Concurrent & Distributed Systems

Lecture 1: Introduction to concurrency, threads,
and mutual exclusion.

Michaelmas Term, 2025/26
Dr Martin Kleppmann

(Slides for lectures 1-8 by Dr Robert Watson,
Dr Steven Hand, Dr David Greaves, and others)



Concurrent and Distributed Systems

* One course, two parts
— 8 lectures on concurrent systems
— 8 further lectures of distributed systems
* Similar interests and concerns:
— Scalability given parallelism and distributed systems
— Mask local or distributed communications latency
— Importance in observing (or enforcing) execution orders
— Correctness in the presence of concurrency (+debugging).
* Important differences
— Underlying primitives: shared memory vs. message passing
— Distributed systems experience communications failure
— Distributed systems (may) experience unbounded latency
— (Further) difficulty of distributed time.



50 Years of Microprocessor Trend Data
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Concurrent sxstems outline

1. Introduction to concurrency, threads, and mutual exclusion.

2. Automata composition - safety and liveness.

3. Semaphores and associated design patterns.

4. CCR, monitors and concurrency in programming languages.

5. Deadlock, liveness and priority inversion and limits on
parallelism.

6. Concurrency without shared data - message passing,
composite operations (transactions).

7. Further transactions.

8. Crash recovery; lock-free programming; (Transactional
memory).



Recommended reading

* “Operating Systems, Concurrent and Distributed Software Design®,
Jean Bacon and Tim Harris, Addison-Wesley 2003

* “Designing Data-Intensive Applications”, Martin Kleppmann O’Reilly
Media 2017

* “Modern Operating Systems”, Andrew Tannenbaum, Prentice-Hall
2007 etc and free pdf online.

* “Java Concurrency in Practice”, Brian Goetz and others, Addison-
Wesley 2006

Look in books for more detailed explanations of algorithms; lectures
only present sketches.



What is concurrencx?

* Computers appear to do many things at once
— E.g. running multiple programs on a laptop
— E.g. writing back data buffered in memory to the hard disk while
the program(s) continue to execute
* In the first case, this may actually be an illusion
— E.g. processes time sharing a single-cored CPU
* In the second, there is true parallelism
— E.g. Direct Memory Access (DMA) transfers data between memory
and I/0 devices (e.g., NIC, SATA) at the same time as the CPU
executes code
—E.g., several CPU cores execute code at the same time
* In both cases, we have a concurrency
— Many things are occurring “at the same time”



In this course we will

* Investigate concurrency in computer systems
— Processes, threads, interrupts, hardware
* Consider how to control concurrency
— Mutual exclusion (locks, semaphores), condition synchronization,
HLL primitives and lock-free programming
* Learn about deadlock, livelock, priority inversion
— And prevention, avoidance, detection, recovery
* See how abstraction can provide support for correct & fault-tolerant
concurrent execution
— Transactions, serialisability, concurrency control
* Later, we will extend these ideas to distributed systems.



Recall: Processes and threads

* Processes are instances of programs in execution
— OS unit of protection & resource allocation
— Has a virtual address space; and one or more threads
* Threads are entities managed by the scheduler
— Represents an individual execution context
— A thread control block (TCB) holds the saved context (registers,
including stack pointer), scheduler info, etc
* Threads run in the address spaces of their process
— (and also in the kernel address space on behalf of user code)
* Context switches occur when the OS saves the state of one thread
and restores the state of another
— If a switch is between threads in different processes, then process
state is also switched - e.g., the address space.



Concurrency with a single CPU (1)

* Process / OS concurrency
— Process X runs for a while (until blocks or interrupted)
— OS runs for a while (e.g. does some TCP processing)
— Process X resumes where it left off...
* Inter-process concurrency
— Process X runs for a while; then OS; then Process Y; then OS; then
Process Z; etc
* Intra-process concurrency
— Process X has multiple threads X1, X2, X3, ...
— X1 runs for a while; then X3; then X1; then X2; then ...



Concurrency with a single CPU (2)

* With just one CPU, can think of concurrency as
interleaving of different executions, e.g.

Proc(A) OS Proc(B) OS Proc(B) OS Proc(C) OS Proc(A)
time I
timer interrupt disk interrupt  system call page fault
* Exactly where execution is interrupted and
resumed is not usually known in advance...
* this makes concurrency challenging!

* Generally should assume worst case behaviour
Non-deterministic or so complex as to be unpredictable 10




Concurrency with multiple CPUs (aka cores)

* Many modern systems have multiple CPUs
—And even if don’t, have other processing elements.
* Hence things occur in parallel, e.g.

CPUO | 2N e Proc(B) OS  Proc(B) 0S Proc(C) 0S

CPU1 Proc(C) OS Proc(D) OS Proc(A) OS  Proc(A)

time

* Notice that the OS runs on both CPUs: tricky!
* More generally, can have different threads of the same process
executing on different CPUs too.

11



What might this code do?

Global variables are

#define NUMTHREADS 4 shared by all threads

char *threadstr = "Thread";

void threadfn (int threadnum) { Each thread has its
sleep (rand(2)) ; // Sleep 0 or 1 own local variables

printf ("%$s %d\n", threadstr, threadnum);

volid main (void) {

threadid t threads[NUMTHREADS]; // Thread IDs
int i; // @
Additional threads
for (1 = 0, 1 < NUMTHREADS; 1i++) are started eXpllCItly
threads[1] = thread create (threadfrdf,

for (1 = 0; i < NUMTHREADS; i++)
thread join(threads[1]):; What orders could

the printfsrunin?




Possible orderings of this program

* What order could the print£ () s occurin?
* Two sources of non-determinism in example:
—Program non-determinism: Threads randomly sleep O or 1
seconds before printing
—Thread scheduling non-determinism: Arbitrary order for
unprioritised, concurrent wakeups, preemptions
* There are 4! (factorial) valid permutations
— Assuming printf() is indivisible
—Is printf() indivisible? Maybe.
* Even more potential timings of print£ ()s

13



Multiple threads within a process

Thread 1 process A single-threaded process has code, a
registers address heap, a stack, a static global segment
Space and register set (including $pc).
* Additional threads have their own
registers and stacks
— Per-thread program counters ($pc)
allow execution flows to differ
— Per-thread stack pointers ($sp) allow
call stacks, local variables to differ
* Heap and code (+global variables) are
shared between all threads
* Access to another thread’s stack is
possible in some languages - but
deeply discouraged!

Thread 2
registers

14




1:N - user-level threading

* Kernel only knows about (and schedules)
processes.

* A userspace library implements threads,
context switching, scheduling,
synchronisation, ...

— Eg. original JVM or a threading library

* Co-routine variant supports voluntary
yield only.

* Advantages:

— Lightweight creation/termination +
context switch; application-specific
scheduling; OS independence.

* Disadvantages:

g 5 — Awkward to handle blocking system
Kernel

calls or page faults, preemption; cannot

use multiple CPUs.
* Very early 1990s!

15



1:1 - kernel-level threading

* Kernel provides threads directly

§ — By default, a process has one thread...
— ...but can create further via system calls

P1 T, T * Kernel implements threads, thread
T, 3 context switching, scheduling, etc..
'l o ., * Userspace thread ‘library’ 1:1 maps user
ll - — threads into kernel threads
______________ . "_______,:_____________ * Advantages:
1- : : — Handles preemption, blocking syscalls,
5 o ¢é — Straightforward to use multiple CPUs.

— Higher overhead (trap to kernel); less
g 5 flexible; less portable.

Kernel Model of choice across major OSes
— Windows, Linux, MacOS, FreeBSD,

Solaris, ..

16



M:N - hybrid threading

* All sorts of other minor variations exist.

s * Aim for best of all possible worlds.
* Advantages:

* Lightweight thread switching entirely in
user space is supported.

* A custom scheduller can understand user-
space inter-thread communication
primitives (eg. message passing).

* Disadvantages:

* Need a timer signal (user-space interrupt)
to implement time sharing? Perhaps better
to just use another kernel thread.

* Kernel threads are the only ones that can

§ block in a system call, so they are also
Kernel needed for that, and so on.

17



Advanta gES of concu 'rency

* Allows us to overlap computation and I/0 on a single machine.

* Can simplify code structuring and/or improve responsiveness
— E.g. one thread redraws the GUI, another handles user input, and
another computes game logic
— E.g. one thread per HTTP request
— E.g. background GC thread in JVM/CLR

* Enables the seamless (?!) use of multiple CPUs -greater performance
through parallel processing.

18



Concurrent sxstems

* In general, have some number of processes...
— ... each with some number of threads,
— ... each with some number of CPU cores,
— ... distributed over some number of computers.

* For this half of the course we'll mostly focus on a single computer running a
multi-threaded process
— most problems & solutions generalize to multiple processes, CPUs, and

machines, but imperative programming for them becomes harder

— (we'll look at distributed systems later in the term)

* Challenge of the thread model: threads will access shared resources
concurrently via their common address space leading to races.

* Concurrent programming disciplines without shared memory are generally
much ‘cleaner’ : easier to reason about and automatically map to available
cores or other execution resources (GPU, FPGA, Cloud).



Examgle: Housemates Buxing Beer

*Thread 1 (person 1)  *Thread 2 (person 2)

1.Look in fridge 1.Look in fridge
2.1f no beer, go buy beer  2.If no beer, go buy beer
3.Put beer in fridge 3.Put beer in fridge

* In most cases, this works just fine...
* But if both people look (step 1) before either refills the fridge (step
3)... we'll end up with too much beer!
* Obviously more worrying if “look in fridge” is “check reactor”, and
“buy beer” is “toggle safety system” ;-)



Solution #1: Leave a Note

*Thread 1 (person 1)  *Thread 2 (person 2)

1.Look in fridge 1.Look in fridge

2.I1f no beer & no note 2.I1f no beer & no note
1.Leave note on fridge 1.Leave note on fridge
2.Go buy beer 2.Go buy beer
3.Put beer in fridge 3.Put beer in fridge
4 .Remove note 4 .Remove note

* Probably works for human beings...
* But computers are stooopid!
* Can you see the problem?



Non-Solution

1: Leave a Note

* Easier to see with pseudo-code...

// thread 1

beer = checkFridge () ;
if (!beer) {

if (!'note) {

note = 1

buyBeer (

note = 0

L]

’

) .o
’

o

’

// thread 2

beer = checkFridge () ;
if (!beer) {

if (!note) {

note = 1

buyBeer (

note = 0

.o

’

) .o
’

.o

’

22




Non-Solution #1: Leave a Note

// thread 1 // thread 2
beer = checkFridge () ;
1if (!beer) {
if ('note) { context switch
beer = checkFridge ()
if (!beer) {

if (!note) {
note = 1;
buyBeer () ;
note = 0;
note = 1; context switch
buyBeer () ;
note = 0; }

} }
}

* Easier to see with pseudo-code...



Non-Solution #1: Leave a Note

* Of course this won’t happen all the time
—Need threads to interleave in the just the right way
(or just the wrong way ;-).
* Unfortunately code that is ‘mostly correct’ is

much worse than code that is ‘mostly wrong’!
—Difficult to catch in testing, as occurs rarely.

—May even go away when running under debugger
* e.g. only context switches threads when they block
* (such bugs are sometimes called Heisenbugs).



Critical Sections & Mutual Exclusion

* The high-level problem here is that we have

two threads trying to solve the same problem
—Both execute buyBeer() concurrently
—ldeally want only one thread doing that at a time.
* We call this code a critical section
—A piece of code which should never be concurrently
executed by more than one thread.
* Ensuring this involves mutual exclusion
—If one thread is executing within a critical section, all
other threads are prohibited from entering it.



Achieving Mutual Exclusion

* One way is to let only one thread ever execute a particular
critical section - e.g. a nominated beer buyer - but this
restricts concurrency

* Alternatively our (broken) solution #1 was trying to provide
mutual exclusion via the note
—Leaving a note means “I'm in the critical section”;
—Removing the note means “I'm done”

—But, as we saw, it didn’t work :-)

* This was because we could experience a context switch

between reading ‘note’, and setting it.

26



Non-Solution

1: Leave a Note

// thread 1

if (!'beer) {
if (!'note) {

We decide to
enter the critical

section here... fact here

beer = checkFridge () ;

But only mark the

// thread 2

context switch
beer = checkFridge ()

if (!beer) {
if (!note

I~

These problems are referred to as race
conditions in which multiple threads
“race” with one another during
conflicting access to shared resources




Atomicity

* What we want is for the checking of note and the (conditional)
setting of note to happen without any other thread being
involved
—We don’t care if another thread reads it after we're done; or

sets it before we start our check
— But once we start our check, we want to continue without
any interruption.

* If a sequence of operations (e.g. read-and-set) are made to
occur as if one operation, we call them atomic
—Since indivisible from the point of view of the program.

* An atomic read-and-set operation is sufficient for us to
implement a correct beer program.

