatures of the functions that are being made available over RPC. From the IDL,
software developers can then automatically generate marshalling/unmarshalling code and RPC stubs for
the respective programming languages of each service and its clients. Slide 26 shows an example of the
IDL used by gRPC, called Protocol Buffers. The details of the language are not important for this course.

gRPC IDL example

message PaymentRequest {
message Card {

string cardNumber = 1;
int32 expiryMonth = 2;
int32 expiryYear = 3;
int32 CVC = 4;

}
enum Currency { GBP = 1; USD = 2; }

Card card = 1;
int64 amount = 2;
Currency currency = 3;

}

message PaymentStatus {
bool success = 1;
string errorMessage = 2;

}

service PaymentService {
rpc ProcessPayment(PaymentRequest) returns (PaymentStatus) {}

}

Slide 26

2 Models of distributed systems

A system model captures our assumptions about how nodes and the network behave. It is an abstract
description of their properties, which can be implemented by various technologies in practice. In this
section we will look at two classic thought experiments in distributed systems: the two generals problem
and the Byzantine generals problem.

15



2.1 The two generals problem

In the two generals problem [Gray, 1978], we imagine two generals, each leading an army, who want to
capture a city. The city’s defences are strong, and if only one of the two armies attacks, the army will be
defeated. However, if both armies attack at the same time, they will successfully capture the city.

The two generals problem

army 1 army 2

city

attack? attack?

messengers

army 1 army 2 outcome

does not attack does not attack nothing happens

attacks does not attack army 1 defeated

does not attack attacks army 2 defeated

attacks attacks city captured

Desired: army 1 attacks if and only if army 2 attacks

Slide 27

Thus, the two generals need to coordinate their attack plan. This is made difficult by the fact that
the two armies are camped some distance apart, and they can only communicate by messenger. The
messengers must pass through territory controlled by the city, and so they are sometimes captured.
Thus, a message sent by one general may or may not be received by the other general, and the sender
does not know whether their message got through, except by receiving an explicit reply from the other
party. If a general does not receive any messages, it is impossible to tell whether this is because the other
general didn’t send any messages, or because all messengers were captured.

The Romeo and Juliet problem

Romeo Juliet

forest

meet at? meet at?

messenger doves

Romeo Juliet outcome

does not go does not go nothing happens

goes does not go Romeo gets desperate

does not go goes Juliet gets desperate

goes goes happy ever after

Desired: Romeo goes to the forest if and only if Juliet goes

Slide 28

I am not a fan of this militaristic analogy, but unfortunately the problem is well known under the
name “two generals problem”. Here is an alternative formulation, thanks to Annette Bieniusa: Romeo
and Juliet want to secretly meet in the forest and need to agree on a date. But if only one of them arrives
at the meeting place, he or she becomes desperate and a tragedy occurs. It is therefore essential that
they both go to the forest on the same date. Unfortunately, their way of communication via doves is not
very reliable. The doves often get distracted or lost or shot. . .

16

https://twitter.com/anne_biene/status/1386975750671187970


Reaching agreement with message loss

Romeo Juliet

meet 10 Nov, okay?

10 Nov agreed!

From Romeo’s point of view, this is indistinguishable from:

Romeo Juliet

meet 10 Nov, okay?

Slide 29

What protocol should Romeo and Juliet (or the two generals) use to agree on a plan? For each
participant there are two options: either they promise to go ahead with the meeting in any case (even
if no response is received), or they wait for an acknowledgement before committing to meet. In the first
case, the person who promises to go ahead risks being alone at the meeting. In the second case, the person
who awaits acknowledgement shifts the problem to the other person, who must now decide whether to
commit to meeting (and risk being alone) or wait for an acknowledgement of the acknowledgement.

How should Romeo and Juliet decide?

1. Romeo always goes into the forest, even if no response is
received?
▶ Send lots of messages to increase probability that one

will get through
▶ If all are lost, Juliet does not know about the meeting,

so Romeo is alone

2. Romeo only goes into the forest if positive response from
Juliet is received?
▶ Now Romeo is safe
▶ But Juliet knows that Romeo will only go if Juliet’s

response gets through
▶ Now Juliet is in the same situation as Romeo in option 1

No common knowledge: the only way of knowing
something is to communicate it

Slide 30

The problem is that no matter how many messages are exchanged, neither Romeo nor Juliet can ever
be certain that the other one will also turn up at the same time. A repeated sequence of back-and-forth
acknowledgements can build up gradually increasing confidence that they are in agreement, but it can
be proved that they cannot reach certainty by exchanging any finite number of messages.

This thought experiment demonstrates that in a distributed system, there is no way for one node to
have certainty about the state of another node. The only way how a node can know something is by
having that knowledge communicated in a message. On a philosophical note, this is perhaps similar to
communication between humans: we have no telepathy, so the only way for someone else to know what
you are thinking is by communicating it (through speech, writing, body language, etc).

As a practical example of the two generals problem, Slide 31 adapts the model from Slide 27 to the
application of paying for goods in an online shop. The shop and the credit card payment processing
service communicate per RPC, and some of these messages may be lost. Nevertheless, the shop wants to
ensure that it dispatches the goods only if they are paid for, and it only charges the customer card if the
goods are dispatched.

17



The two generals problem applied

online shop payments service

customer

dispatch goods charge credit card

RPC

online shop payments service outcome

does not dispatch does not charge nothing happens

dispatches does not charge shop loses money

does not dispatch charges customer complaint

dispatches charges everyone happy

Desired: online shop dispatches if and only if payment made

Slide 31

In practice, the online shopping example does not exactly match the two generals problem: in this
scenario, it is safe for the payments service to always go ahead with a payment, because if the shop
ends up not being able to dispatch the goods, it can refund the payment. The fact that a payment
is something that can be undone (unlike an army being defeated, or Romeo/Juliet suffering a tragedy)
makes the problem solvable. If the communication between shop and payment service is interrupted, the
shop can wait until the connection is restored, and then query the payments service to find out the status
of any transactions whose outcome was unknown.

Two generals ̸= online shopping

Analysing more carefully, we find that online shopping is not
like the two generals after all.

Online shopping can use the following protocol:

1. Try to charge customer’s credit card

2. If charge was successful, try dispatching goods

3. If dispatch was unsuccessful (e.g. out of stock):
refund the credit card payment

The fact that one of the actions (payment) can be undone
makes the problem solveable.

Defeat of an army cannot be undone.
Dispatching goods cannot be undone.

Slide 32

2.2 The Byzantine generals problem

The Byzantine generals problem [Lamport et al., 1982] has a similar setting to the two generals problem.
Again we have armies wanting to capture a city, though in this case there can be three or more. Again
generals communicate by messengers, although this time we assume that if a message is sent, it is always
delivered correctly.

18



The Byzantine generals problem

army 1 army 2

army 3

city

attack? attack?

attack?

messengers

messengers messengers

Problem: some of the generals might be traitors

Slide 33

The challenge in the Byzantine setting is that some generals might be “traitors”: that is, they might
try to deliberately and maliciously mislead and confuse the other generals. We call the traitors malicious,
and the others honest. One example of such malicious behaviour is shown on Slide 34: here, general 3
receives two contradictory messages from generals 1 and 2. General 1 tells general 3 to attack, whereas
general 2 claims that general 1 ordered a retreat. It is impossible for general 3 to determine whether
general 2 is lying (the first case), or whether general 2 is honest while general 1 is issuing contradictory
orders (the second case).

Generals who might lie

general 1 general 2 general 3
attack!

attack!
general 1 said retreat!

From general 3’s point of view, this is indistinguishable from:

general 1 general 2 general 3
attack!

retreat!
general 1 said retreat!

Slide 34

The honest generals don’t know who the malicious generals are, but the malicious generals may
collude and secretly coordinate their actions. We might even assume that all of the malicious generals
are controlled by an evil adversary. The Byzantine generals problem is then to ensure that all honest
generals agree on the same plan (e.g. whether to attack or to retreat). By definition, it is impossible
to specify what the malicious generals are going to do, so the best we can manage is to get the honest
generals to agree.

This is difficult: in fact, in a system with malicious generals and unpredictable communication delays,
it can be proved that the Byzantine generals problem can be solved only if strictly fewer than one third
of the generals are malicious [Dwork et al., 1988, Theorem 4.4]. That is, in a system with 3f +1 generals,
no more than f may be malicious. For example, a system with 4 generals can tolerate f = 1 malicious
general, and a system with 7 generals can tolerate f = 2.

19



The Byzantine generals problem

▶ Each general is either malicious or honest

▶ Up to f generals might be malicious

▶ Honest generals don’t know who the malicious ones are

▶ The malicious generals may collude

▶ Nevertheless, honest generals must agree on plan

▶ Theorem: need 3f + 1 generals in total to tolerate f
malicious generals (i.e. < 1

3
may be malicious)

▶ Cryptography (digital signatures) helps – but problem
remains hard

Slide 35

The problem is made somewhat easier if generals use cryptography (digital signatures) to prove who
said what: for example, this would allow general 2 to prove to general 3 what general 1’s order was. We
will not go into details of digital signatures here, as they are covered in the Part II Cryptography course.
However, even with signatures, the Byzantine generals problem remains challenging.

Is the Byzantine generals problem of practical relevance? Real distributed systems do often involve
complex trust relationships. For example, a customer needs to trust an online shop to actually deliver the
goods they ordered, although they can dispute the payment via their bank if the goods never arrive or
if they get charged too much. But if an online shop somehow allowed customers to order goods without
paying for them, this weakness would no doubt be exploited by fraudsters, so the shop must assume
that customers are potentially malicious. On the other hand, for RPC between services belonging to the
shop, running in the same datacenter, one service can probably trust the other services run by the same
company. The payments service doesn’t fully trust the shop, since someone might set up a fraudulent
shop or use stolen credit card numbers, but the shop probably does trust the payments service. And so on.
And in the end, we want the customer, the online shop, and the payments service to agree on any order
that is placed. The Byzantine generals problem is a simplification of such complex trust relationships,
but it is a good starting point for studying systems in which some participants might behave maliciously.

Trust relationships and malicious behaviour

online shop payments service

customer

order

agree? agree?

agree?

RPC

RPC RPC

Who can trust whom?

Slide 36

In distributed systems, some systems explicitly deal with the possibility that some nodes may be
controlled by a malicious actor, and such systems are called Byzantine fault tolerant. This idea has
become popular in recent years in the context of blockchains and cryptocurrencies, which aim to provide
certain guarantees even if some of the participants of the system are actively trying to cheat or undermine
it. We will return to this topic in Section 5.3.

Before we move on, a brief digression about the origin of the word “Byzantine”. The term comes from
the Byzantine empire, named after its capital city Byzantium or Constantinople, which is now Istanbul

20



in Turkey. There is no historical evidence that the generals of the Byzantine empire were any more
prone to intrigue and conspiracy than those elsewhere. Rather, the word Byzantine had been used in the
sense of “excessively complicated, bureaucratic, devious” long before Leslie Lamport adopted the word
to describe the Byzantine generals problem; the exact etymology is unclear.

The Byzantine empire (650 CE)
Byzantium/Constantinople/Istanbul

Source: https://commons.wikimedia.org/wiki/File:Byzantiumby650AD.svg

“Byzantine” has long been used for “excessively complicated,
bureaucratic, devious” (e.g. “the Byzantine tax law”)

Slide 37

2.3 Describing nodes and network behaviour

When designing a distributed algorithm, a system model is how we specify our assumptions about what
faults may occur.

System models

We have seen two thought experiments:

▶ Two generals problem: a model of networks

▶ Byzantine generals problem: a model of node behaviour

In real systems, both nodes and networks may be faulty!

Capture assumptions in a system model consisting of:

▶ Network behaviour (e.g. message loss)

▶ Node behaviour (e.g. crashes)

▶ Timing behaviour (e.g. latency)

Choice of models for each of these parts.

Slide 38

Let’s start with the network. No network is perfectly reliable: even in carefully engineered systems
with redundant network links, things can go wrong [Bailis and Kingsbury, 2014]. Someone might ac-
cidentally unplug the wrong network cable. Sharks and cows have both been shown to cause damage
and interruption to long-distance networks (see links on Slide 39). Or a network may be temporarily
overloaded, perhaps by accident or perhaps due to a denial-of-service attack. Any of these can cause
messages to be lost.

21



Networks are unreliable

In the sea, sharks bite fibre optic cables
https://www.theguardian.com/technology/2014/aug/14/

google-undersea-fibre-optic-cables-shark-attacks

On land, cows step on the cables
https://twitter.com/uhoelzle/status/1263333283107991558

Slide 39

In a system model, we take a more abstract view, which saves us from the details of worrying about
sharks and cows. Most distributed algorithms assume that the network provides bidirectional message-
passing between pairs of nodes, also known as point-to-point or unicast communication. Real networks do
sometimes allow broadcast or multicast communication (sending a packet to many recipients at the same
time, which is used e.g. for discovering a printer on a local network), but broadly speaking, assuming
unicast-only is a good model of the Internet today. Later, in Section 4, we will explore how to implement
broadcast on top of unicast communication.

We can then choose how reliable we want to assume these links to be. Most algorithms assume one
of the three choices listed on Slide 40.

System model: network behaviour

Assume bidirectional point-to-point communication between
two nodes, with one of:

▶ Reliable (perfect) links:
A message is received if and only if it is sent.
Messages may be reordered.

▶ Fair-loss links:
Messages may be lost, duplicated, or reordered.
If you keep retrying, a message eventually gets through.

▶ Arbitrary links (active adversary):
A malicious adversary may interfere with messages
(eavesdrop, modify, drop, spoof, replay).

Network partition: some links dropping/delaying all
messages for extended period of time

retry +
dedup

TLS

Slide 40

Interestingly, it is possible to convert some types of link into others. For example, if we have a fair-loss
link, we can turn it into a reliable link by continually retransmitting lost messages until they are finally
received, and by filtering out duplicated messages on the recipient side. The fair-loss assumption means
that any network partition (network interruption) will last only for a finite period of time, but not forever.
Provided that the sender does not crash, we can guarantee that every message will eventually be received
by retrying indefinitely. However, if the sender crashes before the message gets through, it can no longer
retry, and so the message will be lost.

Of course, any messages sent during a network partition will only be received after the interruption is
repaired, which may take a long time, but the definitions on Slide 40 do not say anything about network
delay or latency. We will get to that topic on Slide 42.

The TCP protocol, which we discussed briefly in Section 1.2, performs this kind of retry and dedu-
plication at the network packet level. However, TCP is usually configured with a timeout, so it will give
up and stop retrying after a certain time, typically on the order of one minute. To overcome network
partitions that last for longer than this duration, a separate retry and deduplication mechanism needs to

22



be implemented in addition to that provided by TCP.

Exercise 3. Say you have a client-server RPC system in which a client repeats an RPC request until it
receives a response. How could the server deduplicate the requests?

An arbitrary link is an accurate model for communication over the Internet: whenever your com-
munication is routed through a network (be it a coffee shop wifi or an Internet backbone network), the
operator of that network can potentially interfere with and manipulate your network packets in arbitrary
ways. Someone who manipulates network traffic is also known as an active adversary. Fortunately, it
is almost possible to turn an arbitrary link into a fair-loss link using cryptographic techniques. The
Transport Layer Security (TLS) protocol, which provides the “s” for “secure” in https://, prevents an
active adversary from eavesdropping, modifying, spoofing, or replaying traffic.

The only thing that TLS cannot prevent is the adversary dropping (blocking) communication. Thus,
an arbitrary link can be converted into a fair-loss link only if we assume that the adversary does not
block communication forever. In some networks, it might be possible to route around the interrupted
network link, but this is not always the case.

Next, we consider different options for how nodes might behave.

System model: node behaviour

Each node executes a specified algorithm,
assuming one of the following:

▶ Crash-stop (fail-stop):
A node is faulty if it crashes (at any moment).
After crashing, it stops executing forever.

▶ Crash-recovery (fail-recovery):
A node may crash at any moment, losing its in-memory
state. It may resume executing sometime later.
Data stored on disk survives the crash.

▶ Byzantine (fail-arbitrary):
A node is faulty if it deviates from the algorithm.
Faulty nodes may do anything, including crashing or
malicious behaviour.

A node that is not faulty is called “correct”

Slide 41

In the crash-stop model, we assume that after a node crashes, it never recovers. This is a reasonable
model for an unrecoverable hardware fault, or when a phone is dropped in the river. With a software
crash, the crash-stop model might seem unrealistic, because we can just restart the node, after which it
will recover. Nevertheless, some algorithms assume a crash-stop model, since that makes the algorithm
simpler than explicitly handling recovery after a crash. In this case, a node that crashes and recovers
would have to re-join the system as a new node.

Alternatively, the crash-recovery model explicitly allows nodes to restart and resume processing after
a crash. When a node crashes and restarts, we assume that all of its in-memory state is lost, but any
data it has stored persistently on disk is preserved. The model makes no assumptions about how long it
may take for a crashed node to recover, and it is possible for a crashed node to never recover.

Finally, the Byzantine model is the most general model of node behaviour: as in the Byzantine
generals problem, a faulty node may not only crash, but also deviate from the specified algorithm in
arbitrary ways, including exhibiting malicious behaviour. A bug in the implementation of a node could
also be classed as a Byzantine fault. However, if all of the nodes are running the same software, they
will all have the same bug, and so any algorithm that is predicated on less than one third of nodes being
Byzantine-faulty will not be able to tolerate such a bug. In principle, we could try using several different
implementations of the same algorithm, but this is rarely a practical option. We therefore usually reserve
the term Byzantine when referring to deliberate deviation from the protocol, and not for bugs.

In the case of the network, it was possible to convert one model to another using generic protocols.
This is not the case with the different models of node behaviour. For instance, an algorithm designed for
a crash-recovery system model may look very different from a Byzantine algorithm.

23



System model: timing assumptions

Assume one of the following for network and nodes:

▶ Synchronous:
Message latency no greater than a known upper bound.
Nodes execute algorithm at a known speed.

▶ Partially synchronous:
The system is asynchronous for some finite (but
unknown) periods of time, synchronous otherwise.

▶ Asynchronous:
Messages can be delayed arbitrarily.
Nodes can pause execution arbitrarily.
No timing guarantees at all.

Note: other parts of computer science use the terms
“synchronous” and “asynchronous” differently.

Slide 42

The third part of a system model is the synchrony assumption, which is about timing. The three
choices we can make here are synchronous, asynchronous, or partially synchronous [Dwork et al., 1988].

Note: confusingly, these terms are also used with a different meaning in other contexts. For example,
in the context of RPC and I/O operations, “synchronous” often means “the caller blocks/waits for
the operation to complete”, and “asynchronous” means “the caller continues executing after issuing a
request, without waiting for the result”. It’s unfortunate that the same words are used with different
meanings, but since these terms are widely used in the literature, we will stick with the standard
terminology.

A synchronous system is what we would love to have: a message sent over the network never takes
longer than some known maximum latency, and nodes always execute their algorithm at a predictable
speed. Many problems in distributed computing are much easier if you assume a synchronous system.
And it is tempting to assume synchrony, because networks and nodes are well-behaved most of the time,
and so this assumption is often true.

Unfortunately, most of the time is not the same as always, and algorithms designed for a synchronous
model often fail catastrophically if the assumptions of bounded latency and bounded execution speed are
violated, even just for a short while, and even if this happens rarely. And in practical systems, there are
many reasons why network latency or execution speed may sometimes vary wildly, see Slide 43.

Violations of synchrony in practice

Networks usually have quite predictable latency, which can
occasionally increase:

▶ Message loss requiring retry

▶ Congestion/contention causing queueing

▶ Network/route reconfiguration

Nodes usually execute code at a predictable speed, with
occasional pauses:

▶ Operating system scheduling issues, e.g. priority inversion

▶ Stop-the-world garbage collection pauses

▶ Page faults, swap, thrashing

Real-time operating systems (RTOS) provide scheduling
guarantees, but most distributed systems do not use RTOS

Slide 43

The other extreme is an asynchronous model, in which we make no timing assumptions at all: we
allow messages to be delayed arbitrarily in the network, and we allow arbitrary differences in nodes’
processing speeds (for example, we allow one node to pause execution while other nodes continue running
normally). Algorithms that are designed for an asynchronous model are typically very robust, because
they are unaffected by any temporary network interruptions or spikes in latency.

24



Unfortunately, some problems in distributed computing are impossible to solve in an asynchronous
model, and therefore we have the partially synchronous model as a compromise. In this model, we
assume that our system is synchronous and well-behaved most of the time, but occasionally it may flip
into asynchronous mode in which all timing guarantees are off, and this can happen unpredictably. The
partially synchronous model is good for many practical systems, but using it correctly requires care.

There are many reasons why a system may violate synchrony assumptions. We have already talked
about latency increasing without bound if messages are lost and retransmitted, especially if we have to
wait for a network partition to be repaired before the messages can get through. Another reason for
latency increases in a network is congestion resulting in queueing of packets in switch buffers. Network
reconfiguration can also cause large delays: even within a single datacenter, there have been documented
cases of packets being delayed for more than a minute [Imbriaco, 2012].

We might expect that the speed at which nodes execute their algorithms is constant: after all, an
instruction generally takes a fixed number of CPU clock cycles, and the clock speed doesn’t vary much.
However, even on a single node, there are many reasons why a running program may unexpectedly get
paused for significant amounts of time. Scheduling in the operating system can preempt a running thread
and leave it paused while other programs run, especially on a machine under heavy load. A real problem
in memory-managed languages such as Java is that when the garbage collector runs, it needs to pause all
running threads from time to time (this is known as a stop-the-world garbage collection pause). On large
heaps, such pauses can be as long as several minutes [Thompson, 2013]! Page faults are another reason
why a thread may get suspended, especially when there is not much free memory left.

Threads can and will get preempted even at the most inconvenient moments, anywhere in a program.
In a distributed system, this is particularly problematic, because for one node, time appears to “stand
still” while it is paused, and during this time all other nodes continue executing their algorithms normally.
Other nodes may even notice that the paused node is not responding, and assume that it has crashed.
After a while, the paused node resumes processing, without even realising that it was paused for a
significant period of time.

Note that these execution pauses are not the same as a crash and restart as discussed on Slide 41.
When an executing process or thread is paused, it normally does not notice it has been paused, unless
it regularly checks the system clock to measure elapsed time. On the other hand, a restart is explicitly
handled by the program, since its in-memory state is lost during the crash, and on restart it may load
its persistent state from disk.

Combined with the many reasons for variable network latency, this means that in practical systems,
it is very rarely safe to assume a synchronous system model. Most distributed algorithms need to be
designed for the asynchronous or partially synchronous model.

System models summary

For each of the three parts, pick one:

▶ Network:
reliable, fair-loss, or arbitrary

▶ Nodes:
crash-stop, crash-recovery, or Byzantine

▶ Timing:
synchronous, partially synchronous, or asynchronous

This is the basis for any distributed algorithm.
If your assumptions are wrong, all bets are off!

Slide 44

2.4 Failure detectors

As highlighted on Slide 5, one reason for building distributed systems is to achieve higher reliability than
is possible with a single computer. We will now explore this idea further in the light of the system models
we have discussed.

25



The first step towards tolerating faults is to detect faults, which is often done with a failure detector.
(“Fault detector” would be a more logical name, but “failure detector” is the conventional term.) A
failure detector usually detects crash faults. Byzantine faults are not always detectable, although in some
cases Byzantine behaviour does leave evidence that can be used to identify and exclude malicious nodes.

Failure detectors

Failure detector:
algorithm that detects whether another node is faulty

Perfect failure detector:
labels a node as faulty if and only if it has crashed

Typical implementation for crash-stop/crash-recovery:
send message, await response, label node as crashed if no
reply within some timeout

Problem:
cannot tell the difference between crashed node, temporarily
unresponsive node, lost message, and delayed message

Slide 45

In most cases, a failure detector works by periodically sending messages to other nodes, and labelling
a node as crashed if no response is received within the expected time. Ideally, we would like a timeout
to occur if and only if the node really has crashed (this is called a perfect failure detector). However, the
two generals problem tells us that this is not a totally accurate way of detecting a crash, because the
absence of a response could also be due to message loss or delay.