28



Solution #2: Atomic Note

// thread 1 // thread 2
beer = checkFridge () ; beer = checkFridge ()
i1f ('beer) { 1f (!'beer) {
if (read—-and-set (note)) { if (read—-and-set (note)) {
buyBeer () ; buyBeer () ;
note = 0; note = 0;

} }

* read-and-set(&address) atomically checks the value in memory
and iff it is zero, sets it to one
—returns 1 iff the value was changed from 0 -> 1

* This prevents the behavior we saw before, and is sufficient to
implement a correct program...
—although this is not that program :-)



Non-Solution #2: Atomic Note

// thread 1 // thread 2
beer = checkFridge () ;
if (!'beer) {
context switch
beer = checkFridge ()
if (!'beer) {

if (read-and-set (note)) {
buyBeer () ;
context switch note = 0;
if (read-and-set (note)) {
buyBeer () ; }
note = 0; }

* Our critical section doesn’t cover enough!



General mutual exclusion

* We would like the ability to define a region of
code as a critical section e.g.

// thread 1 // thread 2
ENTER CS () ; ENTER CS () ;
beer = checkFridge () ; beer = checkFridge () ;
if ('beer) 1f (!beer)

buyBeer () ; buyBeer () ;
LEAVE CS () ; LEAVE CS () ;

* This should work ...
* ... providing that our implementation of

ENTER _CS() / LEAVE_CS() is correct



ImEIementing mutual exclusion

* One option is to prevent context switches
—e.g. disable interrupts (for kernel threads), or set an in-
memory flag (for user threads)
—ENTER_CS() = “disable context switches”:
—LEAVE_CS() = “re-enable context switches”
* Can work but:
—Rather brute force (stops all other threads, not just those
who want to enter the critical section)
— Potentially unsafe (if disable interrupts and then sleep
waiting for a timer interrupt ;-)
— And doesn’t work across multiple CPUs.



ImEIementing mutual exclusion

* Associate a mutual exclusion lock with each

critical section, e.g. a variable L
—(must ensure use correct lock variable!)
—ENTER_CS() = “LOCK(L)"

—LEAVE_CS() = “UNLOCK(L)"

* Can implement LOCK() using read-and-set():

LOCK (L) { UNLOCK (L) {
while (! read-and-set (L)) L = 0;
continue; // spin, doing nothing }

33



Solution #3: mutual exclusion locks

// thread 1 // thread 2
LOCK (fridgelock) ; LOCK (fridgelock) ;
beer = checkFridge () beer = checkFridge ()
i1f (!'beer) 1f (!'beer)

buyBeer () ; buyBeer () ;
UNLOCK (fridgeLock) ; UNLOCK (fridgeLock) ;

* Thisis - finally! - a correct program
* Still not perfect
— Lock might be held for quite a long time (e.g. imagine another person
wanting to get the milk!)
— Waiting threads waste CPU time (or worse)
— Contention occurs when consumers have to wait for locks.
* Mutual exclusion locks often known as mutexes
— But we will prefer this term for sleepable locks - see Lecture 2
— So think of the above as a spin lock.

34



Summary + next time

* Definition of a concurrent system

* Origins of concurrency within a computer

* Processes and threads

* Challenge: concurrent access to shared resources

* Critical sections, mutual exclusion, race conditions, atomicity
* Mutual exclusion locks (mutexes)

* Next time:
— Operating System and hardware instructions and structures,
— Interacting automata view of concurrency,
— Introduction to formal modelling of concurrency.

35



Concurrent systems
Lecture 2: Hardware, OS and Automaton Views

Dr Martin Kleppmann

(Slides for lectures 1-8 by Dr Robert Watson,
Dr Steven Hand, Dr David Greaves, and others)



From last time ...

* Concurrency exploits parallel and distributed
computation.

* Concurrency is also a useful programming
naradigm and a virtualisation means.

* Race conditions arise with imperative
anguages in shared memory (sadly(?) the
oredominant paradigm of last 15 years).

* Concurrency bugs are hard to anticipate.




This time

* Computer architecture and O/S summary

* Hardware support for atomicity

* Basic Automata Theory/Jargon and
interactions.

* Simple model checking
* Dining Philosophers Taster
* Primitive-free atomicity (Lamport Bakery)



General comments

* Concurrency is essential in modern systems
— overlapping I/O with computation
— building distributed systems

— But throws up a lot of challenges

* need to ensure safety, allow synchronization, and avoid issues
of liveness (deadlock, livelock, ...)

* A major risk of over-engineering exists: putting in too many
locks not really needed.

* Also its possible to get accidental, excessive serialisation,
killing the expected parallel speedup.

* Generally worth building a sequential system first

— and worth using existing libraries, tools and design
patterns rather than rolling your own!



https://www.cl.cam.ac.uk/~djgll/socdam-patterns-his-touchstones/soc-design-patterns/spl-socparts/zhp6c8e57449.html
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Operating System Behaviour

Thread/Process Process state diagram
control blocks.

( ) Creation
PO

—

— Exiting
il Blocking

— system Pre-
P2 call emption

Blocked
P3

Resource

becomes ready

- TCB contains saved registers for non-running tasks.

- Ready-to-run tasks are in a nominal queue.

- Blocked TCBs reference a semaphore (or similar) they are awaiting.
- Most interrupt routines will invoke scheduller as they return.

- If nothing is ready-to-run, the core executes a ‘halt’ instruction, putting
it in low power mode until the next hardware interrupt arrives.



Hardware foundations for atomicity 1

* On a simple uni-processor, without DMA devices, the
crudest mechanism is to disable interrupts.

* We bracket critical section with ints_off and ints_on
instructions. This guarantees no preemption.

* Can disrupt real-time response
* Not suitable when other CPUs and DMA exist
* Requires supervisor privilege.



Hardware foundations for atomicity 2

* How can we implement atomic read-and-set?

* Simple pair of load and store instructions fail
the atomicity test (obviously divisible!)

* Need a new ISA primitive for protection
against parallel access to memory from
another CPU

* Two common flavours:
— Atomic Compare and Swap (CAS)
— Load Linked, Store Conditional (LL/SC)
— (But we also find atomic increment, bitset etc..)



Atomic Compare and Swap (CAS)

* Instruction operands: memory address, prior + new values
— If prior value matches in-memory value, new value stored
— If prior value does not match in-memory value, instruction fails
— Software checks return value, can loop on failure

* Found on CISC systems such as x86 (cmpxchg)?

mov edx, 1 # New value -> register
spin:
mov $eax, [foo lock] # Load prior value
test %$eax, %eax # If non-zero (owned),
jnz spin # loop
lock cmpxchg [foo lock], %edx # If *foo lock == %eax,
test %Seax, %eax # swap in value from
jnz spin # %Sedx; else loop

“It's all done with the one instruction” - inner loop is an optimisation; outer is ‘acquire’.

* Atomic Test and Set (TAS) is another variation 9



Load Linked-Store Conditional (LL/SC)

* Found on RISC systems (MIPS, RISC-V, ARM, ...)

Load value from memory location with LL
Manipulate value in register (e.g., compare, add, ...)

SC attempts to write back to same address and indicates success (or
not)

SC fails if memory neighbourhood modified (or interrupt) since LL
Software checks SC return value and typically loops on failure
An example of optimistic concurrency (see later in course).

* Preferred since it does not lock up whole memory system

while one core makes an atomic operation. Code below requires a
test and set bit: ! RISC-V code further outer loop
spin: to become an acquire.

movli.l @mutex, S%r tmpl ! Load linked
mov $r tmpl, %r tmp2 Copy to second register

|
or %r bitno, %r tmpl ! Set the desired bit
movco.l sr tmpl, @mutex ! Store-conditional
bf spin ! If store failed, try again
and sr bitno, %r_ tmpZ2 ! Return old value of the bit.

ret 10



Finite State Machine Revision and Terminology

FSMH1

Y ieimiemiomi? Deadlock state

Initial
state

FSMis tuple: (Q,q,2, A) being states, start state, input alphabet, transition function.

A live state is one that can be returned to infinitely often in the future.
A dead(lock) state has no successors — machine stops if we enter it.
Start-up states are those before the main live behaviour.

‘Bad’ states are those that lead away from the main alive behaviour.

In this course, live states typically encompass/denote the normal/ongoing operation of our system.



Finite State Machine: Fairness and Livelock Syphons

IO -
LUE!DC

Ignoring the ‘F’, the live states of this FSM include Q5 and Q6.

F has been labelled as a ‘fair’ state. If we also discard the start-up ‘lasso
stem’, its existence changes the live states to just Q2, Q3, Q4. Manual
labelling defines the intended system behaviour.

Any fair state is live and states from which any fair state cannot be reached
are not live. [ Hence if we also labelled Q5 as F, fairness cannot be achieved.]

Although more rigorous definitions exist, this is sufficient terminology for us to
define livelock as: we have not deadlocked but cannot make ‘useful’ progress.



Finite State Machine: FSM view of thread control flow.

Per-thread FSM view of beer drinking and replenishing algorithmr

BEER==0 && INOTE

" Q1
1iBEER =1
1/ NOTE:=1
1/NOTE =0
BEER=>0 @
1/BEER +=6

System state vector:
Each person has a program counter: PC of 0..4
Global shared vars: NOTE of Boolean, Beer of 0..99

FSM expresses program control flow per thread.
FSM arcs have ‘condition / action’ annotations.
Conditions and actions range over shared global state.



Forward reference to semantics course notation

* The semantics course models a computer as a program (expression)
e and a memory (store) s;

* It uses the vertical bar to denote stuttering parallel composition.

<€1: S> — <€£7 Sl>
(e1|eq, s) — (ef]ea, )

(parallell)

(e2,5) —> (e}, &)
(e1]e2, ) — (e1] e, 8)

(parallel2)

This slide says if either el or e2 is able to advance, one of them will go
forward, updating its PC (e becomes €’) and changing the shared memory
(s becomes s’).

[This slide content not examinable on this course.] 14



Example: Dining Philosophers

* 5 philosophers, 5 forks, round table...

Semaphore forks[] = new Semaphore[5];
while (true) { // philosopher i
think () ;

wait (fork[1i]) ;

wait (fork[ (1i+1) % 5];
eat () ;

signal (fork([i]);

signal (fork([ (i+1l) % 5];

* For now, read ‘wait’ as ‘pick up’ and ‘signal’ as "put down’

* See next time for definitions.

15



Summary + next time

* We looked at underlying hardware structures (but this
was for completeness rather than for examination
purposes)

* We looked at finite-state models of programs and a
model checker, but do note that today’s tools can

cope only with highly-abstracted models or small sub-
systems of real-world applications.

* Next time
— Access to hardware primitives via O/S

— Mutual exclusion using semaphores
~— Producer/consumer and one generalisation



Concurrent systems

Lecture 3: Mutual exclusion, semaphores,
and producer-consumer relationships

Dr Martin Kleppmann

(Slides for lectures 1-8 by Dr Robert Watson,
Dr Steven Hand, Dr David Greaves, and others)



Reminder from last time

* Automata models of concurrent systems

Concurrency hardware mechanisms

Challenge: concurrent access to shared resources
Mutual exclusion, race conditions, and atomicity
Mutual exclusion locks (mutexes)



From first lecture

From before: beer-buying example

* Thread 1 (person 1) * Thread 2 (person 2)

1. Look in fridge 1. Look in fridge
2. If no beer, go buy beer 2. If no beer, go buy beer
3. Put beer in fridge 3. Put beer in fridge

e In most cases, this works just fine...

« Butif both people look (step 1) before either refills the fridge (step 3)...
we'll end up with too much beer!

« Obviously more worrying if “look in fridge” is “check reactor”, and “buy
beer” is “toggle safety system” ;-)

We spotted race conditions in obvious concurrent implementations.
Ad hoc solutions (e.g., leaving a note) failed.

Even naive application of atomic operations failed.
Mutexes provide a general mechanism for mutual exclusion.



This time

* Implementing mutual exclusion

* Semaphores for mutual exclusion, condition
synchronisation, and resource allocation

* Two-party and generalised producer-
consumer relationships



ImEIementing mutual exclusion

* Associate a mutual exclusion lock with each
critical section, e.g. a variable L
— (must ensure use correct lock variable!)
ENTER_CS() = “LOCK(L)”
LEAVE_CS() = “UNLOCK(L)”

* Can implement LOCK() using read-and-set():

LOCK (L) { UNLOCK (L) {
while (! read-and-set (L)) L = 0;
continue; // spin, doing nothing }

}



Semaphores

* Despite with atomic ops, busy waiting remains inefficient...

— Lock contention with spinning-based solution wastes CPU
cycles.

— Better to sleep until resource available.

Dijkstra (THE, 1968) proposed semaphores
— New type of variable
— Initialized once to an integer value (often 0).

Supports two operations: wait() and signal()
— Sometimes called down() and up()
— (and originally called P() and V() ... blurk!).

Can be used for mutual exclusion with sleeping

Can also be used for condition synchronisation
— Wake up another waiting thread on a condition or event
— E.g. “There is an item available for processing in a queue.”



Semaphore implementation

* Implemented as an integer and a queue

wait (sem) {
if(sem > 0) {

sem = sem — 1;
} else suspend caller & add thread to queue for sem

}

signal (sem) {
if no threads are waiting {

sem = sem + 1;
} else wake up some thread on queue

}

* Method bodies are implemented atomically
* Think of “sem” as count of the number of available “items’

* “suspend” and “wake” invoke threading APIs

)



Hardware support for wakeups: IPIs

CAS/LLSC/... support atomicity via shared memory

But what about “wake up thread”?
— E.g., notify waiter of resources now free, work now waiting, ...
— Generally known as condition synchronisation
— On a single CPU, wakeup triggers context switch
— How to wake up a thread on another CPU that is already busy
doing something else?
Inter-Processor Interrupts (IPls)
— Mark thread as “runnable”
— Send an interrupt to the target CPU
— |IPI handler runs thread scheduler, preempts running thread,
triggers context switch.

Together, shared memory and IPIs support atomicity and
condition synchronisation between processors.



Mutual exclusion with a semaghore

aSem A B C
-
EE—» wait (aSem)
[0 ][] wait|(aSem)

CS B blocked
IIE—' B,C wait (aSem)
. C blocked
EE—»c signal (aSem)
CS
IIIEI-’ signal (aSem)
CS
! signal (@Sem)
v v v

* |nitialize semaphore to 1; wait() is lock(), signal() is unlock()



Condition synchronisation

wait before signal signal before wait
A B A B
asem aSem
m wait|(aSem)
A ! signal (aSem)
A blockedk “wake-up waiting”
. it (aSem)
signal (aSem) wai
m m, A continues
A continues
v v v v

* |nitialize semaphore to O; A proceeds only after B signals

10



N-resource allocation

* Suppose there are N instances of a resource
— e.g. N printers attached to a print server daemon.

* Can manage allocation with a semaphore sem,
initialized to N
— Any job wanting a printer does wait(sem)
— After N jobs get a printer, next will sleep

— To release resource after last page, signal(sem)
* Will wake some job if any job is waiting.

* Will typically also require mutual exclusion
— E.g. to decide which printers are free and hand them work.



Semaphore design patterns

* Semaphores are quite powerful
— Can solve mutual exclusion...
— Can also provide condition synchronization
* Thread waits until some condition set by another thread
* Let’s look at three common examples:

— One producer thread, one consumer thread, with a N-
slot shared memory buffer

— Any number of producer and consumer threads,
again using an N-slot shared memory buffer

— Multiple reader, single writer synchronization (next
time)

12



Producer-consumer Ercblem

* General “pipe” concurrent programming paradigm

— E.g. pipelines in Unix; staged servers; work stealing;
download thread vs. rendering thread in web browser

* Shared buffer B[] with N slots, initially empty

* Producer thread wants to:
— Produce an item
— If there’s room, insert into next slot;
— Otherwise, wait until there is room (this is called
“backpressure”)
* Consumer thread wants to:
— If there's anything in buffer, remove an item (+consume it)
— Otherwise, wait until there is something

* Maintain order, use parallelism, avoid context switches.



Producer-consumer

pseudo solution

int buffer[N]; int in = 0, ou
spaces = new Semaphore (N) ;
items = new Semaphore (0);

t:

0;

// producer thread
while (true) {

item = iroduceii;

// consumer thread

item = buffer[out];
buffer[in] = item; out = (out + 1) % N;
in = (in + 1) % N; }
} consume (item) ;
} }
buffer

14



OO-style producer-consumer FIFO

class FIFOKDT> {
DT buffer([N]; int in = 0, out = 0;
spaces = new Semaphore (N) ;
items = new Semaphore (0);
public void enqueue (DT item) { as before .. };
public DT dequeue() { as before .. };
}
[/ oroducer threadtst | [// conoumer threadts) |
while (true) { while (true) {
item = produce(); item = the fifo/dequeue();
the fifo.enqueue (item) ; consume (item) ;
} }

The buffer is often coded/refactored as a class like the above.

The code shape is different, but the executed code is identical.

Note: both exported methods are blocking.

Our method implementations will shortly be generalised to be re-entrant. 15



Producer-consumer solution

int buffer[N]; int in = 0,
spaces = new Semaphore (N) ;
items = new Semaphore (0);

// producer thread
while (true) {

buffer[in] = item;
in = (in + 1) % N;

item = iroduceii;

// consumer thread
while (true) {

consume (item) ;

buffer

N-1

16



Producer-consumer solution

* Use of semaphores for N-resource allocation
— In this case, resource is a slot in the buffer
— spaces allocates empty slots (for producer)
— items allocates full slots (for consumer).

* No explicit mutual exclusion

— Threads will never try to access the same slot at
the same time; if “in == out” then either
* buffer is empty (and consumer will sleep on items), or
* buffer is full (and producer will sleep on spaces)

— NB: in and out are each accessed solely in one of
the producer (in) or consumer (out).



Generalized Eroducer-consumer

* Previously had exactly one producer thread,
and exactly one consumer thread.

* More generally might have many threads
adding items, and many removing them

* If so, we do need explicit mutual exclusion

— E.g. to prevent two consumers from trying to
remove (and consume) the same item

— (Race conditions due to concurrent use of in or
out precluded when just one thread on each end)

* Can implement with one more semaphore...



Generalized P-C solution

int buffer[N]; int in = 0, out = 0;
spaces = new Semaphore (N) ;
items = new Semaphore (0) ;
guard = new Semaphore (1) ; // for mutual exclusion
// producer threads // consumer threads
while (true) { while (true) {
item = produce () ; wait (items);
wait (spaces) ; wait (guard) ;
wait (guard) ; item = buffer[out];
buffer[in] = item; out = (out + 1) % N;
in = (in + 1) % N; signal (guard) ;
signal (guard) ; signal (spaces) ;
signal (items) ; consume (1tem) ;
} }

e Exercise: Can we modify this design to allow concurrent access by 1

producer and 1 consumer by adding one further semaphore?
19



SemaF_)hores: summary

* Powerful abstraction for implementing
concurrency control:

— Mutual exclusion & condition synchronization

* Better than read-and-set()... but correct use
requires considerable care

— E.g. forget to wait(), can corrupt data
— E.g. forget to signal(), can lead to infinite delay
— Generally get more complex as add more semaphores

* Used internally in some OSes and libraries, but
generally deprecated for other mechanismes...



Mutual exclusion and invariants

* One important goal of locking is to avoid exposing
inconsistent intermediate states to other threads
* This suggests an invariants-based strategy:
— Invariants hold as mutex is acquired
— Invariants may be violated while mutex is held
— Invariants must be restored before mutex is released.

* E.g. deletion from a doubly linked list:

— Invariant: an entry is in the list, or not in the list.

— Individually non-atomic updates of forward and backward
pointers around a deleted object are fine as long as the
lock isn’t released in between the pointer updates



Summary + next time

* Implementing mutual exclusion: hardware support for
atomicity and inter-processor interrupts

* Semaphores for mutual exclusion, condition
synchronisation, and resource allocation

* Two-party and generalised producer-consumer
relationships

* Invariants and locks

* Next time:
— Multi-Reader Single-Writer (MRSW) locks
— Starvation and fairness
— Alternatives to semaphores/locks
— Concurrent primitives in practice

22
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Reminder from last time

* Implementing mutual exclusion: hardware
support for atomicity and inter-processor
interrupts

* Semaphores for mutual exclusion, condition
synchronisation, and resource allocation

* Two-party and generalised producer-
consumer relationships

* Invariants and locks



From last time: Semaphores summary

* Powerful abstraction for implementing concurrency control:
— mutual exclusion & condition synchronization
* Better than read-and-set()... but correct use requires
considerable care
— e.g. forget to wait(), can corrupt data
— e.g. forget to signal(), can lead to infinite delay
— generally get more complex as add more semaphores
* Used internally in some OSes and libraries, but generally
deprecated for other mechanismes...

Semaphores are a low-level implementation

primitive - they say what to do, rather than
describing programming goals




This time

* Multi-Reader Single-Writer (MRSW) locks
— Starvation and fairness

* Alternatives to semaphores/locks:
— Conditional critical regions (CCRs)
— Monitors
— Condition variables
— Signal-and-wait vs. signhal-and-continue semantics

* Concurrency primitives in practice
* Concurrency primitives wrap-up



Multiple-Readers Single-Writer (MRSW)

* Another common synchronisation paradigm is MRSW

— Shared resource accessed by a set of threads
* e.g. cached set of DNS results

— Safe for many threads to read simultaneously, but a writer
(updating) must have exclusive access
— MRSW locks have read lock and write lock operations
— Mutual exclusion vs. data stability
* Simple implementation uses two semaphores
* First semaphore is a mutual exclusion lock (mutex)
— Any writer must wait to acquire this
* Second semaphore protects a reader count
— Reader count incremented whenever a reader enters
— Reader count decremented when a reader exits
— First reader acquires mutex; last reader releases mutex.



Simplest MRSW solution

int nr = 0;
rSem = new Semaphore (1) ;
wSem = new Semaphore (1) ;

// number of readers
// protects access to nr
// protects writes to data

// a writer thread
wait (wSem) ;

perform update to data
signal (wSem) ;

Code for writer is simple...

.. but reader case more complex: must
track number of readers, and acquire or
release overall lock as appropriate

// a reader thread

wait (rSem) ;
nr = nr + 1;
if (nr == 1)
wait (wSem) ;
signal (rSem) ;

// first in

read data

wait (rSem) ;

nr = nr - 1;

if (nr == 0) // last out
signal (wSem) ;

signal (rSem) ;




Simplest MRSW solution

* Solution on previous slide is “correct”

— Only one writer will be able to access data structure,
but - providing there is no writer - any number of
readers can access it

* However writers can starve

— If readers continue to arrive, a writer might wait
forever (since readers will not release wSem)

— Would be fairer if a writer only had to wait for all
current readers to exit...

— Can implement this with an additional semaphore.



A fairer MRSW solution

int nr = 0; // number of readers

rSem = new Semaphore(l); // protects access to nr
wSem = new Semaphore(l); // protects writes to data
turn = new Semaphore(l); // write is awaiting a turn

Once a writer tries to enter, // a reader thread

it will acquire turn...  wait (turn);
signal (turn) ;

. wait (rSem) ;
... which prevents any further nE = mE b

readers from entering if (nr =— 1) // first in

wait (wSem) ;
signal (rSem) ;

/ a writer thread .. read data
wait (turn); wait (rSem) ;
wait (wSem) ; nr = nr - 1;
perform update to data if (nr == 0) // last out
signal (turn) ; signal (wSem) ;

signal (wSem) ; signal (rSem) ;




Monitors

* Monitors are a more powerful synchronisation primitive
— Waiting for a condition to become true
— All related methods are combined together, along with
initialization code, in a single construct
* Ideais that only one thread can ever be executing
‘within’ the monitor
— If a thread calls a monitor method, it will block (enqueue)
if another thread is holding the monitor
— Hence all methods within the monitor can proceed on the
basis that mutual exclusion has been ensured

* Java’s synchronized primitive implements monitors.



Example Monitor syntax

All related data and
methods kept together

monitor <foo> {

// declarations of shared variables

// set of procedures (or methods)

procedure P1(...) { ... }
procedure P2 (...) { ... }
procedure PN(...) { ... }

{

/* monitor initialization code */

Shared variables only
accessible from within
monitor methods

Invoking any procedure

causes an [implicit] mutual
exclusion lock to be taken

Shared variables can be
initialized here

10




Condition Variables (Queues)

* Mutual exclusion not always sufficient
— Condition synchronization -- e.g., wait for a condition to occur

* Monitors allow condition variables
— Explicitly declared and managed by programmer
— NB: No integrated counter - not a stateful semaphore!
— Support three operations:

wait (cv) {
suspend thread and add it to the queue for CV,
release monitor lock;
}
signal (cv) {
1f any threads queued on CV, wake one thread;
}
broadcast (cv) {
wake all threads queued on CV;

} 11



Monitor Producer-Consumer solution?

monitor ProducerConsumer {
int in, out, buffer[N];
condition notfull = TRUE, notempty = FALSE;

If buffer is full,
procedure produce (item) { e e LT e
if ((in-out) == N) wait(notfull);
buffer[in % N] = item; If buffer was empty,
1f ((in-out) == 0) signal (notempty) ; signal the consumer
in = in + 1;
}
procedure int consume () { If buffer is empty,
if ((in-out) == 0) wait (notempty):; wait for producer
item = buffer[out % N]J];
if ((in-out) == N) signal (notfull); If buffer was full,

out = out + 1; signhal the producer

return (item) ;

}
/* init */ { in = out = 0; }
} 12




Does this work?