A perfect timeout-based failure detector exists only in a synchronous crash-stop system with reliable
links; in a partially synchronous system, a perfect failure detector does not exist. Moreover, in an
asynchronous system, no timeout-based failure exists, since timeouts are meaningless in the asynchronous
model. However, there is a useful failure detector that exists in partially synchronous systems: the
eventually perfect failure detector [Chandra and Toueg, 1996].

Failure detection and partial synchrony

Perfect timeout-based failure detector exists only in a
synchronous crash-stop system with reliable links.

Eventually perfect failure detector:

▶ May temporarily label a node as crashed,
even though it is correct

▶ May temporarily label a node as correct,
even though it has crashed

▶ But eventually, labels a node as crashed
if and only if it has crashed

Reflects fact that detection is not instantaneous, and we may
have spurious timeouts

Slide 46

We will see later how to use such a failure detector to design fault-tolerance mechanisms and to
automatically recover from node crashes. Using such algorithms it is possible to build systems that are
highly available.

Exercise 4. Reliable network links allow messages to be reordered. Give pseudocode for an algorithm
that strengthens the properties of a reliable point-to-point link such that messages are received in the order
they were sent (this is called a FIFO link), assuming an asynchronous crash-stop system model.

26



Exercise 5. How do we need to change the algorithm from Exercise 4 if we assume a crash-recovery
model instead of a crash-stop model?

3 Time, clocks, and ordering of events

Let’s start with a riddle, which will be resolved later in this lecture.

A detective story

In the night from 30 June to 1 July 2012 (UK time), many
online services and systems around the world crashed
simultaneously.

Servers locked up and stopped responding.

Some airlines could not process any reservations or check-ins
for several hours.

What happened?

Slide 47

In this lecture we will look at the concept of time in distributed systems. We have already seen that
our assumptions about timing form a key part of the system model that distributed algorithms rely on.
For example, timeout-based failure detectors need to measure time to determine when a timeout has
elapsed. Operating systems rely extensively on timers and time measurements in order to schedule tasks,
keep track of CPU usage, and many other purposes. Applications often want to record the time and date
at which events occurred: for example, when debugging an error in a distributed system, timestamps are
helpful for debugging, since they allow us to reconstruct which things happened around the same time
on different nodes. All of these require more or less accurate measurements of time.

Clocks and time in distributed systems

Distributed systems often need to measure time, e.g.:

▶ Schedulers, timeouts, failure detectors, retry timers

▶ Performance measurements, statistics, profiling

▶ Log files & databases: record when an event occurred

▶ Data with time-limited validity (e.g. cache entries)

▶ Determining order of events across several nodes

We distinguish two types of clock:

▶ physical clocks: count number of seconds elapsed

▶ logical clocks: count events, e.g. messages sent

NB. Clock in digital electronics (oscillator)
̸= clock in distributed systems (source of timestamps)

Slide 48

3.1 Physical clocks

Physical clocks measure the time in seconds. They include analogue/mechanical clocks based on pendu-
lums or similar mechanisms, and digital clocks based e.g. on a vibrating quartz crystal. Quartz clocks
are found in most wristwatches, in every computer and mobile phone, in microwave ovens that display

27



the time, and many other everyday objects. Physical clocks are sometimes also called wall clocks, even
though they need not be attached to an actual wall.

Quartz clocks

▶ Quartz crystal
laser-trimmed to
mechanically resonate at a
specific frequency

▶ Piezoelectric effect:
mechanical force ⇔
electric field

▶ Oscillator circuit produces
signal at resonant
frequency

▶ Count number of cycles to
measure elapsed time

Slide 49

Quartz clocks are cheap, but they are not totally accurate. Due to manufacturing imperfections, some
clocks run slightly faster than others. Moreover, the oscillation frequency varies with the temperature.
Typical quartz clocks are tuned to be quite stable around room temperature, but significantly higher or
lower temperatures slow down the clock. The rate by which a clock runs fast or slow is called drift.

Quartz clock error: drift

▶ One clock runs slightly fast, another slightly slow

▶ Drift measured in parts per million (ppm)

▶ 1 ppm = 1 microsecond/second = 86 ms/day = 32 s/year

▶ Most computer clocks correct within ≈ 50 ppm

Temperature
significantly
affects drift

Slide 50

When greater accuracy is required, atomic clocks are used. These clocks are based on quantum-
mechanical properties of certain atoms, such as caesium or rubidium. In fact, the time unit of one second
in the International System of Units (SI) is defined to be exactly 9,192,631,770 periods of a particular
resonant frequency of the caesium-133 atom.

28



Atomic clocks

▶ Caesium-133 has a
resonance (“hyperfine
transition”) at ≈ 9 GHz

▶ Tune an electronic
oscillator to that resonant
frequency

▶ 1 second = 9,192,631,770
periods of that signal

▶ Accuracy ≈ 1 in 10−14 (1
second in 3 million years)

▶ Price ≈ £20,000 (?)
(can get cheaper rubidium
clocks for ≈ £1,000)

https:
//www.microsemi.com/product-directory/
cesium-frequency-references/
4115-5071a-cesium-primary-frequency-standard

Slide 51

Another high-accuracy method of obtaining the time is to rely on the GPS satellite positioning system,
or similar systems such as Galileo or GLONASS. These systems work by having several satellites orbiting
the Earth and broadcasting the current time at very high resolution. Receivers measure the time it took
the signal from each satellite to reach them, and use this to compute their distance from each satellite,
and hence their location. By connecting a GPS receiver to a computer, it is possible to obtain a clock
that is accurate to within a fraction of a microsecond, provided that the receiver is able to get a clear
signal from the satellites. In a datacenter, there is generally too much electromagnetic interference to get
a good signal, so a GPS receiver requires an antenna on the roof of the datacenter building.

GPS as time source

▶ 31 satellites, each carrying
an atomic clock

▶ satellite broadcasts
current time and location

▶ calculate position from
speed-of-light delay
between satellite and
receiver

▶ corrections for
atmospheric effects,
relativity, etc.

▶ in datacenters, need
antenna on the roof

https://commons.wikimedia.org/wiki/File:
Gps-atmospheric-efects.png

Slide 52

The system of time measurement based on atomic clocks (International Atomic Time, TAI) works well,
but it is disconnected from our everyday perception of time, which is based around sunrise and sunset.
One rotation of planet Earth around its own axis does not take exactly 24×60×60×9,192,631,770 periods
of caesium-133’s resonant frequency. In fact, the speed of rotation of the planet is not even constant:
it fluctuates due to the effects of tides, earthquakes, glacier melting, and some unexplained factors. We
now have a problem: we have two different definitions of time – one based on quantum mechanics, the
other based on astronomy – and those two definitions don’t match up precisely.

The solution is Coordinated Universal Time (UTC), which is based on atomic time, but includes
corrections to account for variations in the Earth’s rotation. In everyday life we use our local time zone,
which is specified as an offset to UTC.

The UK’s local time zone is called Greenwich Mean Time (GMT) in winter, and British Summer Time
(BST) in summer, where GMT is defined to be equal to UTC, and BST is defined to be UTC + 1 hour.
Confusingly, the term Greenwich Mean Time was originally used to refer to mean solar time on the
Greenwich meridian, i.e. it used to be defined in terms of astronomy, while now it is defined in terms of
atomic clocks. Today, the term UT1 is used to refer to mean solar time at 0° longitude.

29



Coordinated Universal Time (UTC)

Greenwich Mean Time (GMT, solar
time): it’s noon when the sun is in the
south, as seen from the Greenwich meridian

International Atomic Time (TAI): 1 day
is 24× 60× 60× 9,192,631,770 periods of
caesium-133’s resonant frequency

Problem: speed of Earth’s rotation is not
constant

Compromise: UTC is TAI with corrections
to account for Earth rotation

Time zones and daylight savings time
are offsets to UTC

Slide 53

The difference between UTC and TAI is that UTC includes leap seconds, which are added as needed
to keep UTC roughly in sync with the rotation of the Earth.

Leap seconds
Every year, on 30 June and 31 December at 23:59:59 UTC,
one of three things happens:

▶ The clock immediately jumps forward to 00:00:00,
skipping one second (negative leap second)

▶ The clock moves to 00:00:00 after one second, as usual

▶ The clock moves to 23:59:60 after one second, and then
moves to 00:00:00 after one further second
(positive leap second)

This is announced several months beforehand.

http://leapsecond.com/notes/leap-watch.htm

Slide 54

Due to leap seconds, it is not true that an hour always has 3600 seconds, and a day always has 86,400
seconds. In the UTC timescale, a day can be 86,399 seconds, 86,400 seconds, or 86,401 seconds long due
to a leap second. This complicates software that needs to work with dates and times.

How computers represent timestamps

Two most common representations:

▶ Unix time: number of seconds since 1 January 1970
00:00:00 UTC (the “epoch”), not counting leap seconds

▶ ISO 8601: year, month, day, hour, minute, second, and
timezone offset relative to UTC
example: 2021-11-09T09:50:17+00:00

Conversion between the two requires:

▶ Gregorian calendar: 365 days in a year, except leap years
(year % 4 == 0 && (year % 100 != 0 ||

year % 400 == 0))

▶ Knowledge of past and future leap seconds. . . ?!

Slide 55

30



In computing, a timestamp is a representation of a particular point in time. Two representations
of timestamps are commonly used: Unix time and ISO 8601. For Unix time, zero corresponds to the
arbitrarily chosen date of 1 January 1970, known as the epoch. There are minor variations: for example,
Java’s System.currentTimeMillis() is like Unix time, but uses milliseconds rather than seconds.

To be correct, software that works with timestamps needs to know about leap seconds. For example,
if you want to calculate how many seconds elapsed between two timestamps, you need to know how many
leap seconds were inserted between those two dates. For dates that are more than about six months into
the future, this is impossible to know, because the Earth’s rotation has not happened yet!

The most common approach in software is to simply ignore leap seconds, pretend that they don’t
exist, and hope that the problem somehow goes away. This approach is taken by Unix timestamps, and
by the POSIX standard. For software that only needs coarse-grained timings (e.g. rounded to the nearest
day), this is fine, since the difference of a few seconds is not significant.

However, operating systems and distributed systems often do rely on high-resolution timestamps for
accurate measurements of time, where a difference of one second is very noticeable. In such settings,
ignoring leap seconds can be dangerous. For example, say you have a Java program that twice calls
System.currentTimeMillis(), 500 ms apart, within a positive leap second (i.e. while the clock is saying
23:59:60). What is the difference between those two timestamps going to be? It can’t be 500, since the
currentTimeMillis() clock does not account for leap seconds. Does the clock stop, so the difference
between the two timestamps is zero? Or could the difference even be negative, so the clock runs backwards
for a brief moment? The documentation is silent about this question. (The best solution is probably to
use a monotonic clock instead, which we introduce on Slide 63.)

Poor handling of the leap second on 30 June 2012 is what caused the simultaneous failures of many
services on that day (Slide 47). Due to a bug in the Linux kernel, the leap second had a high probability
of triggering a livelock condition when running a multithreaded process [Allen, 2013, Minar, 2012]. Even
a reboot did not fix the problem, but setting the system clock reset the bad state in the kernel.

How most software deals with leap seconds

By ignoring them!

However, OS and DistSys often need
timings with sub-second accuracy.

30 June 2012: bug in Linux kernel caused
livelock on leap second, causing many
Internet services to go down

Pragmatic solution: “smear” (spread out)
the leap second over the course of a day

https://www.flickr.com/
photos/ru boff/
37915499055/

Slide 56

Today, some software handles leap seconds explicitly, while other programs continue to ignore them.
A pragmatic solution that is widely used today is that when a positive leap second occurs, rather than
inserting it between 23:59:59 and 00:00:00, the extra second is spread out over several hours before and
after that time by deliberately slowing down the clocks during that time (or speeding up in the case of a
negative leap second). This approach is called smearing the leap second, and it is not without problems.
However, it is a pragmatic alternative to making all software aware of and robust to leap seconds, which
may well be infeasible.

Exercise 6. Describe some problems that may arise from leap second smearing.

31



3.2 Clock synchronisation and monotonic clocks

Clock synchronisation

Computers track physical time/UTC with a quartz clock
(with battery, continues running when power is off)

Due to clock drift, clock error gradually increases

Clock skew: difference between two clocks at a point in time

Solution: Periodically get the current time from a server that
has a more accurate time source (atomic clock or GPS
receiver)

Protocols: Network Time Protocol (NTP),
Precision Time Protocol (PTP)

Slide 57

Atomic clocks are too expensive and bulky to build into every computer and phone, so quartz clocks
are used. Since these clocks drift, they need adjustment from time to time, which is most commonly done
using the Network Time Protocol (NTP). All mainstream operating systems have NTP clients built in.

Slide 58

Network Time Protocol (NTP)

Many operating system vendors run NTP servers,
configure OS to use them by default

Hierarchy of clock servers arranged into strata:

▶ Stratum 0: atomic clock or GPS receiver

▶ Stratum 1: synced directly with stratum 0 device

▶ Stratum 2: servers that sync with stratum 1, etc.

May contact multiple servers, discard outliers, average rest

Makes multiple requests to the same server, use statistics to
reduce random error due to variations in network latency

Reduces clock skew to a few milliseconds in good network
conditions, but can be much worse!

Slide 59

32



Time synchronisation over a network is made difficult by unpredictable latency. As discussed on
Slide 43, both network latency and nodes’ processing speed can vary considerably. To reduce the effects
of random variations, NTP takes several samples of time measurements and applies statistical filters to
eliminate outliers.

Slide 60 shows how NTP estimates the clock skew between the client and the server. When the client
sends a request message, it includes the current timestamp t1 according to the client’s clock. When the
server receives the request, and before processing it, the server records the current timestamp t2 according
to the server’s clock. When the server sends its response, it echoes the value t1 from the request, and also
includes the server’s receipt timestamp t2 and the server’s response timestamp t3 in the reply. Finally,
when the client receives the response, it records the current timestamp t4 according to the client’s clock.

We can determine the time that the messages spent travelling across the network by calculating the
round-trip time from the client’s point of view (t4− t1) and subtracting the processing time on the server
(t3 − t2). We then estimate the one-way network latency as being half of the total network delay. Thus,
by the time the response reaches the client, we can estimate that the server’s clock will have moved on
to t3 plus the one-way network latency. We then subtract the client’s current time t4 from the estimated
server time to obtain the estimated skew between the two clocks.

This estimation depends on the assumption that the network latency is approximately the same in
both directions. This assumption is probably true if latency is dominated by geographic distance between
client and server. However, if queueing time in the network is a significant factor in the latency (e.g. if
one node’s network link is heavily loaded while the other node’s link has plenty of spare capacity), then
there could be a large difference between request and response latency. Unfortunately, most networks do
not give nodes any indication of the actual latency that a particular packet has experienced.

Estimating time over a network

NTP client NTP server

t1 request: t1
t2
t3response: (t1, t2, t3)

t4

Round-trip network delay: δ = (t4 − t1)− (t3 − t2)

Estimated server time when client receives response: t3 +
δ

2

Estimated clock skew: θ = t3 +
δ

2
− t4 =

t2 − t1 + t3 − t4
2

Slide 60

Exercise 7. What is the maximum possible error in the NTP client’s estimate of skew with regard to
one particular server, assuming that both nodes correctly follow the protocol?

Once NTP has estimated the clock skew between client and server, the next step is to adjust the
client’s clock to bring it in line with the server. The method used for this depends on the amount of
skew. The client corrects small differences gently by adjusting the clock speed to run slightly faster or
slower as needed, which gradually reduces the skew over the course of a few minutes. This process is
called slewing the clock.

Slide 62 shows an example of slewing, in which the client’s clock frequency converges to the same rate
as the server, keeping the two in sync to within a few milliseconds. Of course, the exact accuracy achieved
in a particular system depends on the timing properties of the network between client and server.

However, if the skew is larger, slewing would take too long, so the NTP client instead forcibly sets its
clock to the estimated correct time based on the server timestamp. This is called stepping the clock. Any
applications that are watching the clock on the client will see time suddenly jump forwards or backwards.

And finally, if the skew is very large (by default, more than about 15 minutes), the NTP client may
decide that something must be wrong, and refuse to adjust the clock, leaving the problem for a user
or operator to correct. For this reason, any system that depends on clock synchronisation needs to be
carefully monitored for clock skew: just because a node is running NTP, that does not guarantee that its

33



clock will be correct, since it could get stuck in a panic state in which it refuses to adjust the clock.

Correcting clock skew

Once the client has estimated the clock skew θ, it needs to
apply that correction to its clock.

▶ If |θ| < 125 ms, slew the clock:
slightly speed it up or slow it down by up to 500 ppm
(brings clocks in sync within ≈ 5 minutes)

▶ If 125 ms ≤ |θ| < 1,000 s, step the clock:
suddenly reset client clock to estimated server timestamp

▶ If |θ| ≥ 1,000 s, panic and do nothing
(leave the problem for a human operator to resolve)

Systems that rely on clock sync need to monitor clock skew!

Slide 61

http://www.ntp.org/ntpfaq/NTP-s-algo.htm

Slide 62

The fact that clocks may be stepped by NTP, i.e. suddenly moved forwards or backwards, has an
important implication for any software that needs to measure elapsed time. Slide 63 shows an example in
Java, in which we want to measure the running time of a function doSomething(). Java has two core func-
tions for getting the current timestamp from the operating system’s local clock: currentTimeMillis()
and nanoTime(). Besides the different resolution (milliseconds versus nanoseconds), the key difference
between the two is how they behave in the face of clock adjustments from NTP or other sources.

currentTimeMillis() is a time-of-day clock (also known as real-time clock) that returns the time
elapsed since a fixed reference point (in this case, the Unix epoch of 1 January 1970). When the NTP
client steps the local clock, a time-of-day clock may jump. Thus, if you use such a clock to measure
elapsed time, the resulting difference between end timestamp and start timestamp may be much greater
than the actual elapsed time (if the clock was stepped forwards), or it may even be negative (if the clock
was stepped backwards). This type of clock is therefore not suitable for measuring elapsed time.

On the other hand, nanoTime() is a monotonic clock, which is not affected by NTP stepping: it still
counts seconds elapsed, but it always moves forward. Only the rate at which it moves forward may be
adjusted by NTP slewing. This makes a monotonic clock much more robust for measuring elapsed time.
The downside is that a timestamp from a monotonic clock is meaningless by itself: it measures the time
since some arbitrary reference point, such as the time since this computer was started up. When using a
monotonic clock, only the difference between two timestamps from the same node is meaningful. It does
not make sense to compare monotonic clock timestamps across different nodes.

34



Monotonic and time-of-day clocks

// BAD:

long startTime = System.currentTimeMillis();

doSomething();

long endTime = System.currentTimeMillis();

long elapsedMillis = endTime - startTime;

// elapsedMillis may be negative!

NTP client steps the clock during this
// GOOD:

long startTime = System.nanoTime();

doSomething();

long endTime = System.nanoTime();

long elapsedNanos = endTime - startTime;

// elapsedNanos is always >= 0

Slide 63

Most operating systems and programming languages provide both a time-of-day clock and a monotonic
clock, since both are useful for different purposes.

Monotonic and time-of-day clocks
Time-of-day clock:

▶ Time since a fixed date (e.g. 1 January 1970 epoch)

▶ May suddenly move forwards or backwards (NTP
stepping), subject to leap second adjustments

▶ Timestamps can be compared across nodes (if synced)

▶ Java: System.currentTimeMillis()

▶ Linux: clock_gettime(CLOCK_REALTIME)

Monotonic clock:

▶ Time since arbitrary point (e.g. when machine booted up)

▶ Always moves forwards at near-constant rate

▶ Good for measuring elapsed time on a single node

▶ Java: System.nanoTime()

▶ Linux: clock_gettime(CLOCK_MONOTONIC)

Slide 64

3.3 Causality and happens-before

We will now move on to the problem of ordering events in a distributed system, which is closely related
to the concept of time. Consider the scenario on Slide 65, in which user A makes a statement m1 and
sends it as a message to the other two users, B and C. On receiving m1, user B reacts by sending a reply
m2 to the other two users, A and C. However, even if we assume the network links are reliable, they allow
reordering (Slide 40), so C might receive m2 before m1 if m1 is slightly delayed in the network.

From C’s point of view, the result is confusing: C first sees the reply, and then the message it is
replying to. It almost looks as though B was able to see into the future and anticipate A’s statement
before A even said it. In real life this sort of reordering of spoken words does not happen, and so we
intuitively don’t expect it to happen in computer systems either.

As a more technical example, consider m1 to be an instruction that creates an object in a database,
and m2 to be an instruction that updates this same object. If a node processes m2 before m1 it would
first attempt to update a nonexistent object, and then create an object which would not subsequently be
updated. The database instructions only make sense if m1 is processed before m2.

35



Ordering of messages

user A user B user C

m1

m1

m2m2

m1 = “A says: The moon is made of cheese!”
m2 = “B says: Oh no it isn’t!”

C sees m2 first, m1 second,
even though logically m1 happened before m2.

Slide 65

How can C determine the correct order in which it should put the messages? A monotonic clock won’t
work since its timestamps are not comparable across nodes. A first attempt might be to get a timestamp
from a time-of-day clock whenever a user wants to send a message, and to attach that timestamp to the
message. In this scenario, we might reasonably expect m2 to have a later timestamp than m1, since m2

is a response to m1 and so m2 must have happened after m1.
Unfortunately, in a partially synchronous system model, this does not work reliably. The clock

synchronisation performed by NTP and similar protocols always leaves some residual uncertainty about
the exact skew between two clocks, especially if the network latency in the two directions is asymmetric.
We therefore cannot rule out the following scenario: A sends m1 with timestamp t1 according to A’s
clock. When B receives m1, the timestamp according to B’s clock is t2, where t2 < t1, because A’s clock
is slightly ahead of B’s clock. Thus, if we order messages based on their timestamps from time-of-day
clocks, we might again end up with the wrong order.

Physical timestamps inconsistent with causality

user A user B user C

m1t1

m1

t2 m2m2

m1 = (t1, “A says: The moon is made of cheese!”)
m2 = (t2, “B says: Oh no it isn’t!”)

Problem: even with synced clocks, t2 < t1 is possible.
Timestamp order is inconsistent with expected order!

Slide 66

To formalise what we mean with the “correct” order in this type of scenario, we use the happens-
before relation as defined on Slide 67. This definition assumes that each node has only a single thread of
execution, so for any two execution steps of a node, it is clear which one happened first. More formally,
we assume that there is a strict total order on the events that occur at the same node. A multithreaded
process can be modelled by using a separate node to represent each thread.

We then extend this order across nodes by defining that a message is sent before that same message
is received (in other words, we rule out time travel: it is not possible to receive a message that has not
yet been sent). For convenience, we assume that every sent message is unique, so when a message is
received, we always know unambiguously where and when that message was sent. In practice, duplicate
messages may exist, but we can make them unique, for example by including the ID of the sender node
and a sequence number in each message.

36



Finally, we take the transitive closure, and the result is the happens-before relation. This is a partial
order, which means that it is possible that for some events a and b, neither a happened before b, nor
b happened before a. In that case, we call a and b concurrent. Note that here, “concurrent” does not
mean literally “at the same time”, but rather that a and b are independent in the sense that there is no
sequence of messages leading from one to the other.

The happens-before relation

An event is something happening at one node (sending or
receiving a message, or a local execution step).

We say event a happens before event b (written a → b) iff:

▶ a and b occurred at the same node, and a occurred
before b in that node’s local execution order; or

▶ event a is the sending of some message m, and event b is
the receipt of that same message m (assuming sent
messages are unique); or

▶ there exists an event c such that a → c and c → b.

The happens-before relation is a partial order: it is possible
that neither a → b nor b → a. In that case, a and b are
concurrent (written a ∥ b).

Slide 67

Happens-before relation example

A B C

a

b
c

d

e

f

m1

m2

▶ a → b, c → d, and e → f due to node execution order

▶ b → c and d → f due to messages m1 and m2

▶ a → c, a → d, a → f , b → d, b → f , and c → f due to
transitivity

▶ a ∥ e, b ∥ e, c ∥ e, and d ∥ e

Slide 68

Exercise 8. A relation R is a strict partial order if it is irreflexive (∄a. (a, a) ∈ R) and transitive
(∀a, b, c. (a, b) ∈ R ∧ (b, c) ∈ R =⇒ (a, c) ∈ R). (These two conditions also imply that it R asymmetric,
i.e. that ∀a, b. (a, b) ∈ R =⇒ (b, a) /∈ R.) Prove that the happens-before relation is a strict partial order.
You may assume that any two nodes are a nonzero distance apart, as well as the physical principle that
information cannot travel faster than the speed of light.

Exercise 9. Show that for any two events a and b, exactly one of the three following statements must be
true: either a → b, or b → a, or a ∥ b.

The happens-before relation is a way of reasoning about causality in distributed systems. Causality
considers whether information could have flowed from one event to another, and thus whether one event
may have influenced another. In the example of Slide 65, m2 (“Oh no it isn’t!”) is a reply to m1 (“The
moon is made of cheese!”), and so m1 influenced m2. Whether one event truly “caused” another is a
philosophical question that we don’t need to answer now; what matters for our purposes is that the sender
of m2 had already received m1 at the time of sending m2.

37



Causality
Taken from physics (relativity).

▶ When a → b, then a might have caused b.

▶ When a ∥ b, we know that a cannot have caused b.

Happens-before relation encodes potential causality.

a b

c

distance in space

light from a light from b

time

Let ≺ be a strict total order on events.
If (a → b) =⇒ (a ≺ b) then ≺ is a causal order
(or: ≺ is “consistent with causality”).
NB. “causal” ̸= “casual”!

Slide 69

The notion of causality is borrowed from physics, where it is generally believed that it is not possible
for information to travel faster than the speed of light. Thus, if you have two events a and b that occur
sufficiently far apart in space, but close together in time, then it is impossible for a signal sent from a to
arrive at b’s location before event b, and vice versa. Therefore, a and b must be causally unrelated.

An event c that is sufficiently close in space to a, and sufficiently long after a in time, will be within
a’s light cone: that is, it is possible for a signal from a to reach c, and therefore a might influence c. In
distributed systems, we usually work with messages on a network rather than beams of light, but the
principle is very similar.

3.4 Logical time

Logical vs. physical clocks

▶ Physical clock: count number of seconds elapsed

▶ Logical clock: count number of events occurred

Physical timestamps: useful for many things, but may be
inconsistent with causality.

Logical clocks: designed to capture causal dependencies.

(e1 → e2) =⇒ (T (e1) < T (e2))

We will look at two types of logical clocks:

▶ Lamport clocks

▶ Vector clocks

Slide 70

Recall that on Slide 66, we saw that timestamps from physical clocks can be inconsistent with causality,
even if those clocks are synchronised using something like NTP. That is, if send(m) is the event of
sending message m, and if the happens-before relation indicates that send(m1) → send(m2), then it could
nevertheless happen that the the physical timestamp of send(m1) (according to the clock of m1’s sender)
is less than the physical timestamp of send(m2) (according to the clock of m2’s sender).

In contrast, logical clocks focus on correctly capturing the order of events in a distributed system.
The first type of logical clock we will examine is the Lamport clock, introduced by Lamport [1978] in one
of the seminal papers of distributed computing.

38



Lamport clocks algorithm
on initialisation do

t := 0 ▷ each node has its own local variable t
end on

on any event occurring at the local node do
t := t+ 1

end on

on request to send message m do
t := t+ 1; send (t,m) via the underlying network link

end on

on receiving (t′,m) via the underlying network link do
t := max(t, t′) + 1
deliver m to the application

end on
Slide 71

Lamport clocks in words

▶ Each node maintains a counter t,
incremented on every local event e

▶ Let L(e) be the value of t after that increment

▶ Attach current t to messages sent over network

▶ Recipient moves its clock forward to timestamp in the
message (if greater than local counter), then increments

Properties of this scheme:

▶ If a → b then L(a) < L(b)

▶ However, L(a) < L(b) does not imply a → b

▶ Possible that L(a) = L(b) for a ̸= b

Slide 72

A Lamport timestamp is essentially an integer that counts the number of events that have occurred.
As such, it has no direct relationship to physical time. On each node, time increases because the integer
is incremented on every event. The algorithm assumes a crash-stop model (or a crash-recovery model if
the timestamp is maintained in stable storage, i.e. on disk).

When a message is sent over the network, the sender attaches its current Lamport timestamp to that
message. In the example on Slide 73, t = 2 is attached to m1 and t = 4 is attached to m2. When the
recipient receives a message, it moves its local Lamport clock forward to the timestamp in the message
plus one; if the recipient’s clock is already ahead of the timestamp in the message, it is only incremented.

Lamport timestamps have the property that if a happened before b, then b always has a greater
timestamp than a; in other words, the timestamps are consistent with causality. However, the converse
is not true: in general, if b has a greater timestamp than a, we know that b ̸→ a, but we do not know
whether a → b or a ∥ b.

It is also possible for two different events to have the same timestamp. In the example on Slide 73,
the third event on node A and the first event on node B both have a timestamp of 3. If we need a unique
timestamp for every event, each timestamp can be extended with the name or identifier of the node on
which that event occurred. Within the scope of a single node, each event is assigned a unique timestamp;
thus, assuming each node has a unique name, the combination of timestamp and node name is globally
unique (across all nodes).

39



Lamport clocks example

A B C

(1, A)
(2, A)

(3, B)
(4, B)

(1, C)

(5, C)
(3, A)

(2,m1)

(4,m2)

Let N(e) be the node at which event e occurred.
Then the pair (L(e), N(e)) uniquely identifies event e.

Define a total order ≺ using Lamport timestamps:

(a ≺ b) ⇐⇒ (L(a) < L(b) ∨ (L(a) = L(b) ∧ N(a) < N(b)))

This order is causal: (a → b) =⇒ (a ≺ b)
Slide 73

Recall that the happens-before relation is a partial order (Slide 67). Using Lamport timestamps
we can extend this partial order into a total order. We use the lexicographic order over (timestamp,
node name) pairs: that is, we first compare the timestamps, and if they are the same, we break ties by
comparing the node names.

This relation ≺ puts all events into a linear order: for any two events a ̸= b we have either a ≺ b or
b ≺ a. It is a causal order: that is, whenever a → b we have a ≺ b. In other words, ≺ is a linear extension
of the partial order →. However, if a ∥ b we could have either a ≺ b or b ≺ a, so the order of the two
events is determined arbitrarily by the algorithm.

Exercise 10. Given the sequence of messages in the following execution, show the Lamport timestamps
at each send or receive event.

A B C D
m1

m2

m3

m4

m5

m6

m7

m8

m9

Exercise 11. Prove that the total order ≺ using Lamport timestamps is a causal order.

Given the Lamport timestamps of two events, it is in general not possible to tell whether those events
are concurrent or whether one happened before the other. If we do want to detect when events are
concurrent, we need a different type of logical time: a vector clock.

While Lamport timestamps are just a single integer (possibly with a node name attached), vector
timestamps are a list of integers, one for each node in the system. By convention, if we put the n nodes
into a vector ⟨N0, N1, . . . , Nn−1⟩, then a vector timestamp is a similar vector ⟨t0, t1, . . . , tn−1⟩ where ti is
the entry corresponding to node Ni. The value of ti is the number of events known to have occurred at
node Ni. In a vector T = ⟨t0, t1, . . . , tn−1⟩ we refer to element ti as T [i], like an index into an array.

40



Vector clocks

Given Lamport timestamps L(a) and L(b) with L(a) < L(b)
we can’t tell whether a → b or a ∥ b.

If we want to detect which events are concurrent, we need
vector clocks:

▶ Assume n nodes in the system, N = ⟨N0, N1, . . . , Nn−1⟩
▶ Vector timestamp of event a is V (a) = ⟨t0, t1, . . . , tn−1⟩
▶ ti is number of events observed by node Ni

▶ Each node has a current vector timestamp T

▶ On event at node Ni, increment vector element T [i]

▶ Attach current vector timestamp to each message

▶ Recipient merges message vector into its local vector

Slide 74

Apart from the difference between a scalar and a vector, the vector clock algorithm is very similar to
a Lamport clock (compare Slide 71 and Slide 75). A node initialises its vector clock to contain a zero
for each node in the system. Whenever an event occurs at node Ni, it increments the ith entry (its
own entry) in its vector clock. (In practice, this vector is often implemented as a map from node IDs to
integers rather than an array of integers.) When a message is sent over the network, the sender’s current
vector timestamp is attached to the message. Finally, when a message is received, the recipient merges
the vector timestamp in the message with its local timestamp by taking the element-wise maximum of
the two vectors, and then the recipient increments its own entry.

Vector clocks algorithm
on initialisation at node Ni do

T := ⟨0, 0, . . . , 0⟩ ▷ local variable at node Ni

end on

on any event occurring at node Ni do
T [i] := T [i] + 1

end on

on request to send message m at node Ni do
T [i] := T [i] + 1; send (T,m) via network

end on

on receiving (T ′,m) at node Ni via the network do
T [j] := max(T [j], T ′[j]) for every j ∈ {0, . . . , n− 1}
T [i] := T [i] + 1; deliver m to the application

end on
Slide 75

Slide 76 shows an example of this algorithm in action. Note that when C receives message m2 from
B, the vector entry for A is also updated to 2 because this event has an indirect causal dependency on
the two events that happened at A. In this way, the vector timestamps mirror the transitivity of the
happens-before relation.

41



Vector clocks example

Assuming the vector of nodes is N = ⟨A,B,C⟩:

A B C

⟨1, 0, 0⟩
⟨2, 0, 0⟩

⟨2, 1, 0⟩
⟨2, 2, 0⟩

⟨0, 0, 1⟩

⟨2, 2, 2⟩
⟨3, 0, 0⟩

(⟨2, 0, 0⟩,m1)

(⟨2, 2, 0⟩,m2)

The vector timestamp of an event e represents a set of events,
e and its causal dependencies: {e} ∪ {a | a → e}

For example, ⟨2, 2, 0⟩ represents the first two events from A,
the first two events from B, and no events from C.

Slide 76

Vector clocks ordering

Define the following order on vector timestamps
(in a system with n nodes):

▶ T = T ′ iff T [i] = T ′[i] for all i ∈ {0, . . . , n− 1}
▶ T ≤ T ′ iff T [i] ≤ T ′[i] for all i ∈ {0, . . . , n− 1}
▶ T < T ′ iff T ≤ T ′ and T ̸= T ′

▶ T ∥ T ′ iff T ̸≤ T ′ and T ′ ̸≤ T

V (a) ≤ V (b) iff ({a} ∪ {e | e → a}) ⊆ ({b} ∪ {e | e → b})

Properties of this order:

▶ (V (a) < V (b)) ⇐⇒ (a → b)

▶ (V (a) = V (b)) ⇐⇒ (a = b)

▶ (V (a) ∥ V (b)) ⇐⇒ (a ∥ b)

Slide 77

We then define a partial order over vector timestamps as shown on Slide 77. We say that one vector
is less than or equal to another vector if every element of the first vector is less than or equal to the
corresponding element of the second vector. One vector is strictly less than another vector if they are
less than or equal, and if they differ in at least one element. However, two vectors are incomparable if
one vector has a greater value in one element, and the other has a greater value in a different element.
For example, T = ⟨2, 2, 0⟩ and T ′ = ⟨0, 0, 1⟩ are incomparable because T [1] > T ′[1] but T [3] < T ′[3].

The partial order over vector timestamps corresponds exactly to the partial order defined by the
happens-before relation. Thus, the vector clock algorithm provides us with a mechanism for computing
the happens-before relation in practice.

Exercise 12. Given the same sequence of messages as in Exercise 10, show the vector clocks at each
send or receive event.

Exercise 13. Using the Lamport and vector timestamps calculated in Exercise 10 and 12, state whether
or not the following events can be determined to have a happens-before relationship.

Events Lamport Vector
send(m2) send(m3)
send(m3) send(m5)
send(m5) send(m9)

Exercise 14. We have seen several types of physical clocks (time-of-day clocks with NTP, monotonic
clocks) and logical clocks. For each of the following uses of time, explain which type of clock is the most

42



appropriate: process scheduling; I/O; distributed filesystem consistency; cryptographic certificate validity;
concurrent database updates.

This completes our discussion of logical time. We have seen two key algorithms: Lamport clocks and
vector clocks, one providing a total order and the other capturing the partial order of happens-before.
Various other constructions have been proposed: for example, there are hybrid clocks that combine some
of the properties of logical and physical clocks [Kulkarni et al., 2014].

4 Broadcast

In this section we will examine broadcast protocols (also known as multicast protocols), that is, algorithms
for delivering one message to multiple recipients. These are a useful building block for higher-level
distributed algorithms, as we will see in Section 5. Several different broadcast protocols are used in
practice, and their main difference is the order in which they deliver messages. As we saw in the last
section, the concept of ordering is closely related to clocks and time.

4.1 Delivery order

Many networks provide point-to-point (unicast) messaging, in which a message has one specified recipient.
Broadcast protocols generalise networking such that a message is sent to all nodes in some group. The
group membership may be fixed, or the system may provide a way for nodes to join and leave the group.

Some local-area networks provide multicast or broadcast at the hardware level (for example, IP
multicast), but communication over the Internet typically only allows unicast. Moreover, hardware-level
multicast is typically provided on a best-effort basis, which allows messages to be dropped; making it
reliable requires retransmission protocols similar to those we will discuss.

The system model assumptions about node behaviour (Slide 41) and synchrony (Slide 42) carry over
directly to broadcast groups.

Broadcast protocols

Broadcast (multicast) is group communication:

▶ One node sends message, all nodes in group deliver it

▶ Set of group members may be fixed (static) or dynamic

▶ If one node is faulty, remaining group members carry on

▶ Note: concept is more general than IP multicast
(we build upon point-to-point messaging)

Build upon system models from earlier lecture:

▶ Can be best-effort (may drop messages) or
reliable (non-faulty nodes deliver every message,
by retransmitting dropped messages)

▶ Asynchronous/partially synchronous timing model
=⇒ no upper bound on message latency

Slide 78

Before we go into the details, we should clarify some terminology. When an application wants to
send a message to all nodes in the group, it uses an algorithm to broadcast it. To make this happen, the
broadcast algorithm then sends some messages to other nodes over point-to-point links, and another node
receives such a message when it arrives over the point-to-point link. Finally, the broadcast algorithm
may deliver the message to the application. As we shall see shortly, there is sometimes a delay between
the time when a message is received and when it is delivered.

43



Receiving versus delivering

Node A: Node B:

Application Application

Broadcast algorithm
(middleware)

Broadcast algorithm
(middleware)

Network

broadcast

send receive send receive

deliver

Assume network provides point-to-point send/receive

After broadcast algorithm receives message from network, it
may buffer/queue it before delivering to the application

Slide 79

We will examine three different forms of broadcast. All of these are reliable: every message is eventu-
ally delivered to every non-faulty node, with no timing guarantees. However, they differ in terms of the
order in which messages may be delivered at each node. It turns out that this difference in ordering has
very fundamental consequences for the algorithms that implement the broadcast.

Forms of reliable broadcast

FIFO broadcast:
If m1 and m2 are broadcast by the same node, and
broadcast(m1) → broadcast(m2), then m1 must be delivered
before m2

Causal broadcast:
If broadcast(m1) → broadcast(m2) then m1 must be delivered
before m2

Total order broadcast:
If m1 is delivered before m2 on one node, then m1 must be
delivered before m2 on all nodes

FIFO-total order broadcast:
Combination of FIFO broadcast and total order broadcast

Slide 80

FIFO broadcast

A B C

m1 m1

m1

m2m2 m2

m3
m3

m3

Messages sent by the same node must be delivered in the
order they were sent.
Messages sent by different nodes can be delivered in any order.
Valid orders: (m2,m1,m3) or (m1,m2,m3) or (m1,m3,m2)

Slide 81

44



The weakest type of broadcast is called FIFO broadcast, which is closely related to FIFO links (see
Exercise 4). In this model, messages sent by the same node are delivered in the order they were sent.
For example, on Slide 81, m1 must be delivered before m3, since they were both sent by A. However, m2

can be delivered at any time before, between, or after m1 and m3.
Another detail about these broadcast protocols: we assume that whenever a node broadcasts a mes-

sage, it also delivers that message to itself (represented as a loopback arrow on Slide 81). This may seem
unnecessary at first – after all, a node knows what messages it has itself broadcast! – but we will need
this for total order broadcast.

The example execution on Slide 81 is valid FIFO broadcast, but it violates causality: node C delivers
m2 before m1, even though B broadcast m2 after delivering m1. Causal broadcast provides a stricter
ordering property than FIFO broadcast. As the name suggests, it ensures that messages are delivered in
causal order: that is, if the broadcast of one message happened before the broadcast of another message,
then all nodes must deliver those two messages in that order. If two messages are broadcast concurrently,
a node may deliver them in either order.

In the example on Slide 81, if node C receives m2 before m1, the broadcast algorithm at C will have
to hold back (delay or buffer) m2 until after m1 has been delivered, to ensure the messages are delivered
in causal order. In the example on Slide 82, messages m2 and m3 are broadcast concurrently. Nodes A
and C deliver messages in the order m1,m3,m2, while node B delivers them in the order m1,m2,m3.
Either of these delivery orders is acceptable, since they are both consistent with causality.

Causal broadcast

A B C

m1
m1

m1

m2 m2m3
m3

m3

Causally related messages must be delivered in causal order.
Concurrent messages can be delivered in any order.

Here: broadcast(m1) → broadcast(m2) and
broadcast(m1) → broadcast(m3)
=⇒ valid orders are: (m1,m2,m3) or (m1,m3,m2)

Slide 82

The third type of broadcast is total order broadcast, sometimes also known as atomic broadcast.
While FIFO and causal broadcast allow different nodes to deliver messages in different orders, total order
broadcast enforces consistency across the nodes, ensuring that all nodes deliver messages in the same
order. The precise delivery order is not defined, as long as it is the same on all nodes.

Slide 83 and 84 show two example executions of total order broadcast. On Slide 83, all three nodes
deliver the messages in the order m1,m2,m3, while on Slide 84, all three nodes deliver the messages in
the order of m1,m3,m2. Either of these executions is valid, as long as the nodes agree.

As with causal broadcast, nodes may need to hold back messages, waiting for other messages that
need to be delivered first. For example, node C could receive messages m2 and m3 in either order. If the
algorithm has determined that m3 should be delivered before m2, but if node C receives m2 first, then
C will need to hold back m2 until after m3 has been received.

Another important detail can be seen on these diagrams: in the case of FIFO and causal broadcast,
when a node broadcasts a message, it can immediately deliver that message to itself, without having to
wait for communication with any other node. This is no longer true in total order broadcast: for example,
on Slide 83, m2 needs to be delivered before m3, so node A’s delivery of m3 to itself must wait until after
A has received m2 from B. Likewise, on Slide 84, node B’s delivery of m2 to itself must wait for m3.

45



Total order broadcast (1)

A B C

m1
m1

m1

m2 m2m3
m3

m3

All nodes must deliver messages in the same order
(here: m1,m2,m3)

This includes a node’s deliveries to itself!

Slide 83

Total order broadcast (2)

A B C

m1
m1

m1

m2

m2
m2

m3
m3

m3

All nodes must deliver messages in the same order
(here: m1,m3,m2)

This includes a node’s deliveries to itself!

Slide 84

Finally, FIFO-total order broadcast is like total order broadcast, but with the additional FIFO re-
quirement that any messages broadcast by the same node are delivered in the order they were sent. The
examples on Slide 83 and 84 are in fact valid FIFO-total order broadcast executions, since m1 is delivered
before m3 in both.

Relationships between broadcast models

FIFO-total order broadcast

Total order
broadcast

Causal broadcast

FIFO broadcast

Reliable broadcast

Best-effort
broadcast

= stronger than

Slide 85

We can arrange these various broadcast protocols into a hierarchy as shown on Slide 85. For example,

46



FIFO-total order broadcast is a strictly stronger model than causal broadcast; in other words, every valid
FIFO-total order broadcast protocol is also a valid causal broadcast protocol (but not the opposite), and
so on for the other protocols.

Exercise 15. Prove that causal broadcast also satisfies the requirements of FIFO broadcast, and that
FIFO-total order broadcast also satisfies the requirements of causal broadcast.

4.2 Broadcast algorithms

We will now move on to algorithms for implementing broadcast. Roughly speaking, this involves two
steps: first, ensuring that every message is received by every node; and second, delivering those messages
in the right order. We will first look at disseminating the messages reliably.

The first algorithm we might try is: when a node wants to broadcast a message, it individually
sends that message to every other node, using reliable links as discussed on Slide 40 (i.e. retransmitting
dropped messages). However, it could happen that a message is dropped, and the sender crashes before
retransmitting it. In this situation, one of the nodes will never receive that message.

Broadcast algorithms
Break down into two layers:

1. Make best-effort broadcast reliable by retransmitting
dropped messages

2. Enforce delivery order on top of reliable broadcast

First attempt: broadcasting node sends message directly
to every other node

▶ Use reliable links (retry + deduplicate)

▶ Problem: node may crash before all messages delivered

A B C
m1

m1

Slide 86

To improve the reliability, we can enlist the help of the other nodes. For example, we could say that
the first time a node receives a particular message, it forwards the message to every other node (this is
called eager reliable broadcast). This algorithm ensures that even if some nodes crash, all of the remaining
(non-faulty) nodes will receive every message. However, this algorithm is fairly inefficient: in the absence
of faults, every message is sent O(n2) times in a group of n nodes, as each node will receive every message
n− 1 times. This means it sends a large amount of redundant network traffic.

Eager reliable broadcast

Idea: the first time a node receives a particular message, it
re-broadcasts to each other node (via reliable links).

A B C
m1

m1

m1 m1

m1

m1

Reliable, but. . . up to O(n2) messages for n nodes!

Slide 87

47



Many variants of this algorithm have been developed, optimising along various dimensions such as
the fault tolerance, the time until all nodes receive a message, and the network bandwidth used. One
particularly common family of broadcast algorithms are gossip protocols (also known as epidemic proto-
cols). In these protocols, a node that wishes to broadcast a message sends it to a small fixed number of
nodes that are chosen randomly. On receiving a message for the first time, a node forwards it to a fixed
number of randomly chosen nodes. This resembles the way gossip, rumours, or an infectious disease may
spread through a population.

Gossip protocols do not strictly guarantee that all nodes will receive a message: it is possible that in
the random selection of nodes, some node is always omitted. However, if the parameters of the algorithm
are chosen appropriately, the probability of a message not being delivered can be very small. Gossip
protocols are appealing because, with the right parameters, they are very resilient to message loss and
node crashes while also remaining efficient.

Gossip protocols

Useful when broadcasting to a large number of nodes.
Idea: when a node receives a message for the first time,
forward it to 3 other nodes, chosen randomly.

Eventually reaches all nodes (with high probability).

Slide 88

Now that we have reliable broadcast (using eager reliable broadcast or a gossip protocol), we can
build FIFO, causal, or total order broadcast on top of it. Let’s start with FIFO broadcast.