* Depends on implementation of wait() & signal()
* Imagine two threads, T1 and T2, and a condition variable C
— T1 enters the monitor and calls wait(C) - this suspends T1,
places it on the queue for C, and unlocks the monitor
— Next T2 enters the monitor, and invokes signal(C)
— Now T1 is unblocked (i.e. capable of running again)...
— ... but can only have one thread active inside a monitor!
* |f we let T2 continue (signal-and-continue), T1 must queue for
re-entry to the monitor
— And no guarantee it will be next to enter
* Otherwise T2 must be suspended (signal-and-wait), allowing

T1 to continue...

13



Signal-and-Wait (“Hoare Monitors”)

* Consider the queue E to enter the monitor
— If monitor is occupied, threads are added to E
— May not be FIFO, but should be fair.
* If thread T1 waits on C, added to queue C
* If T2 enters monitor & signals, waking T1
— T2 is added to a new queue S “in front of” E
— T1 continues and eventually exits (or re-waits)
* Some thread on S chosen to resume
— Only admit a thread from E when S is empty.



Signal-and-Wait pros and cons

* We call signal() exactly when condition is true, then
directly transfer control to waking thread
— Hence condition will still be true!
* But more difficult to implement...
* And can be complex to reason about (a call to signal may
or may not result in a context switch)
— Hence we must ensure that any invariants are maintained
at time we invoke signal()
* With these semantics, our example is broken:
— We signal() before incrementing in/out.

15



Same code as slide 15

Monitor Producer-Consumer solution?

monitor ProducerConsumer {
int in, out, buf[N];
condition notfull,notempty;

If buffer is full,
procedure produce (item) { T e el T
if ((in-out) == N) wait(notfull);
buffer[in % N] = item; If buffer was empty,
1f ((in-out) == 0) signal (notempty) ; signal the consumer
in = in + 1; Race
}
procedure int consume () { If buffer is empty,
1f ((in-out) == 0) wait (notempty); wait for producer
item = buffer[out % NJ;
if ((in-out) == N) signal (notfull); - ec khibbiciil
out - out + 1: Race signal the producer

return (item) ;

}
/* init */ { in = out = 0; }
} 16




Signal-and-Continue

* Alternative semantics introduced by Mesa
programming language (Xerox PARC).

* An invocation of signal() moves a thread from the
condition queue C to the entry queue E
— Invoking threads continues until exits (or waits).

* Simpler to build... but now not guaranteed that
condition holds (is true) when resume!

— Other threads may have executed after the signal, but
before you continue.

17



P, tries to enter, P, wakes up
despite !(not full)

P, waits as
enqueued on E

I(not full)
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C1
With signal-and-continue semantics,
C, removes item, must use while instead of if in case the
condition becomes false while waiting

signals not full

Buffer has space - (not full)

&N Thread waits for monitor
18
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Sighal-and-Continue example (2)

* Consider multiple producer-consumer threads

P1 enters. Buffer is full so blocks on queue for C
C1 enters.

P2 tries to enter; occupied, so queues on E

C1 continues, consumes, and signals C (“notfull”)
P1 unblocks; monitor occupied, so queues on E
C1 exits, allowing P2 to enter

P2 fills buffer, and exits monitor

P1 resumes and tries to add item - BUG!

* Hence must re-test condition:
i.e. while( (in - out) == N) wait(not full);

©ONOULhODNR



if() replaced with while() for conditions

Monitor Producer-Consumer solution?

monitor ProducerConsumer {
int in, out, buf[N];
condition notfull, notempty;

While buffer is full,
wait for consumer

procedure produce (item) {
while| ((in-out) == N) wait(notfull

BEEE 0 ® W = See If buffer was empty,
1f ((in-out) == 0) signal (notempty) ; signal the consumer
in = in + 1;

}

procedure int consume () { While buffer is empty,
while| ((in-out) == 0) wait (notempt wait for producer
item = buf[out % N]J;
if ((in-out) == N) signal (notfull); If buffer was full,
S = ouE il signal the producer

return (item) ; .
} With signal-and-continue

/* init */ { in = out = 0; } semantics, increment after

} signal does not race.




Monitors: summary

* Structured concurrency control
— groups together shared data and methods
— (today we'd call this object-oriented)

* Considerably simpler than semaphores, but still perilous
in places

* May be overly conservative sometimes:
— e.g. for MRSW cannot have >1 reader in monitor
— Typically must work around with entry and exit methods
(BeginRead(), EndRead(), BeginWrite(), etc)

* Exercise: sketch a working MRSW monitor
implementation.

21



Concu 'rency IN Eractice

* Seen a number of abstractions for concurrency
control
— Mutual exclusion and condition synchronization

* Next let’s look at some concrete examples:
— POSIX pthreads (C/C++ API)
— FreeBSD kernels
— Java.

22



Example: pthreads (1)

* Standard (POSIX) threading API for C, C++, etc
* mutexes, condition variables, and barriers

* Mutexes are essentially binary semaphores:

int pthread mutex init (pthread mutex t *mutex, ...);
int pthread mutex lock (pthread . mutex t *mutex) ;

int pthread_mutex_trylock(pthread_mutex_t *mutex) ;
int pthread mutex unlock (pthread mutex t *mutex);

* Athread calling lock() blocks if the mutex is held

— trylock() is a non-blocking variant: returns immediately;
returns O if lock acquired, or non-zero if not.



Example: pthreads (2)

* Condition variables are Mesa-style:

int pthread cond init (pthread cond t *cond, ...);
int pthread cond wait (pthread cond t *cond,
pthread mutex t *mutex);

int pthread . cond . signal (pthread cond t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond) ;

* No proper monitors: must manually code e.g.

pthread mutex lock (&M) ;
while ('condition) Notice: while() and not if() due to
pthread cond wait (&C, &M) ; signal-and-continue semantics
// do stuff
1f (condition)
pthread cond broadcast (&C) ;
pthread mutex unlock(&M)

24




Example: pthreads (3)

* Barriers: explicit synchronization mechanism
* Wait until all threads reach some point

* E.g., indiscrete event simulation, all parallel threads
must complete one epoch before any begin on the next

int pthread barrier init (pthread barrier t *b, ..., N);
int pthread barrier wait (pthread barrier t *Db);

pthread barrier init(&B, ..., NTHREADS);
for (i=0; i1<NTHREADS; i++)

pthread create(..., worker, ...);
worker () {

while (!done) {
// do work for this round
pthread barrier wait (&B);

}



Example: FreeBSD kernel

* Kernel provides spin locks, mutexes, conditional variables,

reader-writer + read-mostly locks
— Semantics (roughly) modelled on POSIX threads

* Avariety of deferred work primitives
* “Fully preemptive” and highly threaded
— (e.g., interrupt processing in threads) ——— — — ————
— Interesting debugging tools T
— such as DTrace, lock
— contention measurement,

* lock-order checking e
* Further details are in 2019’s e
lecture 8 ... == ==

For modern C++ support, see https://en.cppreference.com/w/cpp/thread
26



Example: Java synchronization (1)

* Inspired by monitors - objects have intrinsic locks
* Synchronized methods:

public synchronized void myMethod () throws ...{
// This code runs with the intrinsic lock held.

}

* Method return / statement exit release lock.
* Synchronized statements:

public void myMethod () throws ... /{

synchronized (this) {
// This code runs with the intrinsic lock held.

I8

* Locks are reentrant: a single thread can re-enter synchronized

statements/methods without waiting.
* synchronized() can accept other objects than this. .



Example: Java synchronization (2)

* Objects have condition variables for guarded blocks
* wait() puts the thread to sleep:

public synchronized void waitDone () {
while (!done) {
wait () ;

}
}

* notify() and notifyAll() wake threads up:

public synchronized void notifyDone () {
done = true;
notifyAll () ;

}

* As with Mesa, signal-and-continue semantics
* As with locks, can name object (thatObject.wait())



Example: Java synchronization (3)

* Java also specifies memory consistency and atomicity
properties that make some lock-free concurrent access safe -

if used very carefully
— We will consider lock-free structures later in the term

* java.util.concurrent (especially as of Java 8) includes many
higher-level primitives -for example, thread pools, concurrent
collections, semaphores, cyclic barriers, ...

* Because Java is a type-safe, managed language, it is a much
safer place to experiment with concurrent programming than
(for example) C.

29



Concurrency Primitives: Summary

* Concurrent systems require means to ensure:
— Safety (mutual exclusion in critical sections), and
— Progress (condition synchronization)
* Spinlocks (busy wait); semaphores; MRSWs, CCRs, and

monitors
— Signal-and-Wait vs. Signal-and-Continue

* Many of these are used in practice
— Subtle minor differences can be dangerous
— Much care required to avoid bugs, especially where concurrency
is a bolt-on to an existing imperative language.
— E.g., failing to take out a lock or failing to release it,
— E.g., “lost wakeups” - signal w/o waiter.

30



Summary + next time

* Multi-Reader Single-Writer (MRSW) locks
* Alternatives to semaphores/locks:
— Conditional critical regions (CCRs)
— Monitors
— Condition variables
— Signal-and-wait vs. signal-and-continue semantics
* Concurrency primitives in practice
* Concurrency primitives wrap-up

* Next time:
— Problems with concurrency: deadlock, livelock, priorities
— Resource allocation graphs; deadlock {prevention, detection, recovery}
— Priority and scheduling; priority inversion; (auto) parallelism limits.
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Reminder from last time

* Multi-Reader Single-Writer (MRSW) locks

* Alternatives to semaphores/locks:
— Conditional critical regions (CCRs)
— Monitors
— Condition variables
— Signal-and-wait vs. signal-and-continue semantics

* Concurrency primitives in practice
* Concurrency primitives wrap-up



From last time: Erimitives summary

* Concurrent systems require means to ensure:
— Safety (mutual exclusion in critical sections), and
— Progress (condition synchronization)

Spinlocks (busy wait); semaphores; CCRs and monitors
— Hardware primitives for synchronisation
— Signal-and-Wait vs. Signal-and-Continue

Many of these are still used in practice
— Subtle minor differences can be dangerous
— Require care to avoid bugs - e.g., “lost wakeups”

Progress is particularly difficult, in large part because of

More detail on implementation in additional material on web page.

primitives themselves, which is the topic of this lecture



This time

Liveness properties

Deadlock

— Requirements
— Resource allocation graphs and detection

— Prevention - the Dining Philosophers Problem -
and recovery

Thread priority and the scheduling problem
Priority inversion and priority inheritance
Limits to parallelisation and automation.



Liveness Erogerties

* From a theoretical viewpoint must ensure that
we eventually make progress, i.e. want to avoid
— Deadlock (threads sleep waiting for one another), and
— Livelock (threads execute but make no progress)

* Practically speaking, also want good performance
— No starvation (single thread must make progress)
— (more generally may aim for fairness)
— Minimality (no unnecessary waiting or signalling)

* The properties are often at odds with safety :-(






https://en.wikipedia.org/wiki/Gridlock



(Compositional) Deadlock

* Set of k threads go asleep and cannot wake up
— each can only be woken by another who's asleep!

* Real-life example (Kansas, 1920s):

“When two trains approach each other at a crossing, both
shall come to a full stop and neither shall start up again
until the other has gone.”

* In concurrent programs, tends to involve the taking of

mutual exclusion locks, e.g.: Risk of deadlock if

both threads get here
// thread 1 // thread 2 simultaneously

lock (X) ; lock (Y);

lock (Y) ; if (<cond>) {
// critical section lock (X) ;
unlock (Y) ;




Requirements for deadlock

* Like all concurrency bugs, deadlock may be rare (e.g.
imagine <cond> is mostly false)
* In practice there are four necessary conditions
1. Mutual Exclusion: resources have bounded #owners
2. Hold-and-Wait: can acquire Rx and wait for Ry
3. No Preemption: keep Rx until you release it
4. Circular Wait: cyclic dependency
* Require all four to hold for deadlock
—. But most modern systems always satisfy 1, 2, 3

* Tempting to think that this applies only to locks ...

—. But it also can occur for many other resource classes
whose allocation meets conditions: memory, CPU time, ...



Resource allocation graphs

* Graphical way of thinking about deadlock:
— Circles are threads (or processes)
— Boxes are single-owner resources (e.g. mutexes)
— Edges show lock hold and wait conditions
— A cycle means we (will) have deadlock.

Dashed line T->R
T wants resource R

[ Deadlock! J

10

Thick line R->T means

T holds resource R




Resource allocation graphs (2)

* Can generalize to resources which can have K distinct
users (c/f semaphores)

* Absence of a cycle means no deadlock...
— but presence only means may encounter deadlock, e.g.

Resource in
quantity 1

?
2

Resource in quantity 2

No deadlock: If T1 releases Rb, then
T2's acquire of Rb can be satisfied 11




Resource allocation graphs (3)

* Another generalisation is for threads to have several
possible ways forward and that are able to select
according to which locks have already been taken.

* Read up on generalised AND-OR wait-for graphs for
those interested (link will be on course web site).