FIFO broadcast algorithm

on initialisation do
sendSeq := 0; delivered := ⟨0, 0, . . . , 0⟩; buffer := {}

end on

on request to broadcast m at node Ni do
send (i, sendSeq ,m) via reliable broadcast
sendSeq := sendSeq + 1

end on

on receiving msg from reliable broadcast at node Ni do
buffer := buffer ∪ {msg}
while ∃sender ,m. (sender , delivered [sender ],m) ∈ buffer do

deliver m to the application
delivered [sender ] := delivered [sender ] + 1

end while
end on

Slide 89

Each FIFO broadcast message sent by node Ni is tagged with the sending node number i and a
sequence number that is 0 for the first message sent by Ni, 1 for the second message, and so on. The
local state at each node consists of the sequence number sendSeq (counting the number of messages
broadcast by this node), delivered (a vector with one entry per node, counting the number of messages
from each sender that this node has delivered), and buffer (a buffer for holding back messages until they
are ready to be delivered). The algorithm checks for messages from any sender that match the expected
next sequence number, and then increments that number, ensuring that messages from each particular
sender are delivered in order of increasing sequence number.

48



The causal broadcast algorithm is somewhat similar to FIFO broadcast; instead of attaching a se-
quence number to every message that is broadcast, we attach a vector of integers. This algorithm
is sometimes called a vector clock algorithm, even though it is quite different from the algorithm on
Slide 75. In the vector clock algorithm from Slide 75 the vector elements count the number of events
that have occurred at each node, while in the causal broadcast algorithm, the vector elements count the
number of messages from each sender that have been delivered.

Causal broadcast algorithm

on initialisation do
sendSeq := 0; delivered := ⟨0, 0, . . . , 0⟩; buffer := {}

end on

on request to broadcast m at node Ni do
deps := delivered ; deps[i] := sendSeq
send (i, deps,m) via reliable broadcast
sendSeq := sendSeq + 1

end on

on receiving msg from reliable broadcast at node Ni do
buffer := buffer ∪ {msg}
while ∃(sender , deps,m) ∈ buffer . deps ≤ delivered do

deliver m to the application
buffer := buffer \ {(sender , deps,m)}
delivered [sender ] := delivered [sender ] + 1

end while
end on

Slide 90

The local state at each node consists of sendSeq, delivered, and buffer, which have the same meaning
as in the FIFO broadcast algorithm. When a node wants to broadcast a message, we attach the sending
node number i and deps, a vector indicating the causal dependencies of that message. We construct deps
by taking a copy of delivered , the vector that counts how many messages from each sender have been
delivered at this node. This indicates that all messages that have been delivered locally prior to this
broadcast must appear before the broadcast message in the causal order. We then update the sending
node’s own element of this vector to equal sendSeq , which ensures that each message broadcast by this
node has a causal dependency on the previous message broadcast by the same node.

When receiving a message, the algorithm first adds it to the buffer like in FIFO broadcast, and then
searches the buffer for any messages that are ready to be delivered. The comparison deps ≤ delivered
uses the ≤ operator on vectors defined on Slide 77. This comparison is true if this node has already
delivered all of the messages that must precede this message in the causal order. Any messages that are
causally ready are then delivered to the application and removed from the buffer, and the appropriate
element of the delivered vector is incremented.

Total order broadcast algorithms

Single leader approach:

▶ One node is designated as leader (sequencer)

▶ To broadcast message, send it to the leader;
leader broadcasts it via FIFO broadcast.

▶ Problem: leader crashes =⇒ no more messages delivered

▶ Changing the leader safely is difficult

Lamport clocks approach:

▶ Attach Lamport timestamp to every message

▶ Deliver messages in total order of timestamps

▶ Problem: how do you know if you have seen all messages
with timestamp < T? Need to use FIFO links and wait
for message with timestamp ≥ T from every node

Slide 91

Finally, total order broadcast (and FIFO-total order broadcast) are trickier. Two simple approaches
are outlined on Slide 91, one based on a designated leader node, and a leaderless algorithm using Lamport

49



timestamps. However, neither of these approaches is fault tolerant: in both cases, the crash of a single
node can stop all other nodes from being able to deliver messages. In the single-leader approach, the
leader is a single point of failure. We will return to the problem of fault-tolerant total order broadcast in
Section 7.

Exercise 16. Give pseudocode for an algorithm that implements FIFO-total order broadcast using Lam-
port clocks. You may assume that each node has a unique ID, and that the set of all node IDs is known.
Further assume that the underlying network provides reliable FIFO broadcast. [2020 Paper 5 Question 8]

5 Replication

We will now turn to the problem of replication, which means to maintain a copy of the same data on
multiple nodes, each of which is called a replica. Replication is a standard feature of many distributed
databases, filesystems, and other storage systems. It is one of the main mechanisms we have for achieving
fault tolerance: if one replica becomes faulty, we can continue accessing the copies of the data on other
replicas.

Replication

▶ Keeping a copy of the same data on multiple nodes

▶ Databases, filesystems, caches, . . .

▶ A node that has a copy of the data is called a replica

▶ If some replicas are faulty, others are still accessible

▶ Spread load across many replicas

▶ Easy if the data doesn’t change: just copy it

▶ We will focus on data changes

Compare to RAID (Redundant Array of Independent Disks):
replication within a single computer

▶ RAID has single controller; in distributed system, each
node acts independently

▶ Replicas can be distributed around the world, near users

Slide 92

5.1 Manipulating remote state

If the data doesn’t change, replication is easy, since it just requires making a one-time copy of the data.
Therefore, the main problem in replication is managing changes to the data. Before we get into the
details of replication, let’s look at how data changes happen in a distributed system.

Retrying state updates
User A: The moon is not actually made of cheese!

Like 12,300 people like this.

client
increment post.likes

12,301ack

increment post.likes
12,302ack

Deduplicating requests requires that the database tracks which
requests it has already seen (in stable storage)

Slide 93

50

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2020p5q8.pdf


Let’s consider as example the act of “liking” a status update on a social network. When you click
the “like” button, the fact that you have liked it, and the number of people who have liked it, need to
be stored somewhere so that they can be displayed to you and to other users. This usually happens in a
database on the social network’s servers. We can consider the data stored in a database to be its state.

A request to update the database may be lost in the network, or an acknowledgement that an update
has been performed might be lost. As usual, we can improve reliability by retrying the request. However,
if we are not careful, the retry could lead to the request being processed multiple times, leading to an
incorrect state in the database.

Slide 94

Lest you think this is a purely hypothetical problem, consider Slide 94, a genuine (I promise!) screen-
shot of Twitter that I made in 2014, which shows the profile of a user who is apparently following a
negative number of people. I don’t have insight into Twitter’s internals to know exactly what happened
here, but my guess is that this person used to follow several people, then unfollowed them, and due
to a network problem during the unfollowing process, the decrement of the follow counter was retried,
resulting in more decrements than the user was originally following.

If following a negative number of people seems like a trivial problem, then instead of decrementing
a follow counter, consider the act of deducting £1,000 from your bank account balance. The database
operation is essentially the same, but performing this operation too many times has the potential to make
you rather unhappy.

To prevent an update from taking effect multiple times, we need to deduplicate requests. More
formally speaking, we need to make requests idempotent.

Idempotence

A function f is idempotent if f(x) = f(f(x)).

▶ Not idempotent: f(likeCount) = likeCount + 1

▶ Idempotent: f(likeSet) = likeSet ∪ {userID}
Idempotent requests can be retried safely.

Choice of retry behaviour:

▶ At-most-once semantics:
send request, don’t retry, update may not happen

▶ At-least-once semantics:
retry request until acknowledged, may repeat update

▶ Exactly-once semantics:
retry + idempotence or deduplication

Slide 95

Incrementing a counter is not idempotent, but adding an element to a set is. Therefore, if a counter
is required (as in the number of likes), it might be better to actually maintain the set of elements in the

51



database, and to derive the counter value from the set by computing its cardinality. In a crash-recovery
system model, we can deduplicate requests storing them (or some metadata about requests, such as a
vector clock) in stable storage, so that duplicates can be accurately detected even after a crash.

An idempotent update can safely be retried, because performing it several times has the same effect
as performing it once. Idempotence allows an update to have exactly-once semantics: that is, the update
may actually be applied multiple times, but the effect is the same as if it had been applied exactly once.
Idempotence is a very useful property in practical systems, and it is often found in the context of RPC
(Section 1.4), where retries are often unavoidable.

However, idempotence has a limitation that becomes apparent when there are multiple updates in
progress. On Slide 96, client 1 adds a user ID to the set of likes for a post, but the acknowledgement
is lost. Client 2 reads the set of likes from the database (including the user ID added by client 1), and
then makes a request to remove the user ID again. Meanwhile, client 1 retries its request, unaware of
the update made by client 2. The retry therefore has the effect of adding the user ID to the set again.
This is unexpected since client 2 observed client 1’s change, so the removal happened causally after the
addition of the set element, and therefore we might expect that in the final state, the user ID should not
be present in the set. In this case, the fact that adding an element to a set is idempotent is not sufficient
to make the retry safe.

Adding and then removing again

client 1 client 2
f : add like

ack
set of likes

g: unlike

ack
f : add like

ack

f(likes) = likes ∪ {userID}
g(likes) = likes \ {userID}
Idempotent? f(f(x)) = f(x) but f(g(f(x)) ̸= g(f(x))

Slide 96

A similar problem occurs on Slide 97, in which we have two replicas. In the first scenario a client first
adds x to both replicas of the database, then tries to remove x again from both. However, the remove
request to replica B is lost, and the client crashes before it is able to retry. In the second scenario a client
tries to add x to both replicas, but the request to replica A is lost, and again the client crashes.

Another problem with adding and removing

client A Badd(x)

add(x)
remove(x)

remove(x)

Final state (x /∈ A, x ∈ B) is the same as in this case:

client A Badd(x)
add(x)

Slide 97

In both scenarios the outcome is the same: x is present on replica B, and absent from replica A.

52



Yet the intended effect is different: in the first scenario, the client wanted x to be removed from both
replicas, whereas in the second scenario, the client wanted x to be present on both replicas. When the
two replicas reconcile their inconsistent states, we want them to both end up in the state that the client
intended. However, this is not possible if the replicas cannot distinguish between these two scenarios.

To solve this problem, we can do two things. First, we attach a logical timestamp to every update
operation, and store that timestamp in the database as part of the data written by the update. Second,
when asked to remove a record from the database, we don’t actually remove it, but rather write a special
type of update (called a tombstone) marking it as deleted. On Slide 98, records containing false are
tombstones.

Timestamps and tombstones

client A B

t1
(t1, add(x))

{x 7→ (t1, true)}(t1, add(x))
{x 7→ (t1, true)}

t2
(t2, remove(x))

(t2, remove(x))
{x 7→ (t2, false)}

“remove(x)” doesn’t actually remove x: it labels x with
“false” to indicate it is invisible (a tombstone)

Every record has logical timestamp of last write

Slide 98

In many replicated systems, replicas run a protocol to detect and reconcile any differences (this is
called anti-entropy), so that the replicas eventually hold consistent copies of the same data. Thanks to
tombstones, the anti-entropy process can tell the difference between a record that has been deleted and a
record that has not yet been created. And thanks to timestamps, we can tell which version of a record is
older and which is newer. The anti-entropy process then keeps the newer and discards the older record.

This approach also helps address the problem on Slide 96: a retried request has the same timestamp
as the original request, so a retry will not overwrite a value written by a causally later request with a
greater timestamp.

Reconciling replicas

Replicas periodically communicate among themselves
to check for any inconsistencies.

A B

{x 7→ (t2, false)} {x 7→ (t1, true)}

{x 7→ (t2, false)} {x 7→ (t2, false)}

reconcile state

(anti-entropy)

t1 < t2

Propagate the record with the latest timestamp,
discard the records with earlier timestamps

(for a given key).

Slide 99

The technique of attaching a timestamp to every update is also useful for handling concurrent updates
to a register (a replicated variable whose value can be updated). For example, in a key-value store, each
key has an associated register. On Slide 100, client 1 wants to set the register for key x to the value v1
(with timestamp t1), while concurrently client 2 wants to set the register for the same key x to the value
v2 (with timestamp t2). Replica A receives v2 first and v1 second, while replica B receives the updates

53



in the opposite order. To ensure that both replicas end up in the same state, we rely not on the order in
which they receive requests, but the order of their timestamps.

Concurrent writes by different clients

client 1 A B client 2

t1
(t1, set(x, v1)) t2(t2, set

(x, v2)
)

Two common approaches:

▶ Last writer wins (LWW) register:
Use timestamps with total order (e.g. Lamport clock)
Keep v2 and discard v1 if t2 > t1. Note: data loss!

▶ Multi-value register:
Use timestamps with partial order (e.g. vector clock)
v2 replaces v1 if t2 > t1; preserve both {v1, v2} if t1 ∥ t2

Slide 100

The details of this approach depend on the type of timestamps used. If we use Lamport clocks (with
the total order defined on Slide 73), two concurrent updates will be ordered arbitrarily, depending on how
the timestamps happen to get assigned. In this case, we get what is known as last writer wins (LWW)
semantics: the update with the greatest timestamp takes effect, and any concurrent updates with lower
timestamps to the same key are discarded. This approach is simple to work with, but it implies data loss
when multiple updates are performed concurrently. Whether or not this is a problem depends on the
application: in some systems, discarding concurrent updates is fine.

When discarding concurrent updates is not acceptable, we need to use a type of timestamp that allows
us to detect when updates happen concurrently, such as vector clocks. With such partially ordered time-
stamps, we can tell when a new value should overwrite an old value (when the old update happened before
the new update), and when several updates are concurrent, we can keep all of the concurrently written
values. These concurrently written values are called conflicts, or sometimes siblings. The application can
later merge conflicts back into a single value, as discussed in Section 8.

A downside of vector clocks is that they can become expensive: every client needs an entry in the
vector, and in systems with large number of clients (or where clients assume a new identity every time
they are restarted), these vectors can become large, potentially taking up more space than the data itself.
Further types of logical clocks, such as dotted version vectors [Preguiça et al., 2010], have been developed
to optimise this type of system.

Exercise 17. Apache Cassandra, a widely-used distributed database, uses a replication approach similar
to the one described here. However, it uses physical timestamps instead of logical timestamps, as dis-
cussed here: https://www.datastax.com/blog/why-cassandra-doesnt-need-vector-clocks. Write a critique
of this blog post. What do you think of its arguments and why? What facts are missing from it? What
recommendation would you make to someone considering using Cassandra?

5.2 Quorums

As discussed at the start of this lecture, replication is useful since it allows us to improve the reliability
of a system: when one replica is unavailable, the remaining replicas can continue processing requests.
Unavailability could be due to a faulty node (e.g. a crash or a hardware failure), due to a network partition
(inability to reach a node over the network), or planned maintenance (e.g. rebooting a node to install
software updates).

However, the details of how exactly the replication is performed have a big impact on the reliability
of the system. Without fault tolerance, having multiple replicas would make reliability worse: the more
replicas you have, the greater the probability that any one of the replicas is faulty at any one time
(assuming faults are not perfectly correlated). However, if the system continues working despite some
faulty replicas, then reliability improves: the probability that all replicas are faulty at the same time is
much lower than the probability of one replica being faulty.

54

https://www.datastax.com/blog/why-cassandra-doesnt-need-vector-clocks


Probability of faults
A replica may be unavailable due to network partition or
node fault (e.g. crash, hardware problem).

Assume each replica has probability p of being faulty or
unavailable at any one time, and that faults are independent.
(Not actually true! But okay approximation for now.)

Probability of all n replicas being faulty: pn

Probability of ≥ 1 out of n replicas being faulty: 1− (1− p)n

Example with p = 0.01:

replicas n P (≥ 1 faulty) P (≥ n+1
2

faulty) P (all n faulty)
1 0.01 0.01 0.01
3 0.03 3 · 10−4 10−6

5 0.049 1 · 10−5 10−10

100 0.63 6 · 10−74 10−200

Slide 101

We will now explore how to achieve fault tolerance in replication. To start, consider the example on
Slide 102. Assume we have two replicas, A and B, which initially both associate the key x with a value v0
(and timestamp t0). A client attempts to update the value of x to v1 (with timestamp t1). It succeeds in
updating B, but the update to A fails as A is temporarily unavailable. Subsequently, the client attempts
to read back the value it has written; the read succeeds at A but fails at B. As a result, the read does
not return the value v1 previously written by the same client, but rather the initial value v0.

Read-after-write consistency

client A B

t1
(t1, set(x, v1))

get(x)

(t0, v0)

Writing to one replica, reading from another: client does not
read back the value it has written

Require writing to/reading from both replicas =⇒ cannot
write/read if one replica is unavailable

Slide 102

This scenario is problematic, since from the client’s point of view it looks as if the value it has written
has been lost. Imagine you post an update on a social network, then refresh the page, and don’t see the
update you have just posted. As this behaviour is confusing for users, many systems require read-after-
write consistency (also known as read-your-writes consistency), in which we ensure that after a client
writes a value, the same client will be able to read back the value it has just written.

Strictly speaking, with read-after-write consistency, after writing a client may not read the value
it wrote because concurrently another client may have overwritten the value. Therefore we say that
read-after-write consistency requires reading either the last value written, or a later value.

On Slide 102 we could guarantee read-after-write consistency by ensuring we always write to both
replicas and/or read from both replicas. However, this would mean that reads and/or writes are no longer
fault-tolerant: if one replica is unavailable, a write or read that requires responses from both replicas
would not be able to complete.

We can solve this conundrum by using three replicas, as shown on Slide 103. We send every read
and write request to all three replicas, but we consider the request successful as long as we receive ≥ 2
responses. In the example, the write succeeds on replicas B and C, while the read succeeds on replicas
A and B. With a “2 out of 3” policy for both reads and writes, it is guaranteed that at least one of the
responses to a read is from a replica that saw the most recent write (in the example, this is replica B).

55



Quorum (2 out of 3)

client A B C

t1
(t1, set(x, v1))

ok ok

get(x)

(t0, v0) (t1, v1)

Write succeeds on B and C; read succeeds on A and B
Choose between (t0, v0) and (t1, v1) based on timestamp

Slide 103

Different replicas may return different responses to the same read request: on Slide 103, the read at
A returns the initial value (t0, v0), while the read at B returns the value (t1, v1) previously written by
this client. Using the timestamps, the client can tell which response is the more recent one, and return
v1 to the application.

In this example, the set of replicas {B,C} that responded to the write request is a write quorum, and
the set {A,B} that responded to the read is a read quorum. In general, a quorum is a minimum set of
nodes that must respond to some request for it to be successful. (The term comes from politics, where a
quorum refers to the minimum number of votes required to make a valid decision, e.g. in a parliament or
committee.) In order to ensure read-after-write consistency, the quorum for the write and the quorum
for the read must have a non-empty intersection: in other words, the read quorum must contain at least
one node that has acknowledged the write.

A common choice of quorum in distributed systems is a majority quorum, which is any subset of
nodes that comprises strictly more than half of the nodes. In a system with three nodes {A,B,C}, the
majority quorums are {A,B}, {A,C}, and {B,C}. In general, in a system with an odd number of nodes
n, any subset of size n+1

2 is a majority quorum (2 out of 3, or 3 out of 5, . . . ). With an even number of
nodes n, this needs to be rounded up to

⌈
n+1
2

⌉
= n+2

2 . For example, 3 out of 4 form a majority quorum.
Majority quorums have the property that any two quorums always have at least one element in common.
However, other quorum constructions besides majorities are also possible [Whittaker et al., 2021].

Read and write quorums
In a system with n replicas:

▶ If a write is acknowledged by w replicas (write quorum),

▶ and we subsequently read from r replicas (read quorum),

▶ and r + w > n,

▶ . . . then the read will see the previously written value
(or a value that subsequently overwrote it)

▶ Read quorum and write quorum share ≥ 1 replica

▶ Typical: r = w = n+1
2

for n = 3, 5, 7, . . . (majority)

▶ Reads can tolerate n− r unavailable replicas, writes n−w

read quorum write quorum

A B C D E

Slide 104

A system that requires w acknowledgements for writes (i.e. a write quorum of size w) can continue
processing updates as long as no more than n − w replicas are unavailable, and a system that requires
r responses for reads can continue reading as long as no more than n− r replicas are unavailable. With
majority quorums, this means that a system of three replicas can tolerate one replica being unavailable,
a system of five replicas can tolerate two being unavailable, and so on.

56



In this quorum approach to replication, some updates may be missing from some replicas at any given
moment: for example, on Slide 103, the (t1, v1) update is missing from replica A, since that write request
was dropped. To bring replicas back in sync with each other, one approach is to rely on an anti-entropy
process, as discussed on Slide 99.

Read repair

client A B C
get(x)

(t0, v0) (t1, v1)

(t1, set(x, v1))

Update (t1, v1) is more recent than (t0, v0) since t0 < t1.
Client helps propagate (t1, v1) to other replicas.

Slide 105

Another option is to get clients to help with the process of disseminating updates. For example, on
Slide 105, the client reads (t1, v1) from B, but it receives an older value (t0, v0) from A, and no response
from C. Since the client now knows that the update (t1, v1) needs to be propagated to A, it can send that
update to A (using the original timestamp t1, since this is not a new update, only a retry of a previous
update). The client may also send the update to C, even though it does not know whether C needs it (if
it turns out that C already has this update, only a small amount of network bandwidth is wasted). This
process is called read repair. The client can perform read repair on any read request it makes, regardless
of whether it was the client that originally performed the update in question.

Databases that use this model of replication are often called Dynamo-style, after Amazon’s Dynamo
database [DeCandia et al., 2007], which popularised it. However, the approach actually predates Dynamo
[Attiya et al., 1995].

5.3 Replication using broadcast

The quorum approach of Section 5.2 essentially uses best-effort broadcast: a client broadcasts every read
or write request to all of the replicas, but the protocol is unreliable (requests might be lost) and provides
no ordering guarantees.

An alternative approach to replication is to use the broadcast protocols from Section 4. Let’s first
consider FIFO-total order broadcast, the strongest form of broadcast we have seen.

State machine replication

So far we have used best-effort broadcast for replication.
What about stronger broadcast models?

Total order broadcast: every node delivers the same
messages in the same order

State machine replication (SMR):

▶ FIFO-total order broadcast every update to all replicas

▶ Replica delivers update message: apply it to own state

▶ Applying an update is deterministic

▶ Replica is a state machine: starts in fixed initial state,
goes through same sequence of state transitions in the
same order =⇒ all replicas end up in the same state

Slide 106

57



Using FIFO-total order broadcast it is easy to build a replicated system: we broadcast every update
request to the replicas, which update their state based on each message as it is delivered. This is called
state machine replication (SMR), because a replica acts as a state machine whose inputs are message
deliveries. We only require that the update logic is deterministic: any two replicas that are in the
same state, and are given the same input, must end up in the same next state. Even errors must be
deterministic: if an update succeeds on one replica but fails on another, they would become inconsistent.

An excellent feature of SMR is that the logic for moving from one state to the next can be arbitrarily
complex, as long as it is deterministic. For example, an entire database transaction with arbitrary business
logic can be executed, and this logic can depend both on the broadcast message and the current state of
the database. Some distributed database perform replication in this way, with each replica independently
executing the same deterministic transaction code (this is known as active replication). This principle also
underpins blockchains, cryptocurrencies, and distributed ledgers: the “chain of blocks” in a blockchain is
nothing other than the sequence of messages delivered by a total order broadcast protocol (more on this
in Section 7), and each replica deterministically executes the transactions described in those blocks to
determine the state of the ledger (e.g. who owns which money). A “smart contract” is just a deterministic
program that a replica executes when a particular message is delivered.