* [This slide non-examinable].



Deadlock: 3 Design Approaches

1. Ensure it never happens
— Deadlock (static) prevention (using code structure rules)
— Deadlock (dynamic) avoidance (cycle finding or Banker’s Alg)

2. Let it happen, but recover
— Deadlock (dynamic) detection & recovery

3. lgnore it!
— The so-called “Ostrich Algorithm” ;-)
— “Have you tried turning it off and back on again?”
— Very widely used in practice!

13



Deadlock Static Prevention

1. Mutual Exclusion: resources have bounded #owners
— Could always allow access... but probably unsafe ;-(
— However can help e.g. by using MRSW locks

2. Hold-and-Wait: can get Rx and wait for Ry

— Require that we request all resources simultaneously;
deny the request if any resource is not available now

—  But must know maximal resource set in advance = hard?

3. No Preemption: keep Rx until you release it
— Stealing a resource generally unsafe (but see later)

4. Circular Wait: cyclic dependency
— Impose a partial order on resource acquisition,
— Can work: but requires programmer discipline.

— Lock order enforcement rules used in many systems e.g.,
FreeBSD WITNESS - static and dynamic orders checked.

14



Example: Dining Philosophers

* 5 philosophers, 5 forks, round table...

Semaphore forks[] = new Semaphore[5];
while (true) { // philosopher i
think () ;

wait (fork[1i]) ;

wait (fork[ (1i+1) % 5];

eat ()

signal (fork[1]) ;

signal (fork[ (i+1) % 5];
}

* Possible for everyone to acquire ‘left’ fork
* Q: what happens if we swap order of wait()s?

15



Example: Dining Philosophers Sitn

* (one) Solution: always take lower fork first

Semaphore forks/|]

= new Semaphore[5];

while (true) {
think () ;
first = MIN (1,
second = MAX (1,

eat () ;

}

// philosopher i

(1+1) % 5);
(1+1) % 5);

wait (fork[first]);
wait (fork|[second];

signal (fork([second]) ;
signal (fork[first]);

* NowevenifO, 1, 2, 3 are held, 4 will not acquire final fork.

16



Deadlock Dynamic Avoidance

* Prevention aims for deadlock-free “by design”.

* Deadlock avoidance is a dynamic scheme:

— Assumption: We know maximum possible resource
allocation for every process / thread,

— Assumption: A process granted all desired resources will
complete, terminate, and free its resources.

— Track actual allocations in real-time,

— When a request is made, only grant if guaranteed no
deadlock even if all others take max resources.

* E.g. Banker’s Algorithm

— Not really useful in general as need a priori knowledge of
#processes/threads, and their max resource needs.

17



Deadlock detection (anticipation)

Deadlock detection is a dynamic scheme that determines if
deadlock exists (or would exist if we granted a request).

— Principle: At specific moments in execution, examine resource
allocations and graph.

— Determine if there is at least one plausible sequence of events in
which all threads could make progress.

— l.e., check that we are not in an unsafe state in which no further
sequences can complete without deadlock.

When only a single instance of each resource, can explicitly check
for a cycle:

— Keep track which object each thread is waiting for,

— From time to time, iterate over all threads and build the resource
allocation graph,

— Run a cycle detection algorithm on graph O(n32).
Or use Banker’s Alg if have multi-instance resources (more difficult)

18



Banker’s Algorithm (1)

* Have m distinct resources and n threads
* V[0:m-1], vector of currently available resources

* A, the m x n resource allocation matrix, and
R, the m x n (outstanding) request matrix
— A,,; is the number of objects of type j owned by i
— R,,; is the number of objects of type j further needed
by i
* Proceed by successively marking rows in A for
threads that are not part of a deadlocked set.
— |f we cannot mark all rows of A we have deadlock.

Optimistic assumption: if we can fulfil thread i’s request R, then it will run to

completion and release held resources for other threads to allocate.



Banker’s Algorithm (2)

* Mark all zero rows of A (since a thread holding
zero resources can’t be part of deadlock set)

* Initialize a working vector W[0:m-1] to V

— WI[] describes any free resources at start, plus any
resources released by a hypothesized sequence of
satisfied threads freeing and terminating

* Select an unmarked row i of A s.t. R[i] <=W
— (i.e. find a thread who's request can be satisfied)

— Set W =W + A[i]; mark row i, and repeat

* Terminate when no such row can be found
— Unmarked rows (if any) are in the deadlock set



Banker’s Algorithm: Example 1

* Five threads and three resources (none free)

A R \Y W
XY Z X Y Z XY Z XY Z
TO =10 0 0O 7 2 5
TL 720 0
T2 U3
T3 s e
T4 T 0 T

* Find an unmarked row, mark it, and update W
* TO, T2, T3, T4, T1

At the end of the algorithm, all rows are marked:

the deadlock set is empty. 21



Banker’s Algorithm: Example 2

* Five threads and three resources (none free)

A R v W
X Y Z X Y Z X Y Z X Y Z
=5 [000] o000 (010

O P O DN
o O O O
N O KRN

Cannot find a row in
R <=W!

Now wants one unit

Threads T1, T2, T3 &

T4 in deadlock set of resource Z

* One minor tweak to T2’s request vector...

22



Deadlock recovery

What can we do when we detect deadlock?

Simplest solution: kill something!
— |deally someone in the deadlock set ;-)

Brutal, and not guaranteed to work

— But sometimes the best (only) thing we can do
— E.g. Linux OOM Kkiller (better than system reboot?)
— ... Or not - often kills the X server!

Could also resume from checkpoint
— Assuming we have one

In practice computer systems seldom detect or recover
from deadlock: rely on programmer.

Note: “kill someone” breaks the no preemption precondition for deadlock.




Livelock

* Deadlock is at least ‘easy’ to detect by humans
— System basically blocks & stops making any progress
* Livelock is less easy to detect as threads continue to
run... but do nothing useful

* Often occurs from trying to be clever, e.g.: Livelock if both

threads get here
// thread 1 // thread 2 simultaneously

lock (X) ; lock (Y);

while (!trylock(Y)) ({ while (!trylock (X)) {
unlock (X) ; unlock (Y) ;
yield() ; yield();

lock (X) ; lock (Y) ;
} }

24



Scheduling and thread priorities

* Which thread should run when >1 runnable? E.g., if:
— A thread releases a contended lock and continues to run,
— CV broadcast wakes up several waiting threads.

* Many possible scheduling policies:
— Round robin - rotate between threads to ensure progress,

— Fixed priorities - assign priorities to threads, schedule
highest- e.g., real-time > interactive > bulk > idle-time

— Dynamic priorities - adjust priorities to balance goals -
e.g. boost priority after 1/0 to improve interactivity,

— Gang scheduling - schedule for patterns such as P-C

— Affinity - schedule for efficient resource use (e.g. caches).

* Goals: latency vs. throughput, energy, “fairness’, ...

— NB: These competing goals cannot generally all be
satisfied.

25



Prioritx Inversion

* Another liveness problem...
— Due to interaction between locking and scheduler.

* Consider three threads: T1, T2, T3

— T1is high priority, T2 medium priority, T3 is low

— T3 gets lucky and acquires lock L...

— ... T1 preempts T3 and sleeps waiting for L...

— ...then T2 runs, preventing T3 from releasing L!

— Priority inversion: despite having higher priority and no
shared lock, T1 waits for lower priority thread T2

* This is not deadlock or livelock
— But not desirable (particularly in real-time systems)!
— Disabled Mars Pathfinder robot for several months.

26



Priority inheritance

* Typical solution is priority inheritance:

— Temporarily boost priority of lock holder to that of the
highest waiting thread

— T3 would have run with T1’s priority while holding a lock
T1 was waiting for - preventing T2 from preempting T3

— Concrete benefits to system interactivity

— (some RT systems (like VxWorks) allow you specify on a
per-mutex basis [to Rover’s detriment ;-])

* Windows “solution”
— Check if any ready thread hasn’t run for 300 ticks
— |If so, double its quantum and boost its priority to 15
— ©

27



Problems with priority inheritance

* Hard to reason about resulting behaviour: heuristic

* Works for locks

— More complex than it appears: propagation might need to
be propagated across chains containing multiple locks

— (How might we handle reader-writer locks?)

* How about condition synchronisation, res. allocation?
— With locks, we know what thread holds the lock

— Semaphores do not record which thread might issue a
signal or release an allocated resource

— Must compose across multiple waiting types: e.g. “waiting
for a signal while holding a lock.”

* Where possible, avoid the need for priority inheritance
— Avoid sharing between threads of differing priorities.



Limits to Parallelisation

Depending on how it is coded, a program or task can exhibit
various levels of dependency between its parts:

* No dependencies (embarassingly parallel): No dependencies
between work units, such as Mandelbrot pixel or JPEG tile.

* Data dependencies: where the result of one computation is
needed for others.

* Control dependencies: where its not known if a result will be
needed.

* One can speculate on both types of dependency, guessing the
outcome, but some amount of work will be wasted and
results must not be committed.

29



Summary + next time

* Liveness properties

* Deadlock
— Requirements
— Resource allocation graphs and detection
— Prevention - the Dining Philosophers Problem - and recovery

* Thread priority and the scheduling problem
* Priority inversion and inheritance
* Limits to parallelisation.

* Next time:
— Concurrency without shared data
— Active objects; message passing
— Composite operations; transactions

— ACID properties; isolation; serialisability 30



Concurrent systems
Lecture 6: Concurrency without shared data, composite operations
and transactions, and serialisability

Dr Martin Kleppmann

(Slides for lectures 1-8 by Dr Robert Watson,
Dr Steven Hand, Dr David Greaves, and others)



Reminder from last time

* Liveness properties

* Deadlock (requirements; resource allocation graphs; detection;
prevention; recovery)

* The Dining Philosophers
* Priority inversion
* Priority inheritance

Concurrency is so hard!

If only there were some way that programmers could accomplish useful concurrent
computation without...

(1) the hassles of shared memory concurrency
(2) blocking synchronisation primitives




This time

* Concurrency without shared data

— Use same hardware+0S primitives, but expose higher-level models via
software libraries or programming languages

Active objects
— Ada

Message passing; the Actor model

— Occam, Erlang

Composite operations
— Transactions, ACID properties
— Isolation and serialisability

History graphs; good (and bad) schedules

This material has significant overlap with databases and distributed

systems - but is presented here from a concurrency perspective



Concurrency without shared data

* The examples so far have involved threads which can
arbitrarily read & write shared data

— A key need for mutual exclusion has been to avoid race-
conditions (i.e. ‘collisions’ on access to this data)

* An alternative approach is to have only one thread
access any particular piece of data

— Different threads can own distinct chunks of data

* Retain concurrency by allowing other threads to ask for
operations to be done on their behalf

— This ‘asking’ of course needs to be concurrency safe...

Fundamental design dimension: concurrent access via

shared data vs. concurrent access via explicit communication



Example: Active objects

* A monitor with an associated server thread
— Exports an entry for each operation it provides
— Other (client) threads ‘call’ methods

— Call returns when operation is done

* All complexity bundled up in an active object
— Must manage mutual exclusion where needed
— Must queue requests from multiple threads

— May need to delay requests pending conditions
* E.g. if a producer wants to insert but buffer is full.

Observation: the code of exactly one thread, and the data that

only it accesses, effectively experience mutual exclusion 5



Producer-Consumer in Ada

task-body ProducerConsumer 1is

Clause is active only
when condition is true

loop

SELECT
when count < buffer-size ACCEPT dequeues a
ACCEPT insert (item) do client request and
// insert item into buffer performs the operation
end;
count++;
or Single thread: no need
when count > 0 for mutual exclusion
ACCEPT consume (item) do
// remove item from buffer
end; Non-deterministic choice
count-=-; between a set of
end SELECT

guarded ACCEPT clauses

end loop




Reliable Message Passing

* Dynamic invocations between threads can be thought
of as general message passing
— Thread X can send a message to Thread Y
— Contents of message can be arbitrary data values

* Can be used to build Remote Procedure Call (RPC)

— Message includes name of operation to invoke along with
as any parameters

— Receiving thread checks operation name, and invokes the
relevant code

— Return value(s) sent back as another message
* (Called Remote Method Invocation (RMI) in Java)

We will discuss message passing and RPC in detail 2" half; a taster

now, as these ideas apply to local, not just distributed, systems.



Messa g€ Eassing semantics

* Can conceptually view sending a message to be similar
to sending an email within a reliable system:

1. Sender prepares contents locally, and then sends
2. System eventually delivers a copy to receiver
3. Receiver checks for messages

* In this model, sending is asynchronous:
—. Sender doesn’t need to wait for message delivery
—. (but they may, of course, choose to wait for a reply)
— Bounded FIFO may ultimately apply sender backpressure.

* Receiving is also asynchronous:
—. messages first delivered to a mailbox, later retrieved
—. message is a copy of the data (ie. no actual sharing).



anchronous Message Passing

Machine 2

c118

N
Machine 1 Simultaneouﬁ

Simultaneous

?c1 ==18

c1l22/q:=3
FSM synchronous emit.