State machine replication

on request to perform update u do
send u via FIFO-total order broadcast

end on

on delivering u through FIFO-total order broadcast do
update state using arbitrary deterministic logic!

end on

Closely related ideas:

▶ Serializable transactions (execute in delivery order)

▶ Blockchains, distributed ledgers, smart contracts

Limitations:

▶ Cannot update state immediately, have to wait for
delivery through broadcast

▶ Need fault-tolerant total order broadcast: see next lecture

Slide 107

The downsides of state machine replication are the limitations of total order broadcast:

• As discussed in Section 4.1, when a node wants to broadcast a message through a total order
broadcast, it cannot immediately deliver that message to itself. For this reason, when using state
machine replication, a replica that wants to update its state cannot do so immediately, but it has
to go through the broadcast process, coordinate with other nodes, and wait for the update to be
delivered back to itself.

• The fault tolerance of state machine replication depends on the fault tolerance of the underlying
total order broadcast protocol. A good protocol will be able to tolerate some faults: that is, while
one node is down, the remaining nodes can continue broadcasting and delivering messages, and
when the faulty nodes recovers it will deliver the backlog of messages that were broadcast while it
was down. We will discuss this further in Section 7.

Nevertheless, replication based on total order broadcast is widely used.

58



Database leader replica

Leader database replica L ensures total order broadcast

client 1 client 2 L F

T1

T1

T2

T2

ok commit

ok commit

Follower F applies transaction log in commit order

Slide 108

Recall from Slide 91 that one way of implementing total order broadcast is to designate one node
as the leader, and to route all broadcast messages through it in order to impose a delivery order. This
principle is also widely used for database replication: many database systems designate one replica as
leader, primary, or master. Any transactions that wish to modify the database must be executed on
the leader replica. As shown on Slide 108, the leader may execute multiple transactions concurrently;
however, it commits those transactions in a total order. When a transaction commits, the leader replica
broadcasts the writes from that transaction to all the follower replicas, and the followers apply those
writes in commit order. This approach is known as passive replication or primary-backup replication, and
we can see that it is equivalent to total order broadcast of transaction commit records.

So much on using total order broadcast for replication. What about the other broadcast models from
Section 4 – can we use them for replication too? The answer is yes, as shown on Slide 109; however, more
care is required to ensure that replicas remain consistent. It is not sufficient to merely ensure that the
state update is deterministic.

For example, we can use causal broadcast, which ensures the same delivery order across replicas when
one update happened before another, but which may deliver concurrent updates in any order. If we
want to ensure that replicas end up in the same state, no matter in which order concurrent updates are
delivered, we need to make those updates commutative: that is, we have to ensure that the final result is
the same, no matter in which order those updates are applied. This can be done, and we will see some
techniques for commutativity in Section 8.

Replication using causal (and weaker) broadcast

State machine replication uses (FIFO-)total order broadcast.
Can we use weaker forms of broadcast too?

If replica state updates are commutative, replicas can process
updates in different orders and still end up in the same state.

Updates f and g are commutative if f(g(x)) = g(f(x))

broadcast assumptions about state update function

total order deterministic (SMR)

causal deterministic, concurrent updates commute

reliable deterministic, all updates commute

best-effort deterministic, commutative, idempotent,
tolerates message loss

Slide 109

59



6 Replica consistency

We have seen how to perform replication using read/write quorums, and state machine replication using
total order broadcast. In this context we have said that we want replicas to have “consistent copies of
the same data”, without defining exactly what we mean with consistent.

Unfortunately the word “consistency” means different things in different contexts. In the context of
transactions, the C in ACID stands for consistency that is a property of a state: that is, we can say
that a database is in a consistent or inconsistent state, meaning that the state satisfies or violates certain
invariants defined by the application. On the other hand, in the context of replication, we have used
“consistency” informally to refer to a relationship between replicas: we want one replica to be consistent
with another replica.

Since there is no one true definition of consistency, we speak instead about a variety of consistency
models. We have seen one particular example of a consistency model, namely read-after-write consistency
(Slide 102), which restricts the values that a read operation may return when the same node previously
writes to the same data item. We will see more models in this lecture.

“Consistency”
A word that means many different things in different contexts!

▶ ACID: a transaction transforms the database from one
“consistent” state to another

Here, “consistent” = satisfying application-specific
invariants

e.g. “every course with students enrolled must have at
least one lecturer”

▶ Read-after-write consistency

▶ Replication: replica should be “consistent” with other
replicas

“consistent” = in the same state? (when exactly?)

“consistent” = read operations return same result?

▶ Consistency model: many to choose from

Slide 110

6.1 Two-phase commit

Let’s start with a consistency problem that arises when executing a distributed transaction, i.e. a trans-
action that reads or writes data on multiple nodes. The data on those nodes may be replicas of the same
dataset, or different parts of a larger dataset; a distributed transaction applies in both cases.

Recall from the concurrent systems half of this course that a key property of a transaction is atomicity.
When a transaction spans multiple nodes, we still want atomicity for the transaction as a whole: that is,
either all nodes must commit the transaction and make its updates durable, or all nodes must abort the
transaction and discard or roll back its updates.

60



Distributed transactions

Recall atomicity in the context of ACID transactions:

▶ A transaction either commits or aborts

▶ If it commits, its updates are durable

▶ If it aborts, it has no visible side-effects

▶ ACID consistency (preserving invariants) relies on
atomicity

If the transaction updates data on multiple nodes, this implies:

▶ Either all nodes must commit, or all must abort

▶ If any node crashes, all must abort

Ensuring this is the atomic commitment problem.

Slide 111

The most common algorithm to ensure atomic commitment across multiple nodes is the two-phase
commit (2PC) protocol [Gray, 1978]. (Not to be confused with two-phase locking : 2PL ensures serializable
isolation for transactions, while 2PC ensures atomic commitment. There is also a three-phase commit
protocol, but it assumes the unrealistic synchronous system model, so we won’t discuss it here.) The
communication flow of 2PC is illustrated on Slide 112.

Two-phase commit (2PC)

client coordinator A B

T1

T1

begin T1

. . . usual transaction execution. . .

commit T1
prepare

ok ok

commit
decision whether

to commit or abort

Slide 112

When using two-phase commit, a client first starts a regular single-node transaction on each replica
that is participating in the transaction, and performs the usual reads and writes within those transac-
tions. When the client is ready to commit the transaction, it sends a commit request to the transaction
coordinator, a designated node that manages the 2PC protocol. In some systems, the coordinator is
a part of the client. Note that the coordinator only handles the process of committing or aborting a
transaction, and is not involved in the execution of the rest of the transaction.

The coordinator first sends a prepare message to each replica participating in the transaction, and
each replica replies with a message indicating whether it is able to commit the transaction (this is the
first phase of the protocol). The replicas do not actually commit the transaction yet, but they must
ensure that they will definitely be able to commit the transaction in the second phase if instructed by
the coordinator. This means, in particular, that the replica must write all of the transaction’s updates
to disk and check any integrity constraints before replying ok to the prepare message, while continuing
to hold any locks for the transaction.

The coordinator collects the responses, and decides whether or not to actually commit the transaction.
If all nodes reply ok, the coordinator decides to commit; if any node wants to abort, or if any node fails to
reply within some timeout, the coordinator decides to abort. The coordinator then sends its decision to
each of the replicas, who all commit or abort as instructed (this is the second phase). If the decision was
to commit, each replica is guaranteed to be able to commit its transaction because the previous prepare

61



request laid the groundwork. If the decision was to abort, the replica rolls back the transaction.

The coordinator in two-phase commit

What if the coordinator crashes?

▶ Coordinator writes its decision to disk

▶ When it recovers, read decision from disk and send it to
replicas (or abort if no decision was made before crash)

▶ Problem: if coordinator crashes after prepare, but before
broadcasting decision, other nodes do not know what it
has decided

▶ Replicas participating in transaction cannot commit or
abort after responding “ok” to the prepare request
(otherwise we risk violating atomicity)

▶ Algorithm is blocked until coordinator recovers

Slide 113

The problem with two-phase commit is that the coordinator is a single point of failure. Crashes of
the coordinator can be tolerated by having the coordinator write its commit/abort decisions to stable
storage, but even so, there may be transactions that have prepared but not yet committed/aborted at the
time of the coordinator crash (called in-doubt transactions). Any in-doubt transactions must wait until
the coordinator recovers to learn their fate; they cannot unilaterally decide to commit or abort, because
that decision could end up being inconsistent with the coordinator and other nodes, which might violate
atomicity.

Fortunately it is possible to avoid the single point of failure of the coordinator by using a total order
broadcast protocol. Slide 114 shows a fault-tolerant two-phase commit algorithm based on Paxos Commit
[Gray and Lamport, 2006]. The idea is that every node that is participating in the transaction uses total
order broadcast to disseminate its vote on whether to commit or abort. Moreover, if node A suspects
that node B has failed (because no vote from B was received within some timeout), then A may try to
vote to abort on behalf of B. This introduces a race condition: if node B is slow, it might be that node
B broadcasts its own vote to commit around the same time that node A suspects B to have failed and
votes on B’s behalf.

These votes are delivered to each node by total order broadcast, and each recipient independently
counts the votes. In doing so, we count only the first vote from any given replica, and ignore any
subsequent votes from the same replica. Since total order broadcast guarantees the same delivery order
on each node, all nodes will agree on whether the first delivered vote from a given replica was a commit vote
or an abort vote, even in the case of a race condition between multiple nodes broadcasting contradictory
votes for the same replica.

If a node observes that the first delivered vote from some replica is a vote to abort, then the transaction
can immediately be aborted. Otherwise a node must wait until it has delivered at least one vote from
each replica. Once these votes have been delivered, and none of the replicas vote to abort in their first
delivered message, then the transaction can be committed. Thanks to total order broadcast, all nodes
are guaranteed to make the same decision on whether to abort or to commit, which preserves atomicity.

62



Fault-tolerant two-phase commit (1/2)
on initialisation for transaction T do

commitVotes[T ] := {}; replicas[T ] := {}; decided [T ] := false
end on

on request to commit transaction T with participating nodes R do
for each r ∈ R do send (Prepare, T,R) to r

end on

on receiving (Prepare, T,R) at node replicaId do
replicas[T ] := R
ok = “is transaction T able to commit on this replica?”
total order broadcast (Vote, T, replicaId , ok) to replicas[T ]

end on

on a node suspects node replicaId to have crashed do
for each transaction T in which replicaId participated do

total order broadcast (Vote, T, replicaId , false) to replicas[T ]
end for

end on

Slide 114

Fault-tolerant two-phase commit (2/2)

on delivering (Vote, T, replicaId , ok) by total order broadcast do
if replicaId /∈ commitVotes[T ] ∧ replicaId ∈ replicas[T ] ∧

¬decided [T ] then
if ok = true then

commitVotes[T ] := commitVotes[T ] ∪ {replicaId}
if commitVotes[T ] = replicas[T ] then

decided [T ] := true
commit transaction T at this node

end if
else

decided [T ] := true
abort transaction T at this node

end if
end if

end on

Slide 115

6.2 Linearizability

An atomic commitment protocol is a way of preserving consistency across multiple replicas in the face
of faults, by ensuring that all participants of a transaction either commit or abort. However, when there
are multiple nodes concurrently reading and modifying some shared data concurrently, ensuring the same
commit or abort outcome for all nodes is not sufficient. We also have to reason about the interaction
that arises from concurrent activity.

In this section we will introduce one particular consistency model for concurrent system that is called
linearizability. We will discuss linearizability informally; if you are interested in the details, Herlihy
and Wing [1990] give a formal definition. People sometimes say strong consistency when referring to
linearizability, but the concept of “strong consistency” is rather vague and imprecise. We will stick to
the term linearizability, which has a precisely defined meaning.

An informal definition of linearizability appears on Slide 116. Over the following slides we will clarify
what this means through examples. The concept of linearizability can be applied to any type of object,
but it is most commonly used in the context of a register. A linearizable register is sometimes also known
as an atomic register.

Linearizability is a useful concept not only in distributed systems, but also in the context of shared-
memory concurrency on a single machine. Interestingly, on a computer with multiple CPU cores (pretty
much all servers, laptops and smartphones nowadays), memory access is not linearizable by default! This
is because each CPU core has its own caches, and an update made by one core is not immediately reflected
in another core’s cache. Thus, even a single computer starts behaving a bit like a replicated system. The
Multicore Semantics and Programming module in Part II goes into detail of multicore memory behaviour.

63

https://www.cl.cam.ac.uk/teaching/2526/MSP/


Don’t confuse linearizability with serializability, even though both words seem to mean something
like “can be arranged into a sequential order”. Serializability means that transactions have the same
effect as if they had been executed in some serial order, but it does not define what that order should be.
Linearizability defines the values that operations must return, depending on the concurrency and relative
ordering of those operations. It is possible for a system to provide both serializability and linearizability:
the combination of the two is called strict serializability or one-copy serializability.

Linearizability

Multiple nodes concurrently accessing replicated data.
How do we define “consistency” here?

The strongest option: linearizability

▶ Informally: every operation takes effect atomically
sometime after it started and before it finished

▶ All operations behave as if executed on a single copy of
the data (even if there are in fact multiple replicas)

▶ Consequence: every operation returns an “up-to-date”
value, a.k.a. “strong consistency”

▶ Not just in distributed systems, also in shared-memory
concurrency (memory on multi-core CPUs is not
linearizable by default!)

Note: linearizability ̸= serializability!

Slide 116

The main purpose of linearizability is to guarantee that nodes observe the system in an “up-to-date”
state; that is, they do not read stale (outdated) values. We have previously seen this concept of reading
an “up-to-date” value in the context of read-after-write consistency (Slide 102). However, while read-
after-write consistency defines only a consistency model for reads and writes made by the same node,
linearizability generalises this idea to operations made concurrently by different nodes.

From the point of view of a client, every operation takes some amount of time. We say that an
operation starts at the moment when it is requested by the application, and it finishes when the operation
result is returned to the application. Between the start and finish, various network communication steps
may happen; for example, if quorums are used, an operation can finish when the client has received
responses from a quorum of replicas.

Let’s consider a register supporting get/set operations, and see what it means for it to be linearizable.
On Slide 117 and the following slides we represent the client’s view of an operation as a rectangle covering
the period of time from the start to finish of an operation. Inside the rectangle we write the effect of the
operation: set(x, v) means updating the register x to have the value v, and get(x) → v means a read of
x that returns the value v.

Read-after-write consistency revisited

client A B C

set(x
,v

1 )

(t1, set(x, v1))

ok ok

get(x
)→

v
1

get(x)

(t0, v0) (t1, v1)

Slide 117

Linearizability is independent of the system implementation and communication protocols: all that

64



matters is the timing of each operation’s start and finish, and the outcome of the operation. We can
therefore leave out all of the replicas and message-sending arrows, and look at the system’s behaviour
only from the client’s point of view.

The key thing that linearizability cares about is whether one operation finished before another op-
eration started, regardless of the nodes on which they took place. On Slide 118, the two get operations
both start after the set operation has finished, and therefore we expect the get operations to return the
value v1 written by set.

From the client’s point of view

client 1 client 2

set(x
,v

1 )

?

?

get(x
)→

v
1

?

?

get(x
)→

v
1

real time

real time

▶ Focus on client-observable
behaviour: when and what an
operation returns

▶ Ignore how the replication
system is implemented internally

▶ Did operation A finish before
operation B started?

▶ Even if the operations are on
different nodes?

▶ This is not happens-before:
we want client 2 to read value
written by client 1, even if the
clients have not communicated!

Slide 118

On the other hand, on Slide 119, the get and set operation overlap in time: in this case we don’t
necessarily know in which order the operations take effect. get may return either the value v1 written by
set, or x’s previous value v0, and either result is acceptable.

Note that “operation A finished before operation B started” is not the same as “A happened before
B”. The happens-before relation (Section 3.3) is defined in terms of messages sent and received; it is
possible to have two operations that do not overlap in time, but are still concurrent according to the
happens-before relation, because no communication has occurred between those operations. On the
other hand, linearizability is defined in terms of real time: that is, a hypothetical global observer who can
instantaneously see the state of all nodes (or, a perfectly synchronised clock on each node) determines the
start and finish times of each operation. In reality, such a global observer or perfectly synchronised clock
does not exist in a system with variable network latency, but we can nevertheless define linearizability in
terms of such a hypothetical observer. This has the advantage that if we prove a system to be linearizable,
we can be sure that its consistency guarantees hold regardless of whether some communication has taken
place or not.

Operations overlapping in time

client 1 client 2

set(x
,v

1 )

get(x
)→

v
1

▶ Client 2’s get operation
overlaps in time with
client 1’s set operation

▶ Maybe the set operation
takes effect first?

▶ Just as likely, the get
operation may be
executed first

▶ Either outcome is fine in
this case

Slide 119

Linearizability is not only about the relationship of a get operation to a prior set operation, but it

65



can also relate one get operation to another. Slide 120 shows an example of a system that uses quorum
reads and writes, but is nevertheless non-linearizable. Here, client 1 sets x to v1, and due to a quirk of
the network the update to replica A happens quickly, while the updates to replicas B and C are delayed.
Client 2 reads from a quorum of {A,B}, receives responses {v0, v1}, and determines v1 to be the newer
value based on the attached timestamp. After client 2’s read has finished, client 3 starts a read from a
quorum of {B,C}, receives v0 from both replicas, and returns v0 (since it is not aware of v1).

Thus, client 3 observes an older value than client 2, even though the real-time order of operations
would require client 3’s read to return a value that is no older than client 2’s result. This behaviour is
not allowed in a linearizable system.

Not linearizable, despite quorum reads/writes

client 1 A B C client 2 client 3

set(x
,v

1 )

(t1, set(x, v1))

ok

ok ok

get(x
)→

v
1

get(x)

(t1, v1)

(t0, v0)

get(x
)→

v
0

get(x)

(t0, v0)

(t0, v0)

Slide 120

Not linearizable, despite quorum reads/writes

client 1 client 2 client 3

set(x
,v

1 )

get(x
)→

v
1

get(x
)→

v
0

real time

▶ Client 2’s operation finishes
before client 3’s operation
starts

▶ Linearizability therefore
requires client 3’s operation
to observe a state no older
than client 2’s operation

▶ This example violates
linearizability because v0 is
older than v1

Slide 121

Fortunately, it is possible to make get and set operations linearizable using quorum reads and writes.
First, for simplicity, assume that set operations are only performed by one designated node (we will
remove this assumption later). In this model, set operations don’t change: as before, they send the
update to all replicas, and wait for acknowledgement from a quorum of replicas.

For get operations, another step is required, as shown on Slide 122. A client must first send the
get request to replicas, and wait for responses from a quorum. If some responses include a more recent
value than other responses, as indicated by their timestamps, then the client must write back the most
recent value to all replicas that did not already respond with the most recent value, like in read repair
(Slide 105). The get operation returns its value to the application only after the client is sure that the
most recent value is stored on a quorum of replicas: that is, after a quorum of replicas either responded
ok to the read repair, or replied with the most recent value in the first place.

This approach is known as the ABD algorithm, after its authors Attiya, Bar-Noy, and Dolev [Attiya
et al., 1995]. It ensures linearizable reads and writes, because whenever a get and set operation finishes,

66



we know that the value read or written is present on a quorum of replicas, and therefore any subsequent
quorum read is guaranteed to observe that value (or a later value).

Exercise 18. Give pseudocode for the ABD algorithm.

ABD: Making quorum reads/writes linearizable

client 1 A B C client 2 client 3

set(x
,v

1 )

(t1, set(x, v1))

ok

ok ok

get(x
)→

v
1

get(x)

(t1, v1)

(t0, v0)

(t1, set(x,
v1))

okok

get(x
)→

v
1

. . .

. . .

Slide 122

To generalise the ABD algorithm to a setting where multiple nodes may perform set operations, we
need to ensure timestamps reflect the real-time ordering of operations. Say operation set(x, v1) has a
timestamp of t1, operation set(x, v2) has a timestamp of t2, and the first operation finishes before the
second operation starts: then we must ensure that t1 < t2.

We can do this by having each set operation first request the latest timestamp from each replica and
waiting for responses from a quorum (like in a get operation). The logical timestamp for the set operation
is then one plus the maximum timestamp received from the quorum. Since the quorum is guaranteed to
contain at least one replica that has observed any set operation that has completed, we get the required
ordering of timestamps.

However, if two different clients are concurrently performing set operations, this approach could result
in two different operations having the same timestamp. To tell them apart, we can give each client a
unique ID, and incorporate that ID into the timestamps generated by that client. When a get operation
encounters responses with the same timestamp, but different client IDs, it can use a total ordering on
client IDs to determine which one is the “winner” (similarly to the Lamport timestamp definition we saw
on Slide 71 to 73). This algorithm ensures linearizable get and set operations for any number of nodes
[Cachin et al., 2011, Lynch and Shvartsman, 1997].

Linearizability for different operations

This ensures linearizability of get (quorum read) and
set (blind write to quorum)

▶ When an operation finishes, the value read/written is
stored on a quorum of replicas

▶ Every subsequent quorum operation will see that value

▶ Multiple concurrent writes may overwrite each other

What about an atomic compare-and-swap operation?

▶ CAS(x, oldValue, newValue) sets x to newValue iff
current value of x is oldValue

▶ Previously discussed in shared-memory concurrency

▶ Can we implement linearizable compare-and-swap in a
distributed system?

▶ Yes: total order broadcast to the rescue again!

Slide 123

The set operation for which the ABD algorithm ensures linearizability is a so-called blind write (un-
conditional write): it simply overwrites the value of the register, regardless of its previous value. If

67



multiple clients concurrently write to the same item, it uses a last-writer-wins conflict resolution policy
(Slide 100), i.e. one of those writes will end up as the “winner” and the other values will silently be
discarded.

In some applications, we want to be more careful and overwrite a value only if it has not been
concurrently modified by another node. This can be achieved with an atomic compare-and-swap (CAS)
operation. A CAS operation for concurrency between threads on a single node was discussed in the first
half of this course. This raises the question: how can we implement a linearizable CAS operation in a
distributed, replicated system?

Recall that the purpose of linearizability is to make a system behave as if there was only a single copy
of the data, and all operations on it happen atomically, even if the system is in fact replicated. This
makes CAS a natural operation to want to support in a linearizable context.

Linearizable compare-and-swap (CAS)
on request to perform get(x) do

total order broadcast (get, x) and wait for delivery
end on

on request to perform CAS(x, old ,new) do
total order broadcast (CAS, x, old ,new) and wait for delivery

end on

on delivering (get, x) by total order broadcast do
return localState[x] as result of operation get(x)

end on

on delivering (CAS, x, old ,new) by total order broadcast do
success := false
if localState[x] = old then

localState[x] := new ; success := true
end if
return success as result of operation CAS(x, old ,new)

end on

Slide 124

The ABD algorithm is not able to implement CAS, because different replicas may see the operations
in a different order, and thus reach inconsistent conclusions about whether a particular CAS operation
succeeded or not. However, it is possible to implement a linearizable, replicated CAS operation using
total order broadcast, as shown on Slide 124. We simply broadcast every operation we want to perform,
and actually execute the operation when it is delivered. Like in state machine replication (Slide 106),
this algorithm ensures that an operation has the same effect and outcome on every replica.

Exercise 19. Is the following execution linearizable? If not, where does the violation occur?

68



node A node B node C node D

set(x
,1

)
g
et(x

)→
4

g
et(x

)→
1

ca
s(x

,1
,2

)→
tru

e
g
et(x

)→
2

g
et(x

)→
1

g
et(x

)→
2

ca
s(x

,2
,4

)→
tru

e

set(x
,0

)
ca
s(x

,0
,3

)→
fa
lse

7 Consensus and total order broadcast

In this lecture we return to the problem of total order broadcast. We saw in Section 5.3 that total order
broadcast is very useful for enabling state machine replication. As discussed on Slide 91, one way of
implementing total order broadcast is by designating one node as the leader, and routing all messages
via it. The leader then just needs to distribute the messages via FIFO broadcast, and this is sufficient to
ensure that all nodes deliver the same sequence of messages in the same order.

However, the big problem with this approach is that the leader is a single point of failure: if it
becomes unavailable, the whole system grinds to a halt. One way of overcoming this is through manual
intervention: a human operator can be notified if the leader becomes unavailable, and this person then
reconfigures all of the nodes to use a different node as their leader. This process is called failover, and it
is in fact used in many database systems.

Failover works fine in situations where the leader unavailability is planned in advance, for example
when the leader needs to be rebooted to install software updates. However, for sudden and unexpected
leader outages (e.g. a crash, hardware failure, or network problem), failover suffers from the fact that
humans are limited in how fast they can perform this procedure. Even in the best case, it will take several
minutes for an operator to respond, during which the system is not able to process any updates.

This raises the question: can we automatically transfer the leadership from one node to another in the
case that the old leader becomes unavailable? The answer is yes, and this is exactly what some consensus
algorithms do.

69



Fault-tolerant total order broadcast

Total order broadcast is very useful for state machine
replication.

Can implement total order broadcast by sending all messages
via a single leader.

Problem: what if leader crashes/becomes unavailable?

▶ Manual failover: a human operator chooses a new
leader, and reconfigures each node to use new leader

Used in many databases! Fine for planned maintenance.

Unplanned outage? Humans are slow, may take a long
time until system recovers. . .

▶ Can we automatically choose a new leader?

Slide 125

7.1 Introduction to consensus

The consensus problem is traditionally formulated as follows: several nodes want to come to agreement
about a value. One or more nodes may propose a value, and then the consensus algorithm will decide on
one of those values. The algorithm guarantees that the decided value is one of the proposed values, that
all nodes decide on the same value (with the exception of faulty nodes, which may not decide anything),
and that the decision is final (a node will not change its mind once it has decided a value).

It has been formally shown that consensus and total order broadcast are equivalent to each other –
that is, an algorithm for one can be turned into an algorithm for the other, and vice versa [Chandra and
Toueg, 1996]:

• To turn total order broadcast into consensus, a node that wants to propose a value broadcasts it,
and the first message delivered by total order broadcast is taken to be the decided value.

• To turn consensus into total order broadcast, we use a separate instance of the consensus protocol
to decide on the first, second, third, . . . message to be delivered. A node that wants to broadcast
a message proposes it for one of these rounds of consensus. The consensus algorithm then ensures
that all nodes agree on the sequence of messages to be delivered.

Consensus and total order broadcast

▶ Traditional formulation of consensus: several nodes want
to come to agreement about a single value

▶ In context of total order broadcast: this value is the next
message to deliver

▶ Once one node decides on a certain message order, all
nodes will decide the same order

▶ Consensus and total order broadcast are formally
equivalent

Common consensus algorithms:

▶ Paxos: single-value consensus
Multi-Paxos: generalisation to total order broadcast

▶ Raft, Viewstamped Replication, Zab:
FIFO-total order broadcast by default

Slide 126

The two best-known consensus algorithms are Paxos [Lamport, 1998] and Raft [Ongaro and Ouster-
hout, 2014]. In its original formulation, Paxos provides only consensus on a single value, and the Multi-
Paxos algorithm is a generalisation of Paxos that provides FIFO-total order broadcast. On the other
hand, Raft is designed to provide FIFO-total order broadcast “out of the box”.

70



You might be wondering: is the agreement property of consensus the same as atomic commitment,
which we discussed in Section 6.1? The answer is no: although both are superficially about reaching
agreement, the details differ significantly, as shown on Slide 127.

Atomic commit versus consensus

Atomic commit Consensus

Every node votes whether to
commit or abort

One or more nodes propose
a value

Must commit if all nodes
vote to commit; must abort
if ≥ 1 nodes vote to abort

Any one of the proposed
values is decided

Must abort if a participating
node crashes

Crashed nodes can be
tolerated, as long as a
quorum is working

Slide 127

In this lecture we will examine the Raft algorithm for total order broadcast, since total order broadcast
is generally a more useful abstraction than single-value consensus. In Section 4.1 we discussed informally
what we want from a total order broadcast algorithm (it should deliver the same messages in the same
order at each node), but now we need to be more precise. For example, we need to specify what happens
when a node crashes: a crashed node that does not recover will not be able to do anything, and so it
doesn’t make sense to require it to continue delivering messages after it has crashed.

Another property we would like is that a message is delivered if and only if it was broadcast. The
algorithm would not be very useful if a broadcast message was never delivered, and it would be even
worse if the algorithm delivered messages that were never broadcast. However, we have to allow the
possibility that a node tries to broadcast a message and then immediately crashes before it is able to
send the message to any other node; in this case the broadcast message will never be delivered.

Slide 128 shows one way of formalising the properties of total order broadcast in a way that is precise
and achievable. The five properties are broken down into two categories: safety and liveness. (The concept
of safety and liveness applies to many types of algorithms, not only consensus/broadcast algorithms.)

• A safety property is an invariant that must never be violated: that is, at any point in the execution
we can check this property and it must always be true.

• A liveness property is an expectation of a future state: initially it might not be satisfied (for example,
a node may have broadcast a message, but it has not yet been delivered), but we can ensure that
we wait long enough, it will eventually become true. Liveness properties do not have a time bound
on how long it might take until the property is satisfied: we only require them to hold eventually,
i.e. after some arbitrary but finite amount of time.

Liveness properties are intentionally vague with regard to timing. Ideally we would have some sort
of SLA, such as “99.9% of broadcast messages are delivered within 200 ms” (Slide 17); however, if we
wanted to prove that an algorithm meets some SLA, we would have to make a lot of assumptions about
network latency, probability of message loss, and other factors that affect timing. That would get rather
complicated, and therefore we use liveness properties as a simplification.

On Slide 128, property 1 captures the requirement that messages are delivered in the same order at
every node. Properties 2, 4, and 5 ensure that non-crashed nodes deliver all the messages that were
broadcast, and nothing else. Property 3 rules out duplicate deliveries of the same message (for simplicity,
we assume that every broadcast message is unique, if necessary by adding a unique broadcast ID to every
message).

Exercise 20. Would it be equivalent to combine properties 4 and 5 into a single liveness property, namely
“If a node broadcasts a message m and does not crash, then every node that does not crash eventually
delivers m”?

71



How total order broadcast should behave

Properties of total order broadcast fall into two categories:

▶ Safety: “nothing bad happens”

1. Let N1 and N2 be two nodes that each deliver two
messages m1 and m2, and assume that N1 delivers m1

before m2. Then N2 also delivers m1 before m2.
2. If some node delivers a message m, then m was

previously broadcast by some node.
3. A node does not deliver the same message more than

once.

▶ Liveness: “something good eventually happens”

4. If a node broadcasts a message m and does not crash,
then eventually that node delivers m.

5. If one node delivers a message m, then every other node
that does not crash eventually delivers m.

Slide 128

Consensus system models

Paxos, Raft, etc. assume a partially synchronous,
crash-recovery system model.

Why not asynchronous?

▶ FLP result (Fischer, Lynch, Paterson):
There is no deterministic consensus algorithm that is
guaranteed to terminate in an asynchronous crash-stop
system model.

▶ Paxos, Raft, etc. use clocks only used for timeouts/failure
detector to ensure liveness. Safety does not depend on
timing.

There are also consensus algorithms for a partially synchronous
Byzantine system model (used in blockchains)

Slide 129

The design of a consensus algorithm depends crucially on the system model, as discussed in Section 2.3.
Paxos and Raft assume a system model with fair-loss links (Slide 40), crash-recovery behaviour of nodes
(Slide 41), and partial synchrony (Slide 42).

The assumptions on network and node behaviour can be weakened to Byzantine, and such algorithms
are used in blockchains. However, Byzantine fault-tolerant consensus algorithms are significantly more
complicated and less efficient than non-Byzantine ones. We will focus on fair-loss, crash-recovery algo-
rithms for now, which are useful in many practical settings (such as datacenters in which the machines
are running trusted code).

On the other hand, the assumption of partial synchrony cannot be weakened to asynchrony. The rea-
son is that consensus requires a failure detector (Slide 45), which in turn requires a local clock to trigger
timeouts [Chandra and Toueg, 1996]. If we did not have any clocks, then a deterministic consensus algo-
rithm might never terminate. Indeed, it has been proved that no deterministic, asynchronous algorithm
can solve the consensus problem with guaranteed termination. This fact is known as the FLP result, one
of the most important theorems of distributed computing, named after its three authors Fischer, Lynch,
and Paterson [Fischer et al., 1985].

It is possible to get around the FLP result by using a nondeterministic (randomised) algorithm. How-
ever, most practical systems instead avoid non-termination by using clocks for timeouts. Recall, however,
that in a partially synchronous system, we cannot assume bounded network latency or bounded execution
speed of nodes. For this reason, consensus algorithms need to guarantee their safety properties regardless
of the timing in the system, even if messages are arbitrarily delayed. Only the liveness properties may
depend on clocks and timing.

72



Leader election
Multi-Paxos, Raft, etc. use a leader to sequence messages.
▶ Use a failure detector (timeout) to determine suspected

crash or unavailability of leader.
▶ On suspected leader crash, elect a new one.
▶ Prevent two leaders at the same time (“split-brain”)!

Ensure ≤ 1 leader per term:
▶ Term is incremented every time a leader election is started
▶ A node can only vote once per term
▶ Require a quorum of nodes to elect a leader in a term

elects a leader cannot elect a different leader
because C already voted

A B C D E

Slide 130

At the core of most consensus algorithms is a process for electing a new leader when the existing leader
becomes unavailable for whatever reason. The details differ between the algorithms; in this lecture we will
concentrate on the approach taken by Raft, but many of the lessons from Raft are equally relevant to other
consensus algorithms. Howard and Mortier [2020] give a detailed comparison of Raft and Multi-Paxos.

A leader election is initiated when the other nodes suspect the current leader to have failed, typically
because they haven’t received any message from the leader for some time. One of the other nodes becomes
a candidate and asks the other nodes to vote on whether they accept the candidate as their new leader. If
a quorum (Section 5.2) of nodes vote in favour of the candidate, it becomes the new leader. If a majority
quorum is used, this vote can succeed as long as a majority of nodes (2 out of 3, or 3 out of 5, etc.) are
working and able to communicate.

If there were multiple leaders, they could make inconsistent decisions that lead to violations of the
safety properties of total order broadcast (a situation known as split brain). Therefore, the key thing we
want of a leader election is that there should only be one leader at any one time. In Raft, the concept
of “at any one time” is captured by having a term number, which is just an integer that is incremented
every time a leader election is started. If a leader is elected, the voting algorithm guarantees that that it
is the only leader within that particular term. Different terms may have different leaders.

Can we guarantee there is only one leader?

Can guarantee unique leader per term.

Cannot prevent having multiple leaders from different terms.

Example: node 1 is leader in term t, but due to a network
partition it can no longer communicate with nodes 2 and 3:

node 1 node 2 node 3

Nodes 2 and 3 may elect a new leader in term t+ 1.

Node 1 may not even know that a new leader has been elected!

Slide 131

However, recall from Slide 46 that in a partially synchronous system, a timeout-based failure detector
may be inaccurate: it may suspect a node has having crashed when in fact the node is functioning fine,
for example due to a spike in network latency. For example, on Slide 131, node 1 is the leader in term
t, but the network between it and nodes 2 and 3 is temporarily interrupted. Nodes 2 and 3 may detect
node 1 as having failed, and elect a new leader in term t + 1, even though node 1 is still functioning
correctly. Moreover, node 1 might not even have noticed the network problem, and it doesn’t yet know
about the new leader either. Thus, we end up with two nodes both believing to be the leader.

73



Checking if a leader has been voted out
For every decision (message to deliver), the leader must first
get acknowledgements from a quorum.

leader follower 1 follower 2

Shall I be your leader in term t?

yes yes

Can we deliver message m next in term t?
okay okay

Right, now deliver m please

Slide 132

For this reason, even after a node has been elected leader, it must act carefully, since at any moment
the system might contain be another leader with a later term that it has not yet heard about. It is not
safe for a leader to act unilaterally. Instead, every time a leader wants to decide on the next message to
deliver, it must again request confirmation from a quorum of nodes. This is illustrated on Slide 132:

1. In the first round-trip, the left node is elected leader thanks to the votes of the other two nodes.

2. In the second round-trip, the leader proposes the next message to deliver, and the followers ac-
knowledge that they do not know of any leader with a later term than t.

3. Finally, the leader actually delivers m and broadcasts this fact to the followers, so that they can do
the same.

If another leader has been elected, the old leader will find out from at least one of the acknowledgements
in the second round-trip, because at least one of the nodes in the second-round quorum must have also
voted for the new leader. Therefore, even though multiple leaders may exist at the same time, the old
leaders will no longer be able to decide on any further messages to deliver, making the algorithm safe.

7.2 The Raft consensus algorithm

To make these ideas concrete, we will now walk through the full Raft algorithm for fault-tolerant FIFO-
total order broadcast. It is by far the most complex algorithm that we look at in this course, with
pseudocode spanning nine slides. (Paxos and other consensus algorithms are similarly complex, if not
worse.) There is no need to memorise the whole algorithm for the exam, but it is worth studying
carefully in order to understand the underlying principles. For a graphical visualisation of the algorithm,
see http://thesecretlivesofdata.com/raft/.

In order to understand the algorithm, it is worth keeping in mind the state machine on Slide 133. A
node can be in one of three states: leader, candidate, or follower. When a node first starts running, or
when it crashes and recovers, it starts up in the follower state and awaits messages from other nodes.
If it receives no messages from a leader or candidate for some period of time, the follower suspects that
the leader is unavailable, and it may attempt to become leader itself. The timeout for detecting leader
failure is randomised, to reduce the probability of several nodes becoming candidates concurrently and
competing to become leader.

When a node suspects the leader to have failed, it transitions to the candidate state, increments the
term number, and starts a leader election in that term, asking other nodes to vote for it. During this
election, if the node hears from another candidate or leader with a higher term, it moves back into the
follower state. But if the election succeeds and it receives votes from a quorum of nodes, the candidate
transitions to the leader state. If not enough votes are received within some period of time, the election
times out, and the candidate restarts the election with a higher term.

Once a node is in the leader state, it remains leader until it is shut down or crashes, or until it receives
a message from a leader or candidate with a term higher than its own. Such a higher term could occur if
a network partition made the leader and another node unable to communicate for long enough that the
other node started an election for a new leader. On hearing about a higher term, the former leader steps
down to become a follower.

74

http://thesecretlivesofdata.com/raft/


Node state transitions in Raft

Follower Candidate Leader

starts up
or recovers
from crash

suspects
leader failure

receives votes
from quorum

discovers
new term

election
times out

discovers new term

Slide 133

Slide 134 shows the pseudocode for starting up, and for starting an election. The variables defined
in the initialisation block constitute the state of a node. Four of the variables (currentTerm, votedFor ,
log , and commitLength) need to be maintained in stable storage (e.g. on disk), since their values must
not be lost in the case of a crash. The other variables can be in volatile memory, and the crash-recovery
function resets their values. Each node has a unique ID, and we assume there is a global constant, nodes,
containing the set of IDs of all nodes in the system. This version of the algorithm does not deal with
reconfiguration (adding or removing nodes in the system).

The variable log contains an array of entries, each of which has the properties msg and term. The msg
property of each array entry contains a message that we want to deliver through total order broadcast,
and the term property contains the term number in which it was broadcast. The log uses zero-based
indexing, so log [0] is the first log entry and log [log .length−1] is the last. The log grows by appending new
entries to the end, and Raft replicates this log across nodes. When a log entry (and all of its predecessors)
have been replicated to a quorum of nodes, it is committed. At the moment when we commit a log entry,
we also deliver its msg to the application. Before a log entry is committed, it may yet change, but Raft
guarantees that once a log entry is committed, it is final, and all nodes will commit the same sequence
of log entries. Therefore, delivering messages from committed log entries in their log order gives us total
order broadcast.

When a node suspects a leader failure, it starts a leader election as follows: it increments currentTerm,
it sets its own role to candidate, and it votes for itself by setting votedFor and votesReceived to its own
node ID. It then sends a VoteRequest message to each other node, asking it to vote on whether this
candidate should be the new leader. The message contains the nodeId of the candidate, its currentTerm
(after incrementing), the number of entries in its log, and the term property of its last log entry.

Raft (1/9): initialisation
on initialisation do

currentTerm := 0; votedFor := null
log := ⟨⟩; commitLength := 0
currentRole := follower; currentLeader := null
votesReceived := {}; sentLength := ⟨⟩; ackedLength := ⟨⟩

end on

on recovery from crash do
currentRole := follower; currentLeader := null
votesReceived := {}; sentLength := ⟨⟩; ackedLength := ⟨⟩

end on

on node nodeId suspects leader has failed, or on election timeout do
currentTerm := currentTerm + 1; currentRole := candidate
votedFor := nodeId ; votesReceived := {nodeId}; lastTerm := 0
if log .length > 0 then lastTerm := log [log .length− 1].term; end if
msg := (VoteRequest,nodeId , currentTerm, log .length, lastTerm)
for each node ∈ nodes: send msg to node
start election timer

end on

log =
m1

1

m2

1

m3

1

msg

term

log [0] log [1] log [2]

Slide 134

75



Raft (2/9): voting on a new leader

on receiving (VoteRequest, cId , cTerm, cLogLength, cLogTerm)
at node nodeId do

if cTerm > currentTerm then
currentTerm := cTerm; currentRole := follower
votedFor := null

end if
lastTerm := 0
if log .length > 0 then lastTerm := log [log .length− 1].term; end if
logOk := (cLogTerm > lastTerm) ∨

(cLogTerm = lastTerm ∧ cLogLength ≥ log .length)

if cTerm = currentTerm ∧ logOk ∧ votedFor ∈ {cId , null} then
votedFor := cId
send (VoteResponse,nodeId , currentTerm, true) to node cId

else
send (VoteResponse,nodeId , currentTerm, false) to node cId

end if
end on

c for candidate

Slide 135

Slide 135 shows what happens when a node receives a VoteRequest message from a candidate. If the
candidate’s term is greater than the recipient’s current term, the recipient becomes a follower in that
term (even if it was a leader in a previous term). It then checks whether the candidate’s log is at least as
up-to-date as its own log; this prevents a candidate with an outdated log from becoming leader, which
could lead to the loss of committed log entries. The candidate’s log is acceptable if the term of its last
log entry is higher than the term of the last log entry on the node that received the VoteRequest message.
Moreover, the log is also acceptable if the terms are the same and the candidate’s log contains at least
as many entries as the recipient’s log. This logic is reflected in the logOk variable.

The votedFor variable keeps track of any previous vote by the current node in currentTerm. If the
candidate’s term is the most recent we have seen, and if the candidate’s log is up-to-date, and if we
have not already voted for another candidate in this term, then we vote in favour of the candidate by
recording it in votedFor , and sending a VoteResponse message containing true (indicating success) to the
candidate. Otherwise, we send a VoteResponse message containing false (indicating a refusal to vote for
the candidate). Besides the flag for success or failure, the response message contains the nodeId of the
node sending the vote, and the term of the vote.

Raft (3/9): collecting votes

on receiving (VoteResponse, voterId , term, granted) at nodeId do
if currentRole = candidate ∧ term = currentTerm ∧ granted then

votesReceived := votesReceived ∪ {voterId}
if |votesReceived | ≥ ⌈(|nodes|+ 1)/2⌉ then

currentRole := leader; currentLeader := nodeId
cancel election timer
for each follower ∈ nodes \ {nodeId} do

sentLength[follower ] := log .length
ackedLength[follower ] := 0
ReplicateLog(nodeId , follower)

end for
end if

else if term > currentTerm then
currentTerm := term
currentRole := follower
votedFor := null
cancel election timer

end if
end on

Slide 136

Back on the candidate, Slide 136 shows the code for processing the VoteResponse messages. We ignore
any responses relating to earlier terms (which could arrive late due to network delays). If the term in
the response is higher than the candidate’s term, the candidate cancels the election and transitions back
into the follower state. But if the term is correct and the success flag granted is set to true, the candidate
adds the node ID of the voter to the set of votes received.

If the set of votes constitutes a quorum, the candidate transitions into the leader state. As its first
action as a leader, it updates the sentLength and ackedLength variables (explained below), and then calls
the ReplicateLog function (defined on Slide 138) for each follower. This has the effect of sending a

76



message to each follower, informing them about the new leader.
On the leader, sentLength and ackedLength are variables that map each node ID to an integer (non-

leader nodes do not use these variables). For each follower F , sentLength[F ] tracks how many log
entries, counting from the beginning of the log, have been sent to F , and ackedLength[F ] tracks how
many log entries have been acknowledged as received by F . On becoming a leader, a node initialises
sentLength[F ] to log .length (i.e. it assumes that the follower has already been sent the whole log), and
initialises ackedLength[F ] to 0 (i.e. nothing has been acknowledged yet). These assumptions might be
wrong: for example, the follower might be missing some of the log entries that are present on the leader.
In this case, sentLength[F ] will be corrected through a process that we discuss on Slide 141.

Slide 137 shows how a new entry is added to the log when the application wishes to broadcast a
message through total order broadcast. A leader can simply go ahead and append a new entry to its log,
while any other node needs to ask the leader to do this on its behalf, via a FIFO link (to ensure FIFO-
total order broadcast). The leader then updates its own entry in ackedLength to log .length, indicating
that it has acknowledged its own addition to the log, and calls ReplicateLog for each other node.

Moreover, a leader also periodically calls ReplicateLog for each other node, even if there is no new
message to broadcast. This serves multiple purposes: it lets the followers know that the leader is still
alive; it serves as retransmission of any messages from leader to follower that might have been lost; and
it updates the follower about which messages can be committed, as explained below.

Raft (4/9): broadcasting messages

on request to broadcast msg at node nodeId do
if currentRole = leader then

append the record (msg : msg , term : currentTerm) to log
ackedLength[nodeId ] := log .length
for each follower ∈ nodes \ {nodeId} do

ReplicateLog(nodeId , follower)
end for

else
forward the request to currentLeader via a FIFO link

end if
end on

periodically at node nodeId do
if currentRole = leader then

for each follower ∈ nodes \ {nodeId} do
ReplicateLog(nodeId , follower)

end for
end if

end do
Slide 137

Raft (5/9): replicating to followers

Called on the leader whenever there is a new message in the log, and also
periodically. If there are no new messages, suffix is the empty list.
LogRequest messages with suffix = ⟨⟩ serve as heartbeats, letting
followers know that the leader is still alive.

function ReplicateLog(leaderId , followerId)
prefixLen := sentLength[followerId ]
suffix := ⟨log [prefixLen], log [prefixLen + 1], . . . ,

log [log .length− 1]⟩
prefixTerm := 0
if prefixLen > 0 then

prefixTerm := log [prefixLen − 1].term
end if
send (LogRequest, leaderId , currentTerm, prefixLen,

prefixTerm, commitLength, suffix ) to followerId
end function

Slide 138

The ReplicateLog function is shown on Slide 138. Its purpose is to send any new log entries from
the leader to the follower node with ID followerId . It first sets the variable suffix to the suffix of the log
starting with index sentLength[followerId ], if it exists. That is, if sentLength[followerId ] is the number of
log entries already sent to followerId , then suffix contains the remaining entries that have not yet been

77



sent. If sentLength[followerId ] = log .length, the variable suffix is set to the empty array.
ReplicateLog then sends a LogRequest message to followerId containing suffix as well as several

other values: the ID of the leader; its current term; the length of the log prefix that precedes suffix ; the
term of the last log entry preceding suffix ; and commitLength, which is the number of log entries that
have been committed, as counted from the start of the log. More on committing log entries shortly.

When a follower receives a LogRequest message from the leader it processes the message as shown on
Slide 139. First, if the message is for a later term than the follower has previously seen, it updates its
current term and accepts the sender of the message as leader. The recipient of the message may also be
a candidate in the same term; if so, it also becomes a follower and recognises the sender as leader.