« FSM view: both (all) participating FSMs execute the message passing primitive
simultaneously.

« Send and receive operations must be part of edge guard (before the slash).



Asxnchronous Message Passing

Machine 2

1/c1118 1/x:=7ct

: 22 (18 //

channel c1
X == 21

Machine 1

X==18

FSM asynchronous

1/c1122 FIFO channel comms.

We will normally assume asynchronous unless obviously
or explicitly otherwise.

Send and receive operations in action part (after slash). «©



Messa g€ Eassing advanta €S

* Copy semantics avoid race conditions
— At least directly on the data

* Flexible API: e.g.

— Batching: can send K messages before waiting; and can
similarly batch a set of replies

— Scheduling: can choose when to receive, whom to receive
from, and which messages to prioritise.

— Broadcast/multicast: can send messages to many
recipients

* Works both within and between machines
— ie. same design works for distributed systems.

* Explicitly used as basis of some languages ...

11



Example: Occam

Language based on Hoare’s Communicating Sequential Processes (CSP)
— A projection of a process algebra into a real-world language.

No shared variables.
Processes synchronously communicate via channels

<channel> ? <variable> // an input operation
<channel> ! <expression> // an output operation

Build complex processes via SEQ, PAR and ALT, eg.

ALT
countl < 100 & cl ? Data
SEQ
countl:= countl + 1

merged ! data
count?2 < 100 & c2 ? Data
SEQ
count2:= count?2 + 1
merged ! data

12



Example: Erlang

* Functional programming language designed in mid 80’s, made popular
more recently (especially in eternal systems such as telephone network).

* Implements the actor model
* Actors: lightweight language-level processes
— Can spawn() new processes very cheaply

* Single-assignment: each variable is assigned only once, and thereafter is
immutable

— But values can be sent to other processes
* Guarded receives (as in Ada, occam)
— Messages delivered in-order to local mailbox

* Message/actor-oriented model allows run-time restart or replacement of
modules to limit downtime.

Proponents of Erlang argue that lack of synchronous message

passing prevents deadlock. Why might this claim be misleading?



Producer-Consumer in Erlang

end.

-module (producerconsumer) .
—export ([start/0]) .

start () ->
spawn (fun () -> loop () end).

loop () ->
receive

{produce, item } ->
enter item(item),
loop () ;

{consume, Pid } ->
Pid ! remove item(),
loop () ;

stop —->
ok

Invoking start() will
spawn an actor...

receive matches
messages to patterns

explicit tail-recursion is
required to keep the
actor alive...

... so if send ‘stop’,
process will terminate.

14



Message Eassing: summary

* A way of sidestepping (at least some of) the issues with
shared memory concurrency
— No direct access to data => no data race conditions

— Threads choose actions based on message.
* Explicit message passing can be awkward
— Many weird and wonderful languages ;-)
* Can also use with traditional languages, eg.

— Transparent messaging via RPC/RMI

— Scala, Kilim (actors on Java), Bastion for Rust, ...
* May overcome cache-consistency scaling issues?

We have eliminated some of the issues associated with shared memory, but

these are still concurrent programs subject to deadlock, livelock, etc.



ComEosite ogerations

* So far have seen various ways to ensure safe
concurrent access to a single object

— e.g. monitors, active objects, message passing

* More generally want to handle composite operations:
— ie. build systems which act on multiple distinct objects

* As an example, imagine an internal bank system which
allows account access via three method calls:

int amount = getBalance (account) ;
bool credit (account, amount) ;
bool debit (account, amount);

* If each is thread-safe, is this sufficient?
* Or are we going to get into trouble???

16



Comgosite ogerations

* Consider two concurrently executing client threads:

— One wishes to transfer 100 quid from the savings account
to the current account,

— The other wishes to learn the combined balance.

// thread 1: transfer 100 // thread 2: check balance

// from savings->current s = getBalance (savings) ;
debit (savings, 100); c = getBalance (current);
credit (current, 100); tot = s + c;

* If we're unlucky then:
— Thread 2 could see balance that’s too small
— Thread 1 could crash after doing debit() - ouch!
— Server thread could crash at any point - ouch?



Problems with composite operations

Two separate kinds of problem here:

1. Insufficient Isolation
— Individual operations being atomic is not enough,

— Eg. want the credit & debit making up the transfer to
happen as one operation.

— Could fix this particular example with a new transfer()
method, but not very general ...

2. Fault Tolerance
— In the real-word, programs (or systems) can fail.
— Need to make sure we can recover safely.

18



Transactions

* Want programmer to be able to specify that a set of
operations should happen atomically, eg.

// transfer amt from A -> B
transaction {
1f (getBalance (A) > amt) {
debit (A, amt);
credit (B, amt);
return true;
} else return false;

}

* A transaction either executes correctly (in which case we
say it commits), or has no effect at all (i.e. it aborts).

* regardless of other transactions, or system crashes!

19



ACID Properties

Want committed transactions to satisfy four properties:

Atomicity: either all or none of the transaction’s operations are
performed

— Programmer doesn’t need to worry about clean up.

Consistency: a transaction transforms the system from one
consistent state to another - ie. preserves invariants.

— Programmer must still ensure eg. conservation of money.

Isolation: each transaction executes [as if] isolated from the
concurrent effects of others

— We can then ignore partial updates from concurrent transactions.

Durability: the effects of committed transactions survive
subsequent system failures

— |If system reports success, must ensure this is recorded on disk.

This is a different use of the word “atomic” from previously;

we will just have to live with that, unfortunately.



ACID Properties

Can group these into two categories

1. Atomicity & Durability deal with making sure the system is safe
even across failures:
— (A) No partially complete txactions

— (D) Transactions previously reported as committed don’t disappear,
even after a system crash.

2. Consistency & Isolation ensure correct behavior even in the face
of concurrency:

— (C) Can always code as if invariants in place,
— (I) Concurrently executing transactions are indivisible.

21



Isolation

* To ensure a transaction executes in isolation, could just
have a server-wide lock... simple!

// transfer amt from A -> B

transaction { // acquire server lock
1f (getBalance (A) > amt) {
debit (A, amt);
credit (B, amt);
return true;
} else return false;

} // release server lock

* But doesn’t allow any concurrency...

* And doesn’t handle mid-transaction failure
(e.g. what if we are unable to credit the amount to B?).

22



Isolation - Serialisability

* The idea of executing transactions serially (one after
the other) is a useful model for the programmer:

— To improve performance, transaction systems execute
many transactions concurrently,

— But programmers must only observe behaviours consistent
with a possible serial execution: serialisability.

* Consider two transactions, T1 and T2

Tl transaction { T2 transaction {
s = getBalance(S) debit (S, 100);
c = getBalance (C) ; credit (C, 100);
return (s + c); return true;

} }

* |If assume individual operations are atomic, then there
are six possible ways the operations can interleave...



Isolation - serialisability

Tl.é S.getBalance C.getBalance >
T2:: S.debit C.credit >

* First case is a serial execution and hence serialisable

T1:: S.getBalance C.getBalance pug
T2: — >

* Second case is not serial as transactions are interleaved
— Its results are identical to serially executing T2 and then T1
— The schedule is therefore serialisable.

* Informally: it is serialisable because we have only swapped
the execution orders of non-conflicting operations.

— All of T1’s operations on any object happen after T2’s updates.

24



Isolation - serialisability

T1:§ S.getBalance C.getBalance gk
T2:! S.debit C.credit >

* This execution is neither serial nor serialisable
— T1 sees inconsistent values: old S and new C.

* This execution is also neither serial nor serialisable
— T1 sees inconsistent values: new S, old C.

* Both orderings swap conflicting operations such that
there is no matching serial execution.

25



Conflict Serialisability

* There are many flavours of serialisability

* Conflict serialisability is satisfied for a schedule S
if (and only if):

— |t contains the same set of operations as some serial
schedule T; and

— All conflicting operations are ordered the same way
asinT.

* Define conflicting as non-commutative

— |E. differences are permitted between the execution
ordering and T, but they can’t have a visible impact.

26



History graphs

* Can construct a graph for any execution schedule:
— Nodes represent individual operations, and
— Arrows represent “happens-before” relations.

* Insert edges between operations within a given transaction in
program order (ie. as written).

* Insert edges between conflicting operations operating on the
same objects, ordered by execution schedule
— e.g. A.credit(), A.debit() commute [don’t conflict]
— A.credit() and A.addInterest() do conflict

* NB: Graphs represent particular execution schedules not sets
of allowable schedules.

27



Historx graphs: good schedules

m S.getBalance C.getBalance COMMIT
m_mm—

T1: START S.getBalance C.getBalance COMMIT

* Same schedules as before (both ok)

* Can easily see that everything in T1 either happens
before everything in T2, or vice versa

— Hence schedule can be serialised.

28



History graphs: bad schedules

SN START gy S.getBalance C.getBalance commt

T1: m— S.getBalance C.getBalance COMMIT

* Cycles between threads indicate that schedules are bad :-(
* Neither transaction strictly “happened before” the other:

— Arrows from T1 to T2 mean “T1 must happen before T2"

— But arrows from T2 to T1 => “T2 must happen before T1”

— Notice the cycle in the graph (where each thread is considered one node)!
* Can't both be true --- schedules are non-serialisable.

29



|Isolation - serialisabilitx

leé S.getBalance C.getBalance >
T2:! S.debit C.credit >

* This execution is neither serial nor serialisable

— T1 sees inconsistent values: old S and new C

* This execution is also neither serial nor serialisable
— T1 sees inconsistent values: new S, old C

* Both orderings swap conflicting operations such that there is no matching
serial execution

The transaction system must ensure that, regardless of any actual concurrent execution used to improve

performance, only results consistent with serialisable orderings are visible to the transaction programmer.




Summary + next time

* Concurrency without shared data (Active Objects)

* Message passing, actor model (Occam, Erlang)

* Composite operations; transactions; ACID properties
* |solation and serialisability

* History graphs; good (and bad) schedules.

* Next time - more on transactions:
— |solation vs. strict isolation; enforcing isolation.
— Two-phase locking; rollback
— Timestamp ordering (TSO); optimistic concurrency control (OCC)
— |solation and concurrency summary.
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Reminder from last time

* Concurrency without shared data
— Active objects

* Message passing; the actor model
— Occam, Erlang

* Composite operations
— Transactions, ACID properties

— Isolation and serialisability

* History graphs; good (and bad) schedules



Last time: isolation - serialisability

* The idea of executing transactions serially (one after the other) is a
useful model

— We want to run transactions concurrently
— But the result should be as if they ran serially
° Consider two transactions, T1 and T2

Tl transaction { T2 transaction ({
s = getBalance (S5) ; debit (S, 100);
c = getBalance (C) ; credit (C, 100);
return (s + c); return true;

} }

* If assume individual operations are atomic, then there are six
possible ways the operations can interleave...

Isolation allow transaction programmers to reason about the interactions between transactions trivially:they appear
to execute in serial.

Transaction systems execute transactions concurrently for performance and rely on the definition of serialisability
to decide if an actual execution schedule is allowable.




|Isolation - serialisabilitx

leé S.getBalance C.getBalance >
T2:: s.debit C.credit >

* This execution is neither serial nor serialisable

— T1 sees inconsistent values: old S and new C

* This execution is also neither serial nor serialisable

— T1 sees inconsistent values: new S, old C

* Both orderings swap conflicting operations such that there is no matching serial
execution

The transaction system must ensure that, regardless of any actual concurrent execution used to improve

performance, only results consistent with serialisable orderings are visible to the transaction programmer.




This time

* Effects of bad schedules

* [solation vs. strict isolation; enforcing isolation
* Two-phase locking; rollback

* Timestamp ordering (TSO)

* Optimistic concurrency control (OCC)

* Isolation and concurrency summary.

This lecture considers how the transaction implementation

itself can provide transactional (ACID) guarantees




Effects of bad schedules

Lack of atomicity:
* Lost Updates operation results “lost”

— T1 updates (writes) an object, but this is then overwritten by concurrently
executing T2

— (if T1 prevails when T2 logically later, write-write conflict, WaW)

* Dirty Reads
— T1 reads an object which has been updated by an uncommitted transaction T2
— (can be a read-after-write conflict, RaW)

* Unrepeatable Reads Lack of isolation:
— T1 reads an object which is then updated by T2 partial result seen
— Not possible for T1 to read the same value again
— (also called a write-after-read conflict, WaR or Lack of isolation:

anti-dependance. T2 needs to be held off) read value
unstable

Atomicity: all or none of operations performed - abort must be “clean”
Isolation: transactions execute as if isolated from concurrent effects



Isolation and strict isolation

* ldeally want to avoid all three problems

* Two ways: Strict Isolation and Non-Strict Isolation

— Strict Isolation: guarantee we never experience lost
updates, dirty reads, or unrepeatable reads

— Non-Strict Isolation: let transaction continue to execute
despite potential problems (i.e., more optimistic)
* Non-strict isolation usually allows more concurrency
but can lead to complications

— E.g. if T2 reads something written by T1 (a “dirty read”)
then T2 cannot commit until T1 commits

— And T2 must abort if T1 aborts: cascading aborts

* Both approaches ensure that only serialisable
schedules are visible to the transaction programmer.