Next, the follower checks if its log is consistent with that of the leader. prefixLen is the number of
log entries that precede the new suffix contained in the LogRequest message. The follower requires that
its log is at least as long as prefixLen (i.e. it is not missing any entries), and that the term of the last log
entry in the prefixLen prefix of the follower’s log is the same as the term of the same log entry on the
leader. Raft ensures that if two nodes have the same term number at the same index of the log, then
their logs are identical up to and including that index. Therefore, if the logOk variable is set to true, that
means the follower’s first prefixLen log entries are identical to the corresponding log prefix on the leader.

If the LogRequest message is for the expected term and if logOk , then the follower accepts the message
and calls the AppendEntries function (defined on Slide 140) to add suffix to its own log. It then
replies to the leader with a LogResponse message containing the follower’s ID, the current term, an
acknowledgement of the number of log entries received, and the value true indicating that the LogRequest
was successful. If the message is from an outdated term or logOk is false, the follower replies with a
LogResponse containing false to indicate an error.

Raft (6/9): followers receiving messages
on receiving (LogRequest, leaderId , term, prefixLen, prefixTerm,

leaderCommit , suffix ) at node nodeId do
if term > currentTerm then

currentTerm := term; votedFor := null
end if
if term = currentTerm then

currentRole := follower; currentLeader := leaderId
cancel election timer

end if
logOk := (log .length ≥ prefixLen) ∧

(prefixLen = 0 ∨ log [prefixLen − 1].term = prefixTerm)
if term = currentTerm ∧ logOk then

AppendEntries(prefixLen, leaderCommit , suffix )
ack := prefixLen + suffix .length
send (LogResponse,nodeId , currentTerm, ack , true) to leaderId

else
send (LogResponse,nodeId , currentTerm, 0, false) to leaderId

end if
end on

Slide 139

Raft (7/9): updating followers’ logs
function AppendEntries(prefixLen, leaderCommit , suffix )

if suffix .length > 0 ∧ log .length > prefixLen then
index := min(log .length, prefixLen + suffix .length)− 1
if log [index ].term ̸= suffix [index − prefixLen].term then

log := ⟨log [0], log [1], . . . , log [prefixLen − 1]⟩
end if

end if
if prefixLen + suffix .length > log .length then

for i := log .length− prefixLen to suffix .length− 1 do
append suffix [i] to log

end for
end if
if leaderCommit > commitLength then

for i := commitLength to leaderCommit − 1 do
deliver log [i].msg to the application

end for
commitLength := leaderCommit

end if
end function

Slide 140

78



Slide 140 shows the AppendEntries function, which a follower calls to extend its log with entries
received from the leader. prefixLen is the number of log entries that precede the new suffix . If the
follower’s log already contains entries at log [prefixLen] and beyond, we need to check whether they match
the log entries in suffix . We pick the last log index we can compare between leader and follower (either
the last entry in the follower’s log or the last entry in suffix , whichever comes first) and compare the terms
at that log index. If they are inconsistent we have to truncate the log, keeping only the first prefixLen
entries and discarding the rest. Such inconsistency could happen if the existing log entries came from a
previous leader, which has now been superseded by a new leader.

Next, any new entries that are not already present in the follower’s log are appended to the log. This
operation is idempotent in case the LogRequest message is duplicated.

Finally, the follower checks whether the integer leaderCommit in the LogRequest message is greater
than its local variable commitLength. If so, this means that new records are ready to be committed and
delivered to the application. The follower moves its commitLength forward and performs the total order
broadcast delivery of the messages in the appropriate log entries.

This completes the algorithm from the followers’ point of view. What remains is to switch back to
the leader, and to show how it processes the LogResponse messages from followers (see Slide 141).

Raft (8/9): leader receiving acks

on receiving (LogResponse, follower , term, ack , success) at nodeId do
if term = currentTerm ∧ currentRole = leader then

if success = true ∧ ack ≥ ackedLength[follower ] then
sentLength[follower ] := ack
ackedLength[follower ] := ack
CommitLogEntries()

else if sentLength[follower ] > 0 then
sentLength[follower ] := sentLength[follower ]− 1
ReplicateLog(nodeId , follower)

end if
else if term > currentTerm then

currentTerm := term
currentRole := follower
votedFor := null
cancel election timer

end if
end on

Slide 141

A leader receiving a LogResponse message first checks the term in the message: if the sender’s term
is later than the recipient’s term, that means a new leader election has been started, and so this node
transitions from leader to follower. Messages with an outdated term are ignored. For messages with the
correct term, we check the success boolean field to see whether the follower accepted the log entries.

If success = true, the leader updates sentLength and ackedLength to reflect the number of log entries
acknowledged by the follower, and then calls the CommitLogEntries function (Slide 142). If success =
false, we know that the follower did not accept the log entries because its logOk variable was false. In
this case, the leader decrements the sentLength value for this follower, and calls ReplicateLog to retry
sending the LogRequest message starting with an earlier log entry. This may happen multiple times, but
eventually the leader will send the follower an array of entries that cleanly extends the follower’s existing
log, at which point the follower will accept the LogRequest. (This algorithm could be optimised to require
fewer retries, but in this course we will avoid making it more complex than needed.)

Finally, Slide 142 shows how the leader determines which log entries to commit. We define the function
acks(length) to take an integer, a number of log entries counted from the start of the log. This function
returns the number of nodes that have acknowledged the receipt of length log entries or more.

CommitLogEntries uses this function to determine how many log entries have been acknowledged
by a majority quorum of nodes or more. The variable ready contains the set of log prefix lengths that
are ready to commit, and if ready is nonempty, max(ready) is the maximum log prefix length that we
can commit. If this exceeds the current value of commitLength, this means there are new log entries that
are now ready to commit because they have been acknowledged by sufficiently many nodes. The message
in each of these log entries is now delivered to the application on the leader, and the commitLength
variable is updated. On the next LogRequest message that the leader sends to followers, the new value
of commitLength will be included, causing the followers to commit and deliver the same log entries.

79



Raft (9/9): leader committing log entries
Any log entries that have been acknowledged by a quorum of nodes are
ready to be committed by the leader. When a log entry is committed, its
message is delivered to the application.

define acks(length) = |{n ∈ nodes | ackedLength[n] ≥ length}|

function CommitLogEntries
minAcks := ⌈(|nodes|+ 1)/2⌉
ready := {len ∈ {1, . . . , log .length} | acks(len) ≥ minAcks}
if ready ̸= {} ∧ max(ready) > commitLength ∧

log [max(ready)− 1].term = currentTerm then
for i := commitLength to max(ready)− 1 do

deliver log [i].msg to the application
end for
commitLength := max(ready)

end if
end function

Slide 142

. . . and that was just the basic form of Raft!

A real implementation would need to do more:

▶ Efficient log reconciliation when ¬logOk

▶ Allow reconfiguration:
allow administrators to add or remove nodes, adjusting
quorums accordingly

▶ Better throughput:
avoid having to do everything through the leader?
(some Paxos variants are less leader-centric)

Going even further:

▶ Raft assumes all nodes are honest;
Byzantine consensus required for blockchains

Slide 143

Exercise 21. Three nodes are executing the Raft algorithm. At one point in time, each node has the log
shown below:

m1

1

m2

1
log at node A:

m1

1

m4

2

m5

2

m6

2
log at node B:

m1

1

m4

2

m7

3
log at node C:

msg

term

(a) Explain what events may have occurred that caused the nodes to be in this state.
(b) What are the possible values of the commitLength variable at each node?
(c) Node A starts a leader election in term 4, while the nodes are in the state above. Is it possible for it
to obtain a quorum of votes? What if the election was instead started by one of the other nodes?
(d) Assume that node B is elected leader in term 4, while the nodes are in the state above. Give the
sequence of messages exchanged between B and C following this election.

8 Eventual consistency

Linearizability (Section 6.2) is a very convenient consistency model for distributed systems, because it
guarantees that a system behaves as if there was only one copy of the data, even if it is in fact replicated.
This allows applications to ignore some of the complexities of working with distributed systems. However,
this strong guarantee also comes at cost, and therefore linearizability is not suitable for all applications.

Part of the cost is performance: both the ABD algorithm and the linearizable CAS algorithm based on
total order broadcast need to send a lot of messages over the network, and require significant amounts of
waiting due to network latency. Part is scalability: in algorithms where all updates need to be sequenced

80



through a leader, such as Raft, the leader can become a bottleneck that limits the number of operations
that can be processed per second.

Perhaps the biggest problem with linearizability is that every operation requires communication with
a quorum of replicas. If a node is temporarily unable to communicate with sufficiently many replicas, it
cannot perform any operations. Even though the node may be running, such a communication failure
makes it effectively unavailable.

Eventual consistency

Linearizability advantages:

▶ Makes a distributed system behave as if it were
non-distributed

▶ Simple for applications to use

Downsides:

▶ Performance cost: lots of messages and waiting for
responses

▶ Scalability limits: leader can be a bottleneck

▶ Availability problems: if you can’t contact a quorum of
nodes, you can’t process any operations

Eventual consistency: a weaker model than linearizability.
Different trade-off choices.

Slide 144

As an example, consider the calendar app that you can find on most phones, tablets, and computers.
We would like the appointments and entries in this app to sync across all of our devices; in other words,
we want it to be replicated such that each device is a replica. Moreover, we would like to be able to
view, modify, and add calendar events even while a device is offline (e.g. due to poor mobile network
coverage). If the calendar app’s replication protocol was linearizable, this would not be possible, since
an offline device cannot communicate with a quorum of replicas.

Slide 145

Instead, calendar apps allow the user to read and write events in their calendar even while a device is
offline, and they sync any updates between devices sometime later, in the background, when an internet
connection is available.

This trade-off is known as the CAP theorem (named after consistency, availability, and partition
tolerance), which states that if there is a network partition in a system, we must choose between one of
the following options [Gilbert and Lynch, 2002]:

1. We can have linearizable consistency, but in this case, some replicas will not be able to respond to
requests because they cannot communicate with a quorum. Not being able to respond to requests
makes those nodes effectively unavailable.

81



2. We can allow replicas to respond to requests even if they cannot communicate with other replicas.
In this case, they continue to be available, but we cannot guarantee linearizability.

Sometimes the CAP theorem is formulated as a choice of “pick 2 out of 3”, but that framing is misleading.
A system can be both linearizable and available as long as there is no network partition, and the choice
is forced only in the presence of a partition [Kleppmann, 2015].

This trade-off is illustrated on Slide 146, where node C is unable to communicate with nodes A and
B. On A and B’s side of the partition, linearizable operations can continue as normal, because A and
B constitute a quorum. However, if C wants to read the value of x, it must either wait (potentially
indefinitely) until the network partition is repaired, or it must return its local value of x, which does not
reflect the value previously written by A on the other side of the partition.

The CAP theorem
A system can be either strongly Consistent (linearizable) or
Available in the presence of a network Partition

node A node B node C

netw
ork

partition

set(x
,v

1 )
get(x

)→
v
1

get(x
)→

v
1

get(x
)→

v
0

C must either wait indefinitely for the network to recover, or
return a potentially stale value

Slide 146

The calendar app chooses option 2: it forgoes linearizability in favour of allowing the user to continue
performing operations while a device is offline. Many other systems similarly make this choice for various
reasons.

The approach of allowing each replica to process both reads and writes based only on its local state,
and without waiting for communication with other replicas, is called optimistic replication. A variety of
consistency models have been proposed for optimistically replicated systems, with the best-known being
eventual consistency.

Eventual consistency is defined as: “if no new updates are made to an object, eventually all reads will
return the last updated value” [Vogels, 2009]. This is a very weak definition: what if the updates to an
object never stop, so the premise of the statement is never true? A slightly stronger consistency model
called strong eventual consistency, defined on Slide 147, is often more appropriate [Shapiro et al., 2011].
It is based on the idea that as two replicas communicate, they converge towards the same state.

Eventual consistency

Replicas process operations based only on their local state.

If there are no more updates, eventually all replicas will be in
the same state. (No guarantees how long it might take.)

Strong eventual consistency:

▶ Eventual delivery: every update made to one non-faulty
replica is eventually processed by every non-faulty replica.

▶ Convergence: any two replicas that have processed the
same set of updates are in the same state
(even if updates were processed in a different order).

Properties:

▶ Does not require waiting for network communication

▶ Causal broadcast (or weaker) can disseminate updates

▶ Concurrent updates =⇒ conflicts need to be resolved

Slide 147

82



In both eventual consistency and strong eventual consistency, there is the possibility of different nodes
concurrently updating the same object, leading to conflicts (as previously discussed on Slide 100). Various
algorithms have been developed to resolve those conflicts automatically [Shapiro et al., 2011].

In the lecture I show a demo of a conflict in the eventually consistent calendar app: on one device, I
update the time of an event, while concurrently on another device, I update the title of the same event.
After the two devices synchronise, the update of the time is applied to both devices, while the update of
the title is discarded – or possibly the other way round. The state of the two devices therefore converges –
at the cost of a small amount of data loss. This is the last writer wins approach to conflict resolution
that we have seen on Slide 100 (assuming the update to the time is the “last” update in this example).
A more refined approach might merge the updates to the time and the title, as shown on Slide 151.

Slide 148 summarises some of the key properties of the consistency models we have seen, in descending
order of the minimum strength of assumptions that they must make about the system model.

Summary of minimum system model requirements

st
re
n
gt
h
of

as
su
m
p
ti
on

s

Problem Must wait for
communication

Requires
synchrony

atomic commit all participating
nodes

partially
synchronous

consensus,
total order broadcast,
linearizable CAS

quorum partially
synchronous

linearizable get/set quorum asynchronous

eventual consistency,
causal broadcast,
FIFO broadcast

local replica only asynchronous

Slide 148

Atomic commit makes the strongest assumptions, since it must wait for communication with all nodes
participating in a transaction (potentially all of the nodes in the system) in order to complete successfully.
Consensus, total order broadcast, and linearizable algorithms make weaker assumptions since they only
require waiting for communication with a quorum, so they can tolerate some unavailable nodes. The
FLP result (Slide 129) showed us that consensus and total order broadcast require partial synchrony. It
can be shown that a linearizable CAS operation is equivalent to consensus [Herlihy, 1991], and thus also
requires partial synchrony. On the other hand, the ABD algorithm for a linearizable register (supporting
get/set operations) is asynchronous, since it does not require any clocks or timeouts. Finally, eventual
consistency and strong eventual consistency make the weakest assumptions: operations can be processed
without waiting for any communication with other nodes, and without any timing assumptions. Similarly,
in causal broadcast and weaker forms of broadcast (FIFO, reliable, etc.), a node broadcasting a message
can immediately deliver it to itself without waiting for communication with other nodes, as discussed in
Section 4.1; this corresponds to a replica immediately processing its own operations without waiting for
communication with other replicas.

This hierarchy has some similarities to the concept of complexity classes of algorithms – for example,
sorting generally is O(n log n) – in the sense that it captures the unavoidable minimum communication
and synchrony requirements for a range of common problems in distributed systems.

8.1 Conflict resolution and CRDTs

There is a particular type of software that makes good use of eventual consistency, which my collaborators
and I decided to call local-first software [Kleppmann et al., 2019]. This is software running on end-
user devices (laptop, smartphone, etc.) that first stores its data locally on the user’s device, but also
replicates that data to other devices when a network connection is available (perhaps via servers). The
aforementioned calendar app is an example of local-first software.

Local-first software contrasts with web applications such as Google Docs, which store all of their data
on cloud servers. Cloud storage makes it easy to share data with colleagues and access it from multiple
devices, but it has the disadvantage that the software usually does not work offline. Moreover, if a user

83



gets locked out of their account or if the cloud service shuts down, they lose access to all of the data they
have created.

Local-first software has several advantages over web apps: users can continue accessing their local
copy of the data, even while they are offline or if they lose access to the cloud service. This gives users
greater control over their data while enabling similar collaboration features as in web apps.

Local-first software

End-user device is a full replica; servers are just for backup.
“Local-first”: a term introduced by me and my colleagues
https://www.inkandswitch.com/local-first/

Calendar app with cross-device sync is an example:

▶ App works offline (can both read and modify data)

▶ Fast: no need to wait for network round-trip

▶ Sync with other devices when online

▶ Real-time collaboration with other users

▶ Longevity: even if cloud service shuts down, you have a
copy of your files on your own computer

▶ Supports end-to-end encryption for better security

▶ Simpler programming model than RPC

▶ User control and agency over their own data

Slide 149

Collaboration software is a broad category of software that facilitates several people working together
on some task. This includes applications such as Google Docs/Office 365 (multi-user text documents,
spreadsheets, presentations, etc.), Overleaf (collaborative LATEX documents), multi-user graphics software
(e.g. Figma), project planning tools (e.g. Trello), note-taking apps (e.g. OneNote, Evernote, Notion), and
shared calendars between colleagues or family members (like the calendar sync we saw on Slide 145).
Many of these are web apps, not local-first software, but similar approaches apply to both.

Modern collaboration software allows several people to update a document concurrently, without
having to email files back and forth. This makes collaboration another example of replication: each
device on which a user has opened a document is a replica, and any updates made to one replica need to
be sent over the network to the replicas on other devices.

In principle, it would be possible to use a linearizable replication scheme for collaboration software.
However, such software would be slow to use, since every read or write operation would have to contact a
quorum of replicas; moreover, it would not work on a device that is offline. Instead, for the sake of better
performance and better robustness to network interruptions, most collaboration software uses optimistic
replication that provides strong eventual consistency (Slide 147).

Collaboration and conflict resolution

Nowadays we use a lot of collaboration software:

▶ Examples: calendar sync, text editors (Google Docs),
spreadsheets, presentations, graphics apps. . .

▶ Several users/devices working on a shared file/document

▶ Each user device has local replica of the data

▶ Update local replica optimistically, sync with others
asynchronously (waiting for round trip is too slow)

▶ Challenge: how to reconcile concurrent updates?

Families of algorithms:
▶ Conflict-free Replicated Data Types (CRDTs)

▶ Operation-based
▶ State-based

▶ Operational Transformation (OT)

Slide 150

In this lecture we will look at some algorithms that are used for this kind of collaboration. As example,
consider calendar sync again. Two nodes initially start with the same calendar entry. On node A, the

84



title is changed from “Lecture” to “Lecture 1”, and concurrently on node B the time is changed from
12:00 to 10:00. These two updates happen while the two nodes are temporarily unable to communicate,
but eventually connectivity is restored and the two nodes sync their changes. In the outcome shown on
Slide 151, the final calendar entry reflects both the change to the title and the change to the time.

Conflicts due to concurrent updates

node A node B

netw
ork

partition

{
"title": "Lecture",
"date": "2020-11-05",
"time": "12:00"

}

title = "Lecture 1"

{
"title": "Lecture 1",
"date": "2020-11-05",
"time": "12:00"

}

{
"title": "Lecture 1",
"date": "2020-11-05",
"time": "10:00"

}

{
"title": "Lecture",
"date": "2020-11-05",
"time": "12:00"

}

time = "10:00"

{
"title": "Lecture",
"date": "2020-11-05",
"time": "10:00"

}

{
"title": "Lecture 1",
"date": "2020-11-05",
"time": "10:00"

}

sync

Slide 151

This scenario is an example of conflict resolution, which occurs whenever several concurrent writes to
the same object need to be integrated into a single final state (see also Slide 100). Conflict-free replicated
data types, or CRDTs for short, are a family of algorithms that perform such conflict resolution [Shapiro
et al., 2011]. A CRDT is a replicated object that an application accesses though the object-oriented
interface of an abstract datatype, such as a set, list, map, tree, graph, counter, etc.

Slide 152 shows an example of a CRDT that provides a map from keys to values. The application
can invoke two types of operation: reading the value for a given key, and setting the value for a given
key (which adds the key if it is not already present). In other words, each key has an associated register,
as discussed in Section 5.1.

The local state at each node consists of the set values containing (timestamp, key , value) triples.
Reading the value for a given key is a purely local operation that only inspects values on the current node,
and performs no network communication. The algorithm preserves the invariant that values contains at
most one element for any given key. Therefore, when reading the value for a key, the value is unique if
it exists.

Operation-based map CRDT
on initialisation do

values := {}
end on

on request to read value for key k do
if ∃t, v. (t, k, v) ∈ values then return v else return null

end on

on request to set key k to value v do
t := newTimestamp() ▷ globally unique, e.g. Lamport timestamp
broadcast (set, t, k, v) by reliable broadcast (including to self)

end on

on delivering (set, t, k, v) by reliable broadcast do
previous := {(t′, k′, v′) ∈ values | k′ = k}
if previous = {} ∨ ∀(t′, k′, v′) ∈ previous. t′ < t then

values := (values \ previous) ∪ {(t, k, v)}
end if

end on

Slide 152

To update the value for a given key, we create a globally unique timestamp for the operation – a
Lamport timestamp (Slide 71) is a good choice – and then broadcast a message containing the timestamp,
key, and value. When that message is delivered, we check if the local copy of values already contains an
entry with a higher timestamp for the same key; if so, we ignore the message, because the value with the

85



higher timestamp takes precedence. Otherwise we remove the previous value (if any), and add the new
(timestamp, key , value) triple to values. This means that we resolve concurrent updates to the same key
using the last-writer-wins (LWW) approach that we saw on Slide 100.

Operation-based CRDTs
Reliable broadcast may deliver updates in any order:

▶ broadcast (set, t1, “title”, “Lecture 1”)

▶ broadcast (set, t2, “time”, “10:00”)

Recall strong eventual consistency:

▶ Eventual delivery: every update made to one non-faulty
replica is eventually processed by every non-faulty replica.

▶ Convergence: any two replicas that have processed the
same set of updates are in the same state

CRDT algorithm implements this:

▶ Reliable broadcast ensures every operation is eventually
delivered to every (non-crashed) replica

▶ Applying an operation is commutative: order of delivery
doesn’t matter

Slide 153

This algorithm is an example of an approach that we hinted at on Slide 109, namely, a method
for performing replication using reliable broadcast, without requiring totally ordered delivery. It is an
operation-based CRDT because each broadcast message contains a description of an update operation
(as opposed to state-based CRDTs that we will see shortly). It allows operations to complete without
network connectivity, because the sender of a reliable broadcast can immediately deliver a message to
itself, and send it to other nodes sometime later. Moreover, even though messages may be delivered
in different orders on different replicas, the algorithm ensures strong eventual consistency because the
function that updates a replica’s state is commutative.

Exercise 22. Prove that the operation-based map CRDT algorithm provides strong eventual consistency.

Exercise 23. Give pseudocode for a variant of the operation-based map CRDT algorithm that has multi-
value register semantics instead of last-writer-wins semantics; that is, when there are several concurrent
updates for the same key, the algorithm should preserve all of those updates rather than preserving only
the one with the greatest timestamp.

State-based map CRDT
The operator ⊔ merges two states s1 and s2 as follows:

s1 ⊔ s2 = {(t, k, v) ∈ (s1 ∪ s2) | ∄(t′, k′, v′) ∈ (s1 ∪ s2). k
′ = k ∧ t′ > t}

on initialisation do
values := {}

end on

on request to read value for key k do
if ∃t, v. (t, k, v) ∈ values then return v else return null

end on

on request to set key k to value v do
t := newTimestamp() ▷ globally unique, e.g. Lamport timestamp
values := {(t′, k′, v′) ∈ values | k′ ̸= k} ∪ {(t, k, v)}
broadcast values by best-effort broadcast

end on

on delivering V by best-effort broadcast do
values := values ⊔ V

end on
Slide 154

An alternative CRDT algorithm for the same map datatype is shown on Slide 154. The definition of
values and the function for reading the value for a key is the same as on Slide 152. However, updates are
handled differently: instead of broadcasting each operation, we directly update values and then broadcast
the whole of values. On delivering this message at another replica, we merge together the two replicas’

86



states using a merge function ⊔. This merge function compares the timestamps of entries with the same
key, and keeps those with the greater timestamp. This approach of broadcasting the entire replica state
and merging it with another replica’s state is called a state-based CRDT.