Enforcing isolation

* In practice there are a number of techniques we can
use to enforce isolation (of either kind)

* We will look at:
— Two-Phase Locking (2PL);
— Timestamp Ordering (TSO); and
— Optimistic Concurrency Control (OCC)

* Essential difference: when is a serialisation decided?

* More complete descriptions and examples of these

approaches can be found in:

Operating Systems, Concurrent and Distributed Software Design,
Jean Bacon and Tim Harris, Addison-Wesley 2003.

[Also, Chapter 12 of 1t year Databases book Lemabhieu. ]



Two-phase locking (2PL)

* Associate a lock with every object
— Could be mutual exclusion, or MRSW

* Transactions proceed in two phases:

— Expanding Phase: during which locks are acquired but
none are released,

— Shrinking Phase: during which locks are released, and
no further are acquired.

* Operations on objects occur in either phase,
providing appropriate locks are held
— Guarantees serializable execution.



2PL example

Acquire a read lock
// transfer amt from A -> (shared) before ‘read’ A
transaction {

- readLock (A) ; !
if (getBalance (A) > amt) Upgrade to a write lock
Expanding _ writeLock (A) : (exclusive) before write A
Phase debit (A, amt); Acquire a write lock
writelLock (B); (exclusive) before write B
- credit (B, amt);
- writeUnlock (B) ;
o addInterest (A); Release locks when done
Shrinking writeUnlock (A); to allow concurrency
Phase tryCommit (return=true) ;
} else {
_ readUnlock (A) ;

tryCommit (return=false);

10



Problems with 2PL

Requires knowledge of which locks required:
— Complexity arises if complex control flow inside a transaction
— Some transactions look up objects dynamically

— But not really a problem and can be automated in many systems:
* User may declare affected objects statically to assist checker tool
or have built-in mechanisms in high-level language (HLL)
compilers.

Risk of deadlock:

— Can attempt to impose a partial order,

— Or can detect deadlock and abort, releasing locks

— (this is safe for transactions due to rollback, which is nice)
Non-Strict Isolation: releasing locks during execution means others
can access those objects

— e.g. T1 updates B, then releases write lock; now T2 can read or
overwrite the uncommitted value

— Hence T2's fate is tied to T1 (whether commit or abort).

— Fixed using strict 2PL: hold all locks until transaction end.
11



Strict(er) 2PL example

// transfer amt from A -> B

transaction {

readLock (A) ;

1f (getBalance (A) > amt) {

Expanding _ writeLock (&) ;
Phase debit (A, amt);

writeLock (B) ;

- credit (B, amt);

addInterest () ;

tryCommit (return=true) ; Retain lock on B here to
} else | ensure strict isolation
readUnlock (A) ;
Unlock All tryCommit (return=false) ;
Phase } on commit, abort {
unlock (A7) ;
unlock (B) ;

By holding locks longer, Strict

2PL risks greater contention




2PL: rollback

* Recall that transactions can abort

— Could be due to run-time conflicts (non-strict 2PL), or
could be programmed (e.g. on an exception).

* Using locking for isolation works, but means that
updates are made ‘in place’
— je. once acquire write lock, can directly update.
— If transaction aborts, need to ensure no visible effects.

* Rollback is the process of returning the world to
the state it in was before the transaction started

— |E. to implement atomicity: all happened, or none.



Why might a transaction abort?

* Some failures are internal to transaction systems:
— Transaction T2 depends on T1, and T1 aborts,
— Deadlock is detected between two transactions,
— Memory is exhausted or a system error occurs.
* Some are programmer-triggered:

— Transaction self-aborted - e.g., debit () was not
possible owing to inadequate balance or account being
locked ...

* Some failures must be programmer visible,
* Others may simply trigger retry of the transaction.



Implementing rollback: undo

* One strategy is to undo operations, e.g.
— Keep a log of all operations, in order: O,, O,, .. O,

— On abort, undo changes of O,, O, ., .. O,

* Must know how to undo an operation:
— Assume we log both operations and parameters
— Programmer can provide an explicit counter action
* UNDO(credit(A, x) = debit(A, x));
* May not be sufficient (e.g. setBalance(A, x))

— Would need to record previous balance, which we
may not have explicitly read within transaction...



ImEIementing rollback: copy

* A more brute-force approach is to take a copy of an
object before [first] modification

— On abort, just revert to original copy.
* Has some advantages:
— Doesn’t require programmer effort

— Undo is simple, and can be efficient (e.g. if there are many
operations, and/or they are complex).

* However can lead to high overhead if objects are large
... and may not be needed if don’t abort!

— Can reduce overhead with partial copy on write, shadow
pages, etc..



Timestamp ordering (TSO)

* 2PL and Strict 2PL are widely used in practice
— But can limit concurrency (certainly the latter)
— And must be able to deal with deadlock.

* Time Stamp Ordering (TSO) is an alternative approach:

— As a transaction begins, it is assigned a timestamp - the
proposed eventual (total) commit order / serialisation.

— Timestamps are comparable, and unique (can think of as eg.
current time - or a logical incrementing version number).

— Every object O records the timestamp of the last transaction to
successfully access (read? write?) it: V(O).

— T can access object O iff V(T) >= V(O), where V(T) is the
timestamp of T (otherwise rejected as “too late”).

— If T is non-serialisable with timestamp, abort with roll back.

Timestamps allow us to explicitly track new “happens-before”
17

edges, detecting (and preventing) violations.



TSO Concrete Example 1

Tl transaction { T2 transaction {
s = getBalance (S5) ; debit (S, 100);
c = getBalance (C) ; credit (C, 100);
return = s + c; return true;

} }

Imagine that objects S and C start off with version 10

1. T1 and T2 both start concurrently:

* T1 gets version 27, T2 gets version 29

T1 reads S => ok! (27 >= 10); S gets version 27

T2 does debit(S, 100) => ok! (29 >= 27); S gets version 29
T1 reads C => ok! (27 => 10); C gets version 27

T2 does credit(C, 100) => ok! (29 >= 27); C gets version 29
6. Both transactions commit.

nhowob

Succeeded as all conflicting operations executed in timestamp order



Consider steps 4 and 5 now have different interleaving.

TSO Concrete Example 2

Tl transaction { T2 transaction {
s = getBalance(S) debit (S, 100);
c = getBalance (C) ; credit (C, 100);
return = s + c; return true;

} }

As before, S and C start off with version 10

1. T1 and T2 both start concurrently:

* T1 gets version 27, T2 gets version 29

T1 reads S => ok! (27 >= 10); S gets version 27

T2 does debit(S, 100) => ok! (29 >= 27); S gets version 29
T2 does credit(C, 100) => ok! (29 >= 10); C gets version 29
T1 reads C => FAIL! (27 < 29); T1 aborts

T2 commits; T1 restarts, gets version 30...

oA LD



Advantages of TSO

Deadlock free.
Can allow more concurrency than 2PL.
Can be implemented in a decentralized fashion.

Can be augmented to distinguish reads & writes
— objects have read version R & write version W.

READ (O, T) { Only safe to read if no-
if(V(T) < W(O)) abort; one wrote “after” us

// do actual read

R(0): = MAX(V(T), R(0)); WRITE (O, T)

if(V(T) < R(0O)) abort;
1f(V(T) < W(O)) return;
// do actual write
W(O) := V(T);

}

R(O) holds version of

latest transaction to read

Unsafe to write if later |

txaction has read value

But if later txaction wrote it,
20

just skip write (he won!).



However...

TSO needs a rollback mechanism (like 2PL)

TSO does not provide strict isolation:
— Hence subject to cascading aborts

— (Can provide strict TSO by locking objects when access is
granted - still remains deadlock free if can abort).

TSO decides a priori on one serialisation
— Even if others might have been possible.
And TSO does not perform well under contention
— Will repeatedly have transactions aborting & retrying & ...
In general, TSO is a good choice for distributed

systems [decentralized management] where conflicts
are rare.



Ogtimistic concurrency control

°* OCCis an alternative to 2PL or TSO

* Optimistic since assume conflicts are rare
— Execute transaction on a shadow [copy] of the data

— On commit, check if all “OK”; if so, apply updates;
otherwise discard shadows & retry.

* “OK” means:
— All shadows read were mutually consistent, and

— No one else has committed “later” changes to any object
that we are hoping to update.

Advantages: no deadlock, no cascading aborts
— And “rollback” comes pretty much for free!

Key idea: when ready to commit, search for a
serialisable order that accepts the transaction.



Implementing OCC (1)

« All objects are tagged with version/generation numbers

— e.g. the Validation timestamp of the transaction which most recently wrote its
updates to that object

— Nominally stored with the object, but possibly held as a validator data
structure.

« Many threads execute transactions

— When wish to read any object, take a shadow copy, and take note of the
version number

— If wish to write: edit the shadows (perhaps as held as html data in hidden web
forms while booking a multi-part holiday)

« When a thread/customer want to finally commit a transaction, it submits
the edited shadows to a validator.

« Validator nominally single-threaded (but parallel and distributed exist ...).

« Validator could work on a batch of submissions at once, finding an
optimal, non-conflicting subset to commit with retries requested for the
remainder.

23



Implementing OCC (2)

 NB: There are many approaches following this basic technique.

* Various efficient schemes for shadowing
— eg. write buffering, page-based copy-on-write.
* All complexity resides in the two-step validator that must reflect a
serialisable commit order in its ultimate side effects.
 Read validation:
— Must ensure that all versions of data read by T (all shadows) were
valid at some particular time t
— This becomes the tentative start time for T
* Serialisability validation:
— Must ensure that there are no conflicts with any committed
transactions which have a later start time.

e Optimality matching:
— For a batch, must choose a serialisation that commits as many as

possible, possibly weighted on other heuristic, such as success for
those rejected last attempt.

24



OCC Example (1)

* Alog of the most recent validated transactions, with
their timestamps etc

* The versions of the objects are as follows:

* T7 has started, but not finished; writingback

* (A has been updated, but not E)

What will happen if we now start a new

transaction T8 on {B, E} before T7 writes back E?

25



OCC example (2)

* Consider T8: { updates(B), updates(E) };
* T8 executes and makes shadows of B & E

— Records timestamps: B@10, E@9
— When done, T8 submits for validation interfered with T8's

* Phase 1: read validation inputs?
— Check shadows are part of a consistent snapshot
— Latest committed start time is 11 = OK (10, 9 < 11)

* Phase 2: serializability validation

Looking at log: have
other transactions

— Check T8 against all later transactions (here, T7)
— Conflict detected! (T7 updates E, but T8 read old E)

Looking at log: would committing T8 invalidate

other now-committed transactions? 26



Issues with OCC

* Preceding example uses a simple validator
— Possible it will abort even when don’t need to,
— (e.g. can search for a ‘better’ start time).

* |n general OCC can find more serializable schedules than
TSO

— Timestamps assigned after the fact, and taking the actual
data read and written into account.

— e.g. both stored 27, value-based conflict detection easy to
deploy.
* However OCC is not suitable when high conflict rate
— Can perform lots of work with ‘stale’ data => wasteful!
— Starvation possible if conflicting set continually retries,
— Will the transaction system always make progress?




Isolation & Concurrency: Summary

*  2PL explicitly locks items as required, then releases
— Guarantees a serializable schedule
— Strict 2PL avoids cascading aborts
— Can limit concurrency & prone to deadlock
* TSO assigns timestamps when transactions start
— Cannot deadlock, but may miss serializable schedules
— Suitable for distributed/decentralized systems.
* OCC executes with shadow copies, then validates
— Validation assigns timestamps when transactions end
— Lots of concurrency & admits many serializable schedules

— No deadlock but potential livelock when contention is high.

* Differing tradeoffs between optimism, concurrency, but also potential starvation,
livelock, and deadlock.

* Ideas like TSO/OCC will recur in Distributed Systems.
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Summary & Next Time

* History graphs; good (and bad) schedules

* Isolation vs. strict isolation; enforcing isolation
* Two-phase locking; rollback

* Timestamp ordering (TSO)

* Optimistic concurrency control (OCC)

* [solation and concurrency summary

* Next time:
— Transactional durability: crash recovery and logging,
— Lock-free programming,
— Transactional memory (if time permits).



Concurrent systems
Lecture 8a: Durability & crash recovery.
Lecture 8b: lock-free programming & transactional memory.