State-based CRDTs

Merge operator ⊔ must satisfy: ∀s1, s2, s3. . .
▶ Commutative: s1 ⊔ s2 = s2 ⊔ s1.

▶ Associative: (s1 ⊔ s2) ⊔ s3 = s1 ⊔ (s2 ⊔ s3).

▶ Idempotent: s1 ⊔ s1 = s1.

State-based versus operation-based:

▶ Op-based CRDT typically has smaller messages

▶ State-based CRDT can tolerate message loss/duplication

Not necessarily uses broadcast:

▶ Can also merge concurrent updates to replicas e.g. in
quorum replication, anti-entropy, . . .

Slide 155

The downside of the state-based approach is that the broadcast messages are likely to be larger than
in the operation-based approach. The advantage of the state-based approach is that it can tolerate lost
or duplicated messages: as long as two replicas eventually succeed in exchanging their latest states, they
will converge to the same state, even if some earlier messages were lost. Duplicated messages are also
fine because the merge operator is idempotent (cf. Slide 95). This is why a state-based CRDT can use
unreliable best-effort broadcast, while an operation-based CRDT requires reliable broadcast (and some
even require causal broadcast).

Moreover, state-based CRDTs are not limited to replication systems that use broadcast. Other meth-
ods of replication, such as the quorum write algorithms and anti-entropy protocols we saw in Section 5,
can also use CRDTs for conflict resolution (see Slide 99).

8.2 Collaborative text editing

As another example of concurrent updates and the need for conflict resolution, we will consider collabo-
rative text editors such as Google Docs. When you type in a Google Doc, the keystrokes are immediately
applied to the local copy of the document in your web browser, without waiting for them to sync to a
server or any other users. This means that when two users are typing concurrently, their documents can
temporarily diverge; as network communication takes place, the system needs to ensure that all users
converge to the same view of the document.

Slide 156

87



We can think of a collaboratively editable text document as a list of characters, where each user can
insert or delete characters at any index in the list. Fonts, formatting, embedded images, tables, and so
on add further complexity, so we will just concentrate on plain text for now. When several users may
concurrently update a text document, a particular problem arises, which is demonstrated in the example
on Slide 157.

Collaborative text editing: the problem

user A user B

netw
ork

partition

B C

0 1

insert(0, “A”)

A B C

0 1 2

A B D C

0 1 2 3

B C

0 1

insert(2, “D”)

B C D

0 1 2

A B C D

0 1 2 3

(insert, 0, “A”) (insert, 2, “D”)

Slide 157

In this example, two users A and B both start with the same document, “BC”. User A adds the
character “A” at the beginning of the document, so that it reads “ABC”. Concurrently, user B adds the
character “D” at the end of the document, so that it reads “BCD”. As A and B merge their edits, we
would expect that the final document should read “ABCD”.

On Slide 157, the users’ replicas communicate by sending each other the operations they have per-
formed. User A sends (insert, 0, “A”) to B, and B applies this operation, leading to the desired outcome
“ABCD”. However, when B sends (insert, 2, “D”) to A, and A inserts the character “D” at index 2, the
result is “ABDC”, not the expected “ABCD”.

The problem is that at the time when B performed the operation insert(2, “D”), index 2 referred to
the position after character “C”. However, A’s concurrent insertion at index 0 had the effect of increasing
the indexes of all subsequent characters by 1, so the position after “C” is now index 3, not index 2.

Operational transformation is one approach that is used to solve this problem. There is a family of
different algorithms that use this approach and that vary in the details of how they resolve conflicts. But
the general principle they have in common is illustrated on Slide 158.

Operational transformation

user A user B

insert(0, “A”)

A B C

0 1 2

T ((insert, 2, “D”),
(insert, 0, “A”)) =
(insert, 3, “D”)

T ((insert, 0, “A”),
(insert, 2, “D”)) =
(insert, 0, “A”)

A B C D

0 1 2 3

insert(2, “D”)

B C D

0 1 2

A B C D

0 1 2 3

(insert, 0, “A”) (insert, 2, “D”)

Slide 158

A node keeps track of the history of operations it has performed. When a node receives another node’s
operation that is concurrent to one or more of its own operations, it transforms the incoming operation
relative to its own, concurrent operations.

88



The function T (op1, op2) takes two operations: op1 is an incoming operation, and op2 is a concurrent
local operation. T returns a transformed operation op′

1 such that applying op′
1 to the local state has the

effect originally intended by op1. For example, if op1 = (insert, 2, “D”) and op2 = (insert, 0, “A”) then
the transformed operation is T (op1, op2) = (insert, 3, “D”) because the original insertion op1 at index 2
now needs to be instead be performed at index 3 due to the concurrent insertion at index 0. On the other
hand, T (op2, op1) = op2 returns the unmodified op2 because the insertion at index 0 is not affected by
a concurrent insertion later in the document.

The transformation function becomes more complicated when deletions, formatting etc. are taken into
account, and we will skip the details. However, this approach is used in practice: for example, the conflict
resolution algorithm in Google Docs uses an operational transformation approach based on the Xerox
PARC research system Jupiter [Nichols et al., 1995]. A limitation of this approach is that it requires
communication between users to use total order broadcast, requiring the use of a designated leader node
to sequence the updates, or a consensus algorithm as in Section 7.

An alternative to operational transformation, which avoids the need for total order broadcast, is to
use a CRDT for text editing. Rather than identifying positions in the text using indexes, and thus
necessitating operational transformation, text editing CRDTs work by attaching a unique identifier to
each character. These identifiers remain unchanged, even as surrounding characters are inserted or
deleted.

Several constructions for these unique identifiers have been proposed, one of which is illustrated on
Slide 159. Here, each character is assigned a rational number i ∈ Q with 0 < i < 1, where 0 represents the
beginning of the document, 1 is the end, and numbers in between identify the characters in the document
in ascending order. We also use the symbol ⊢ to represent the beginning of document and ⊣ to represent
the end; these symbols are part of the algorithm’s internal state, not visible to the user.

When we want to insert a new character between two existing adjacent characters with position
numbers i and j, we can assign that new character a position number of i+j

2 , which always lies between i
and j. This new position always exists, provided that we use arbitrary-precision arithmetic (floating-point
numbers have limited precision, so they would no longer work once the intervals get too small). It is
possible for two different nodes to generate characters with the same position number if they concurrently
insert at the same position, so we can use the ID of the node that generated a character to break ties
for any characters that have the same position number. Using this approach, conflict resolution becomes
easy: an insertion with a particular position number can simply be broadcast to other replicas, which
then add that character to their set of characters, and sort by position number to obtain the current
document.

Text editing CRDT

user A user B

⊢ B C ⊣
0.0 0.5 0.75 1.0

insert(0.25, “A”)

⊢ A B C ⊣
0.0 0.25 0.5 0.75 1.0

⊢ A B C D ⊣
0.0 0.25 0.5 0.75 0.875 1.0

⊢ B C ⊣
0.0 0.5 0.75 1.0

insert(0.875, “D”)

⊢ B C D ⊣
0.0 0.5 0.75 0.875 1.0

⊢ A B C D ⊣
0.0 0.25 0.5 0.75 0.875 1.0

(insert, 0.25, “A”) (insert, 0.875, “D”)

Slide 159

This algorithm is shown on Slides 160 and 161. The state of a replica is the set chars, which contains
(position,nodeId , character) triples. The function ElementAt iterates over the elements of chars in
ascending order of position number. It does this by first finding the minimum element, that is, the
element for which there does not exist another element with a lower position number. If there are
multiple elements with the same position number, the element with the lowest nodeId is chosen. If
index = 0 we return this minimum element, otherwise we remove the minimum element, decrement the
index, and repeat. (This is a rather slow algorithm; a real implementation would make an effort to be

89



more efficient.)
A replica’s chars is initialised with elements for ⊢ and ⊣. To get the character at a particular index,

we use the ElementAt we just defined, adding 1 to the index in order to skip the first element in chars,
which is always (0, null,⊢).

To insert a character at a particular position, we get the position numbers p1 and p2 of the immediate
predecessor and successor, and then compute the new position number as (p1+p2)/2. We then disseminate
this operation by causal broadcast. On delivery of an insert message we simply add the triple to chars.

Operation-based text CRDT (1/2)
function ElementAt(chars, index )

min = the unique triple (p, n, v) ∈ chars such that
∄(p′, n′, v′) ∈ chars. p′ < p ∨ (p′ = p ∧ n′ < n)}

if index = 0 then return min
else return ElementAt(chars \ {min}, index − 1)

end function

on initialisation do
chars := {(0, null,⊢), (1, null,⊣)}

end on

on request to read character at index index do
let (p, n, v) := ElementAt(chars, index + 1); return v

end on

on request to insert character v at index index at node nodeId do
let (p1, n1, v1) := ElementAt(chars, index )
let (p2, n2, v2) := ElementAt(chars, index + 1)
broadcast (insert, (p1 + p2)/2,nodeId , v) by causal broadcast

end on
Slide 160

Operation-based text CRDT (2/2)

on delivering (insert, p, n, v) by causal broadcast do
chars := chars ∪ {(p, n, v)}

end on

on request to delete character at index index do
let (p, n, v) := ElementAt(chars, index + 1)
broadcast (delete, p, n) by causal broadcast

end on

on delivering (delete, p, n) by causal broadcast do
chars := {(p′, n′, v′) ∈ chars | ¬(p′ = p ∧ n′ = n)}

end on

▶ Use causal broadcast so that insertion of a character is
delivered before its deletion

▶ Insertion and deletion of different characters commute

Slide 161

To delete a character at a particular position we use ElementAt, adding 1 to skip ⊢ as before, to find
the position number and nodeId of that character. We then broadcast this information, which uniquely
identifies a particular character, by causal broadcast as a delete message. On delivery of a delete message,
a replica removes the element in chars that matches both the position number and the nodeId in the
message, if it exists.

The reason for using causal broadcast (rather than just reliable broadcast) in this algorithm is to
ensure that if a character is deleted, all replicas process the insertion of the character before processing
the deletion. This restriction is necessary because the operations to insert and delete the same character do
not commute. However, insertions and deletions of different characters commute, allowing this algorithm
to ensure convergence and strong eventual consistency.

90



8.3 Wrapping up

That’s all, folks!

Any questions? Email martin.kleppmann@cst.cam.ac.uk!

Summary:

▶ Distributed systems are everywhere

▶ You use them every day: e.g. web apps

▶ Key goals: availability, scalability, performance

▶ Key problems: concurrency, faults, unbounded latency

▶ Key abstractions: replication, broadcast, consensus

▶ No one right way, just trade-offs

Slide 162

This brings us to the end of the course on Concurrent and Distributed Systems. We started from a
simple premise: when you send a message over the network and you don’t get a response, you don’t know
what happened. Maybe the message got lost, or the response got lost, or either message got delayed, or
the remote node crashed, and we cannot distinguish between these types of fault.

Distributed systems are fascinating because we have to work with partial knowledge and uncertain
truths. We never have certainty about the state of the system, because by the time we hear about
something, that state may already be outdated. In this way it resembles real life more than most of
computing! In real life you need to often make decisions with incomplete information.

But distributed systems are also immensely practical: every web site and most apps are distributed
systems, and the servers and databases that underlie most websites are in turn further distributed systems.
After graduating, many of you will end up working on such systems. Hopefully, the ideas in this course
have given you a solid grounding so that you can go and make those systems reliable and understandable.

References
Steven L. Allen. Planes will crash! Things that leap seconds didn’t, and did, cause, 2013. URL http://www.hanksville.org/

futureofutc/preprints/files/2 AAS%2013-502 Allen.pdf.

Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing systems. Journal of the
ACM, 42(1):124–142, January 1995. doi:10.1145/200836.200869. URL http://www.cse.huji.ac.il/course/2004/dist/p124-
attiya.pdf.

Peter Bailis and Kyle Kingsbury. The network is reliable. ACM Queue, 12(7), 2014. doi:10.1145/2639988.2655736. URL
https://queue.acm.org/detail.cfm?id=2655736.

Christian Cachin, Rachid Guerraoui, and Lúıs Rodrigues. Introduction to Reliable and Secure Distributed Program-
ming. Springer, second edition, 2011. ISBN 9783642152597. doi:10.1007/978-3-642-15260-3. URL http://www.
distributedprogramming.net/.

Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed systems. Journal of the
ACM, 43(2):225–267, March 1996. doi:10.1145/226643.226647. URL http://courses.csail.mit.edu/6.852/08/papers/CT96-
JACM.pdf.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s highly available key-value
store. ACM SIGOPS Operating Systems Review, 41(6):205–220, December 2007. doi:10.1145/1323293.1294281. URL
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf.

Cynthia Dwork, Nancy A. Lynch, and Larry Stockmeyer. Consensus in the presence of partial synchrony. Journal of the
ACM, 35(2):288–323, April 1988. doi:10.1145/42282.42283. URL https://groups.csail.mit.edu/tds/papers/Lynch/jacm88.
pdf.

Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software Architectures. PhD thesis, University
of California, Irvine, 2000. URL https://www.ics.uci.edu/∼fielding/pubs/dissertation/top.htm.

91

http://www.hanksville.org/futureofutc/preprints/files/2_AAS%2013-502_Allen.pdf
http://www.hanksville.org/futureofutc/preprints/files/2_AAS%2013-502_Allen.pdf
https://doi.org/10.1145/200836.200869
http://www.cse.huji.ac.il/course/2004/dist/p124-attiya.pdf
http://www.cse.huji.ac.il/course/2004/dist/p124-attiya.pdf
https://doi.org/10.1145/2639988.2655736
https://queue.acm.org/detail.cfm?id=2655736
https://doi.org/10.1007/978-3-642-15260-3
http://www.distributedprogramming.net/
http://www.distributedprogramming.net/
https://doi.org/10.1145/226643.226647
http://courses.csail.mit.edu/6.852/08/papers/CT96-JACM.pdf
http://courses.csail.mit.edu/6.852/08/papers/CT96-JACM.pdf
https://doi.org/10.1145/1323293.1294281
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
https://doi.org/10.1145/42282.42283
https://groups.csail.mit.edu/tds/papers/Lynch/jacm88.pdf
https://groups.csail.mit.edu/tds/papers/Lynch/jacm88.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm


Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus with one faulty process.
Journal of the ACM, 32(2):374–382, April 1985. doi:10.1145/3149.214121. URL https://groups.csail.mit.edu/tds/papers/
Lynch/jacm85.pdf.

Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web
services. ACM SIGACT News, 33(2):51–59, June 2002. doi:10.1145/564585.564601. URL https://www.comp.nus.edu.sg/
∼gilbert/pubs/BrewersConjecture-SigAct.pdf.

Jim Gray and Leslie Lamport. Consensus on transaction commit. ACM Transactions on Database Systems, 31(1):133–160,
March 2006. doi:10.1145/1132863.1132867. URL http://db.cs.berkeley.edu/cs286/papers/paxoscommit-tods2006.pdf.

Jim N. Gray. Notes on data base operating systems. In R. Bayer, R.M. Graham, and G. Seegmüller, editors, Op-
erating Systems, volume 60 of LNCS, pages 393–481. Springer, 1978. doi:10.1007/3-540-08755-9 9. URL http:
//jimgray.azurewebsites.net/papers/dbos.pdf.

Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and Systems, 13(1):124–149,
January 1991. doi:10.1145/114005.102808. URL http://cs.brown.edu/∼mph/Herlihy91/p124-herlihy.pdf.

Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems, 12(3):463–492, July 1990. doi:10.1145/78969.78972. URL
http://cs.brown.edu/∼mph/HerlihyW90/p463-herlihy.pdf.

Heidi Howard and Richard Mortier. Paxos vs Raft: have we reached consensus on distributed consensus? In 7th Workshop
on Principles and Practice of Consistency for Distributed Data, PaPoC, April 2020. doi:10.1145/3380787.3393681. URL
https://arxiv.org/abs/2004.05074.

Mark Imbriaco. Downtime last Saturday, December 2012. URL https://github.com/blog/1364-downtime-last-saturday.

Martin Kleppmann. A critique of the CAP theorem. arXiv, September 2015. URL http://arxiv.org/abs/1509.05393.

Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark McGranaghan. Local-first software: You own
your data, in spite of the cloud. In ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! at SPLASH, October 2019. doi:10.1145/3359591.3359737. URL
https://www.inkandswitch.com/local-first/.

Sandeep S. Kulkarni, Murat Demirbas, Deepak Madappa, Bharadwaj Avva, and Marcelo Leone. Logical physical clocks.
In 18th International Conference on Principles of Distributed Systems (OPODIS), volume 8878 of LNCS, pages 17–32.
Springer, December 2014. doi:10.1007/978-3-319-14472-6 2. URL https://cse.buffalo.edu/∼demirbas/publications/hlc.pdf.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of the ACM, 21(7):
558–565, 1978. doi:10.1145/359545.359563. URL http://research.microsoft.com/en-US/um/people/Lamport/pubs/time-
clocks.pdf.

Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):133–169, May 1998.
doi:10.1145/279227.279229. URL http://research.microsoft.com/en-us/um/people/lamport/pubs/lamport-paxos.pdf.

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. ACM Transactions on Programming
Languages and Systems, 4(3):382–401, 1982. doi:10.1145/357172.357176. URL http://research.microsoft.com/en-us/um/
people/lamport/pubs/byz.pdf.

Nancy A. Lynch and Alex A. Shvartsman. Robust emulation of shared memory using dynamic quorum-acknowledged
broadcasts. In 27th IEEE International Symposium on Fault Tolerant Computing, FTCS, pages 272–281, 1997.
doi:10.1109/ftcs.1997.614100. URL http://groups.csail.mit.edu/tds/papers/Lynch/FTCS97.pdf.

Nelson Minar. Leap second crashes half the internet, July 2012. URL http://www.somebits.com/weblog/tech/bad/leap-
second-2012.html.

David A Nichols, Pavel Curtis, Michael Dixon, and John Lamping. High-latency, low-bandwidth windowing in the Jupiter
collaboration system. In 8th Annual ACM Symposium on User Interface and Software Technology, UIST 1995, pages
111–120, November 1995. doi:10.1145/215585.215706. URL http://www.lively-kernel.org/repository/webwerkstatt/projects/
Collaboration/paper/Jupiter.pdf.

Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm. In USENIX Annual Technical
Conference, ATC. USENIX, June 2014. URL https://www.usenix.org/conference/atc14/technical-sessions/presentation/
ongaro.

Nuno Preguiça, Carlos Baquero, Paulo Sérgio Almeida, Victor Fonte, and Ricardo Gonçalves. Dotted version vectors:
Logical clocks for optimistic replication, November 2010. URL http://arxiv.org/pdf/1011.5808v1.pdf.

Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free replicated data types. In 13th Inter-
national Symposium on Stabilization, Safety, and Security of Distributed Systems, SSS, pages 386–400, October 2011.
doi:10.1007/978-3-642-24550-3 29. URL https://pages.lip6.fr/Marek.Zawirski/papers/RR-7687.pdf.

Martin Thompson. Java garbage collection distilled, June 2013. URL https://www.infoq.com/articles/Java Garbage
Collection Distilled/.

Werner Vogels. Eventually consistent. Communications of the ACM, 52(1):40–44, January 2009.
doi:10.1145/1435417.1435432. URL http://cacm.acm.org/magazines/2009/1/15666-eventually-consistent/fulltext.

92

https://doi.org/10.1145/3149.214121
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
https://doi.org/10.1145/564585.564601
https://www.comp.nus.edu.sg/~gilbert/pubs/BrewersConjecture-SigAct.pdf
https://www.comp.nus.edu.sg/~gilbert/pubs/BrewersConjecture-SigAct.pdf
https://doi.org/10.1145/1132863.1132867
http://db.cs.berkeley.edu/cs286/papers/paxoscommit-tods2006.pdf
https://doi.org/10.1007/3-540-08755-9_9
http://jimgray.azurewebsites.net/papers/dbos.pdf
http://jimgray.azurewebsites.net/papers/dbos.pdf
https://doi.org/10.1145/114005.102808
http://cs.brown.edu/~mph/Herlihy91/p124-herlihy.pdf
https://doi.org/10.1145/78969.78972
http://cs.brown.edu/~mph/HerlihyW90/p463-herlihy.pdf
https://doi.org/10.1145/3380787.3393681
https://arxiv.org/abs/2004.05074
https://github.com/blog/1364-downtime-last-saturday
http://arxiv.org/abs/1509.05393
https://doi.org/10.1145/3359591.3359737
https://www.inkandswitch.com/local-first/
https://doi.org/10.1007/978-3-319-14472-6_2
https://cse.buffalo.edu/~demirbas/publications/hlc.pdf
https://doi.org/10.1145/359545.359563
http://research.microsoft.com/en-US/um/people/Lamport/pubs/time-clocks.pdf
http://research.microsoft.com/en-US/um/people/Lamport/pubs/time-clocks.pdf
https://doi.org/10.1145/279227.279229
http://research.microsoft.com/en-us/um/people/lamport/pubs/lamport-paxos.pdf
https://doi.org/10.1145/357172.357176
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
https://doi.org/10.1109/ftcs.1997.614100
http://groups.csail.mit.edu/tds/papers/Lynch/FTCS97.pdf
http://www.somebits.com/weblog/tech/bad/leap-second-2012.html
http://www.somebits.com/weblog/tech/bad/leap-second-2012.html
https://doi.org/10.1145/215585.215706
http://www.lively-kernel.org/repository/webwerkstatt/projects/Collaboration/paper/Jupiter.pdf
http://www.lively-kernel.org/repository/webwerkstatt/projects/Collaboration/paper/Jupiter.pdf
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
http://arxiv.org/pdf/1011.5808v1.pdf
https://doi.org/10.1007/978-3-642-24550-3_29
https://pages.lip6.fr/Marek.Zawirski/papers/RR-7687.pdf
https://www.infoq.com/articles/Java_Garbage_Collection_Distilled/
https://www.infoq.com/articles/Java_Garbage_Collection_Distilled/
https://doi.org/10.1145/1435417.1435432
http://cacm.acm.org/magazines/2009/1/15666-eventually-consistent/fulltext


Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall. A note on distributed computing. Technical Report TR-94-29,
Sun Microsystems Laboratories, 1994. URL http://m.mirror.facebook.net/kde/devel/smli tr-94-29.pdf.

Michael Whittaker, Aleksey Charapko, Joseph M. Hellerstein, Heidi Howard, and Ion Stoica. Read-write quorum systems
made practical. In 8th Workshop on Principles and Practice of Consistency for Distributed Data, PaPoC 2021, April
2021. doi:10.1145/3447865.3457962. URL https://arxiv.org/abs/2104.04102.

93

http://m.mirror.facebook.net/kde/devel/smli_tr-94-29.pdf
https://doi.org/10.1145/3447865.3457962
https://arxiv.org/abs/2104.04102

	Introduction
	About distributed systems
	Distributed systems and computer networking
	Availability and fault tolerance
	Example: Remote Procedure Calls (RPC)

	Models of distributed systems
	The two generals problem
	The Byzantine generals problem
	Describing nodes and network behaviour
	Failure detectors

	Time, clocks, and ordering of events
	Physical clocks
	Clock synchronisation and monotonic clocks
	Causality and happens-before
	Logical time

	Broadcast
	Delivery order
	Broadcast algorithms

	Replication
	Manipulating remote state
	Quorums
	Replication using broadcast

	Replica consistency
	Two-phase commit
	Linearizability

	Consensus and total order broadcast
	Introduction to consensus
	The Raft consensus algorithm

	Eventual consistency
	Conflict resolution and CRDTs
	Collaborative text editing
	Wrapping up