Dr Martin Kleppmann

(Slides for lectures 1-8 by Dr Robert Watson,
Dr Steven Hand, Dr David Greaves, and others)



This time

* Transaction durability: crash recovery, logging
— Write-ahead logging
— Checkpoints
— Recovery and Rollback

* Advanced topics (as time permits)

— Lock-free programming
— Transactional memory



Crash Recovery & Logging

* Transactions require ACID properties
— So far have focused on | (and implicitly C).
* How can we ensure Atomicity & Durability?

— Need to make sure that a transaction is always done entirely or
not at all (i.e. make sure rollback happens).

— Need to make sure that a transaction reported as committed
remains so, even after a crash.

* Consider for now a fail-stop model:
— If system crashes, all in-memory contents are lost
— Data on disk, however, remains available after reboot.

The small print: we must keep in mind the limitations of fail-stop, even as we assume it.

Failing hardware/software do weird stuff. Pay attention to hardware price differentiation.




Semantics of secondarx store

* Most computers have volatile primary (DRAM) and non-
volatile secondary storage (tape, SSD, disks, USB-sticks).

* Systems rely (perhaps falsely) on an idealised, erasure-
channel, abstract semantics for secondary storage:

type blkaddress t = integer 0 to 2719-1 // say
type block t = array [0..4095] of integer 0 to 255
method write : blkaddress t * block t -> unit

method read : blkaddress t -> block t option
method trim : blkaddress t -> unit // Forget a block (SSD)
method fsync : unit -> unit // Blocking flush

* ltiscritical that read returns an option: a failed write results in
either exactly the previously written data or None

* agarbled mixture of new, old and random bits is never returned.

[From https://www.cl.cam.ac.uk/~djg1ll/howcomputerswork]



Using persistent (non-volatile) storage

Simplest “solution”: write all updated objects to disk on
commit, read back on reboot

— Doesn’t work, since crash could occur between writes
— Can fail to provide transaction Atomicity and/or Consistency.

Instead split update into two stages:
1. Write proposed updates to a write-ahead log
2.  Write actual updates.

Crash during #1 => no actual updates done;
Crash during #2 => use log to redo, or undo.

Recall transactions can also abort (and cascading aborts), so
log can help undo the changes made.



Write-ahead logging

* Log: an ordered, append-only file on disk (aka journal).
* Contains entries like <txid, obj, op, old, new>

— ID of transaction, object modified, (optionally) the operation
performed, the old value and the new value.

— This means we can both “roll forward” (redo operations) and
“rollback” (undo operations).

*  When persisting a transaction to disk:
— First log a special entry <txid, START>,
— Next log a number of entries to describe operations,
— Finally log another special entry <txid, COMMIT>.

*  We build composite-operation atomicity from fundamental atomic
operation: the single-sector write.

— Much like building high-level primitives over LL/SC or CAS!



Using a write-ahead log (WAL)

*  When executing transactions, perform updates to objects in memory with
lazy write back

— l.e. the OS will normally delay all disk writes to improve efficiency.
* Golden rule: write log records before corresponding data.
* But when wish to commit a transaction, must first synchronously flush a
commit record to the log

— Assume thereis a £sync () or £syncdata () operation or similar which allows
us to force data out to disk.

— Only report transaction committed after £sync () returns.
* Canimprove performance by delaying flush until we have a number of
transaction to commit - batching.

— Hence at any point in time we have some prefix of the write-ahead log on disk,
and the rest in memory.



Log has saved x is now 2, but

The Bi PiCture on-disk x is still 1.

RAM acts as a cache of disk Log conceptually infinite,

(e.g. no in-memory copy of z) and spans RAM & Disk

I
I Object Values Log Entries
I
: T3, START
1 y = 27 T2, vy, 17,
: T1, %X, 2, 3
o e e A
R 7
| . . |
I Object Values Log Entries I
: T2, z, 40, 42 : |
. Log Write Order
Disk = 1 T2, START | 3
I v = 17 T1, START I
I L — 42 TO, COMMIT I
I TO, x, 1, 2 I
- : - TO, START I
On-disk values may be older versions of objects l

(e.g. x) - or new uncommitted values as long as
the on-disk log describes rollback (e.g. 2) 8




Checkpoint Approach

* As described, log will get infeasibly/very long
— And need to process every entry in log to recover.

* Better to periodically write a checkpoint
1.  Flush all current in-memory log records to disk.

2.  Write a special checkpoint record to log with a list of active
transactions
(pointers to earliest undo/redo log entries that must be searched
during recovery)

3. Flush all ‘dirty’ objects (i.e. ensure object values on disk are up-to-
date)

4.  Atomic (single sector) write of location of new checkpoint record to
a special, well-known place in persistent store (disk). Truncate log,
discarding no longer needed parts (perhaps by the same action).

* Atomic checkpoint location write supports crash during recovery.



Checkpoints and recovery

* Key benefit of a checkpoint is it lets us focus
our attention on possibly-affected transactions

Checkpoint Time Failure Time
Time I I >
| |
: \  T1: no action required
: :
: i T2: REDO
|
|
| .
Active at checkpoint. - ! T3: UNDO
Has since commlﬁed; > ' T4: REDO
and record in log. I
1
! T5: UNDO
|
Achve cls cheikpoT]t; Not active at checkpoint. : :
'N Progress at crasn. But has since committed, Not actl\/.e ‘:"t checkpoint,
and still in progress. 10

and commit record in log.



Recovery algorithm

* |nitialize undo set U = { set of active txactions }
* Also have redo set R, initially empty.

* Walk log forward as indicated by checkpoint record:
— If see a START record, add transaction to U

— |f see a COMMIT record, move transaction from U->R

* When hit end of log, perform undo:
— Walk backward and undo all records for all Tx in U
*  When reach checkpoint timestamp again, Redo:

— Walk forward, and re-do all records for all Tx in R

* After recovery, we have effectively checkpointed

— On-disk store is consistent, so can (generally) truncate the log.

The order in which we apply undo/redo records is important to properly

handle cases where multiple transactions touch the same data.



Write-ahead logging: Assumptions

What can go wrong writing commits to disk?
* Even if sector writes are atomic:

All affected objects may not fit in a single sector, large objects may span
multiple sectors

Trend towards copy-on-write, rather than journalled, filesystems (btrfs etc).

Many of the problems seen with in-memory commit (ordering and atomicity)
apply to disks as well!

Contemporary disks may not be entirely honest about sector size and
atomicity

— E.g., unstable write caches to improve efficiency
— E.g., larger or smaller sector sizes than advertised
— E.g., non-atomicity when writing to mirrored disks (RAID).

These assume fail-stop - not true for some media (SSD?)

12



Transactions: Summarx

* Standard mutual exclusion techniques not programmer friendly
when dealing with >1 object

— intricate locking (& lock order) required, or
— single coarse-grained lock, limiting concurrency
* Transactions allow us a better way:

— potentially many operations (reads and updates) on many objects, but
should execute as if atomically

— underlying system deals with providing isolation, allowing safe
concurrency, and even fault tolerance!

* Appropriate only if operations are “transactional”
— E.g., discrete events in time, as must commit to be visible

* Transactions are used both in databases and filesystems.



Advanced Topics

* Will briefly look at two advanced topics
— lock-free data structures, and
— transactional memory

* Then, next time, Distributed Systems

14



Lock-free Erogramming

*  What's wrong with locks?
— Difficult to get right (if locks are fine-grained)
— Don't scale well (if locks too coarse-grained)
— Don’t compose well (deadlock!)
— Poor cache behavior (and convoying https://davekilian.com/lock-convoys.html)
— Priority inversion
— And can be expensive

* Lock-free programming involves getting rid of locks ... but not at the cost
of safety!

* Recall TAS, CAS, LL/SC from our early lecture: what if we used them to
implement something other than locks?

15



Memory APl Assumptions

* We have a cache-consistent shared-memory system (and we
understand the sequential consistency model)

* Low-level (assembly instructions) include:

val = read(addr); // atomic read from memory
(void) write (addr, val); // atomic write to memory
done = CAS (addr, old, new); // atomic compare—-and-swap

* Compare-and-Swap (CAS) is atomic

* Reads value of addr (‘val’), compares with ‘old’, and updates
memory to ‘new’ iff old==val -- without interruption.

* Something like this instruction common on most modern
processors (e.g. ecmpxchg on x86 - or LL/SC on RISC)

* Typically used to build spinlocks (or mutexes, or semaphores,
or whatever...)



Lock-free approach

* Directly use CAS to update shared data

* For example, consider a lock-free linked list of integers
— list is singly linked, and sorted
— Use CAS to update pointers
— Handle CAS failure cases (i.e., races)
* Represents the ‘set’ abstract data type, i.e.
— Find: int -> bool
— Insert: int -> bool
— Delete: int -> bool
* Insert/delete return values indicate if operation failed, requiring
retry (typically in a loop).
* Assumption: hardware supports atomic operations on pointer-size
types.
* Assumption: Full sequential consistency (or fences used as needed).

17



Searching a sorted list

* find(20):

find(20) -> false




Inserting an item with a simple store

* insert(20):

insert(20) -> true

19



Inserting an item with CAS

* insert(20): * insert(25):




Concurrent find+insert

* find(20)

-> false

* insert(20) -> true

? 1
-

21



Concurrent find+insert

* find(20) -> false * insert(20) -> true
This thread saw 20 - But thls. threac.j
! succeeded in putting
was not in the set... i
) )
] o ]
“20 | -

* |s this a correct implementation of a set?

* Should the programmer be surprised if this happens?




Linearisability

« As with transactions, we return to a conceptual model to define
correctness:

— alock-free data structure is ‘correct’ if all changes (and return values) are
consistent with some serial view: we call this a linearisable schedule.

— Lock-free structure and code must be designed to tolerate all possible thread
interleaving patterns that may occur.
« Hence in the previous example, we are always ok:
— Either the insert() or the find() can be deemed to have occurred first.

e Gets alot more complicated for more complicated data structures &
operations - (eg. money conservation in the credit/debit/xfer example)
« On some hardware, atomic primitives do more than just provide
atomicity:
— Eg. CAS may embody a memory fence for sequential consistency (observable
memory ordering).

— LL/SC may not and so explicit “happens-before” load and stores fences may be
needed in the code.

— Lock-free structures must take this into account as well.

23



(S/W) Transactional Memory (TM)

* Based on optimistic concurrency control.

* |nstead of: lock (&sharedx mutex) ;
sharedx[1] *= sharedx[3J] + 17;
unlock (&sharedx mutex) ;

Use: atomic {
sharedx[1] *= sharedx[3J] + 17;

}
Has “obvious” semantics, i.e. all operations within block
occur as if atomically

Transactional since under-the-bonnet it looks like:
do { txid = tx begin(&thd, sharedx);

sharedx[1] *= sharedx[3J] + 17;
} while ! (tx commit (txid));



TM advantages

* Simplicity:
— Programmer just puts atomic { } around anything they want to occur in
isolation.
— Fine-grain concurrency is possible without manual partition of variables
or array locations into locking groups.
* Composability:
— Unlike locks, atomic { } blocks nest, e.g.:

credit (a, x) = atomic {
setbal (a, readbal (a) + x);
}

debit (a, x) = atomic {
setbal (a, readbal (a) - x);

}

transfer(a, b, x) = atomic {

debit (a, x);
credit (b, x);



TM advantages

* Cannot deadlock:
— No locks, so don’t have to worry about locking order
— (Though may get live lock if not careful)

* No races (mostly):

— Cannot forget to take a lock (although you can forget to put
atomic { } around your critical section ;-))

* Scalability:

— High performance possible via OCC

— No need to worry about complex fine-grained locking
* There remains a simplicity vs. performance tradeoff

— Too much atomic {} and implementation can’t find concurrency.
Too little, and errors arise from poor interleaving.



TM is very Eromising...

* Essentially does ‘ACI' but no D
— no need to worry about crash recovery
— can work entirely in memory
— can be implemented in HLL, VM or hardware (S/W v H/W TM)
— x86 xbegin/xend instructions

* Last decade, both x86 and Arm offered direct support for
transactions using augmented cache protocols

— ... And promptly withdrawn in errata

— Now back on the street again

— Security vulnerabilities (timing attacks and the like)?
* But not a panacea

— Contention management can get ugly (lack of parallel speedup)
— Difficulties with irrevocable actions / side effects (e.g. |/0)

— Still working out exact semantics (type of atomicity, handling
exceptions, signalling, ...)



Concurrent sxstems: summary

* Concurrency is essential in modern systems
— overlapping I/0O with computation,
— exploiting multi-core,
— building distributed systems.
* But throws up a lot of challenges
— need to ensure safety, allow synchronization, and avoid
issues of liveness (deadlock, livelock, ...)
* Major risks of bugs and over-engineering
— generally worth running as a sequential system first,
— too much locking leads to too much serial execution,

— and worth using existing libraries, tools and design
patterns rather than rolling your own!



Summary + next time

* Transactional durability: crash recovery and logging
— Write-ahead logging; checkpoints; recovery.

* Advanced topics
— Lock-free programming
— Transactional memory.

* Next time: Distributed Systems!
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