
Concurrent & Distributed Systems
Lecture 1: Introduction to concurrency, threads,

and mutual exclusion.

Michaelmas Term, 2025/26

Dr Martin Kleppmann

(Slides for lectures 1–8 by Dr Robert Watson,

Dr Steven Hand, Dr David Greaves, and others)
1

Concurrent and Distributed Systems

• One course, two parts

– 8 lectures on concurrent systems

– 8 further lectures of distributed systems

• Similar interests and concerns:

– Scalability given parallelism and distributed systems

– Mask local or distributed communications latency

– Importance in observing (or enforcing) execution orders

– Correctness in the presence of concurrency (+debugging).

• Important differences

– Underlying primitives: shared memory vs. message passing

– Distributed systems experience communications failure

– Distributed systems (may) experience unbounded latency

– (Further) difÏculty of distributed time.

2

3
https://github.com/karlrupp/microprocessor-trend-data

log scale

Concurrent systems outline

1. Introduction to concurrency, threads, and mutual exclusion.

2. Automata composition - safety and liveness.

3. Semaphores and associated design patterns.

4. CCR, monitors and concurrency in programming languages.

5. Deadlock, liveness and priority inversion and limits on

parallelism.

6. Concurrency without shared data – message passing,

composite operations (transactions).

7. Further transactions.

8. Crash recovery; lock-free programming; (Transactional

memory).

4

Recommended reading

5

• “Operating Systems, Concurrent and Distributed Software Design“,
Jean Bacon and Tim Harris, Addison-Wesley 2003

• “Designing Data-Intensive Applications”, Martin Kleppmann O’Reilly
Media 2017

• “Modern Operating Systems”, Andrew Tannenbaum, Prentice-Hall
2007 etc and free pdf online.

• “Java Concurrency in Practice”, Brian Goetz and others, Addison-
Wesley 2006

Look in books for more detailed explanations of algorithms; lectures
only present sketches.

What is concurrency?

• Computers appear to do many things at once

– E.g. running multiple programs on a laptop

– E.g. writing back data buffered in memory to the hard disk while

the program(s) continue to execute

• In the first case, this may actually be an illusion

– E.g. processes time sharing a single-cored CPU

• In the second, there is true parallelism

– E.g. Direct Memory Access (DMA) transfers data between memory

and I/O devices (e.g., NIC, SATA) at the same time as the CPU

executes code

– E.g., several CPU cores execute code at the same time

• In both cases, we have a concurrency

– Many things are occurring “at the same time”

6

In this course we will

• Investigate concurrency in computer systems

– Processes, threads, interrupts, hardware

• Consider how to control concurrency

– Mutual exclusion (locks, semaphores), condition synchronization,

HLL primitives and lock-free programming

• Learn about deadlock, livelock, priority inversion

– And prevention, avoidance, detection, recovery

• See how abstraction can provide support for correct & fault-tolerant

concurrent execution

– Transactions, serialisability, concurrency control

• Later, we will extend these ideas to distributed systems.

7

Recall: Processes and threads

• Processes are instances of programs in execution

– OS unit of protection & resource allocation

– Has a virtual address space; and one or more threads

• Threads are entities managed by the scheduler

– Represents an individual execution context

– A thread control block (TCB) holds the saved context (registers,

including stack pointer), scheduler info, etc

• Threads run in the address spaces of their process

– (and also in the kernel address space on behalf of user code)

• Context switches occur when the OS saves the state of one thread

and restores the state of another

– If a switch is between threads in different processes, then process

state is also switched – e.g., the address space.

8

Concurrency with a single CPU (1)

• Process / OS concurrency

– Process X runs for a while (until blocks or interrupted)

– OS runs for a while (e.g. does some TCP processing)

– Process X resumes where it left off…

• Inter-process concurrency

– Process X runs for a while; then OS; then Process Y; then OS; then

Process Z; etc

• Intra-process concurrency

– Process X has multiple threads X1, X2, X3, …

– X1 runs for a while; then X3; then X1; then X2; then …

9

Concurrency with a single CPU (2)

• With just one CPU, can think of concurrency as

interleaving of different executions, e.g.

Proc(A) OS Proc(B) Proc(C) Proc(A)OS Proc(B) OS OS

time

timer interrupt disk interrupt system call page fault

• Exactly where execution is interrupted and

resumed is not usually known in advance…

• this makes concurrency challenging!

• Generally should assume worst case behaviour
10Non-deterministic or so complex as to be unpredictableNon-deterministic or so complex as to be unpredictable

Concurrency with multiple CPUs (aka cores)

• Many modern systems have multiple CPUs

–And even if don’t, have other processing elements.

• Hence things occur in parallel, e.g.

Proc(A) OS Proc(B) Proc(C)

Proc(A)

OS Proc(B) OS OS

time

CPU0

CPU1 Proc(A)OS Proc(D)Proc(C) OS

• Notice that the OS runs on both CPUs: tricky!

• More generally, can have different threads of the same process

executing on different CPUs too.

11

OS

What might this code do?

12

void main(void) {

threadid_t threads[NUMTHREADS]; // Thread IDs

int i; // Counter

for (i = 0; i < NUMTHREADS; i++)

threads[i] = thread_create(threadfn, i);

for (i = 0; i < NUMTHREADS; i++)

thread_join(threads[i]);

}

void main(void) {

threadid_t threads[NUMTHREADS]; // Thread IDs

int i; // Counter

for (i = 0; i < NUMTHREADS; i++)

threads[i] = thread_create(threadfn, i);

for (i = 0; i < NUMTHREADS; i++)

thread_join(threads[i]);

}

void threadfn(int threadnum) {

sleep(rand(2)); // Sleep 0 or 1 seconds

printf("%s %d\n", threadstr, threadnum);

}

void threadfn(int threadnum) {

sleep(rand(2)); // Sleep 0 or 1 seconds

printf("%s %d\n", threadstr, threadnum);

}

What orders could

the printfs run in?

What orders could

the printfs run in?

#define NUMTHREADS 4

char *threadstr = "Thread";

#define NUMTHREADS 4

char *threadstr = "Thread";

Global variables are

shared by all threads

Global variables are

shared by all threads

Each thread has its

own local variables

Each thread has its

own local variables

Additional threads

are started explicitly

Additional threads

are started explicitly

Possible orderings of this program

• What order could the printf()s occur in?

• Two sources of non-determinism in example:

–Program non-determinism: Threads randomly sleep 0 or 1

seconds before printing

– Thread scheduling non-determinism: Arbitrary order for

unprioritised, concurrent wakeups, preemptions

• There are 4! (factorial) valid permutations

–Assuming printf() is indivisible

– Is printf() indivisible? Maybe.

• Even more potential timings of printf()s

13

Multiple threads within a process
• A single-threaded process has code, a

heap, a stack, a static global segment

and register set (including $pc).

• Additional threads have their own

registers and stacks

–Per-thread program counters ($pc)

allow execution flows to differ

–Per-thread stack pointers ($sp) allow

call stacks, local variables to differ

• Heap and code (+global variables) are

shared between all threads

• Access to another thread’s stack is

possible in some languages – but

deeply discouraged!
14

CodeCode

Process

address

space

HeapHeap

Thread 1

registers

pcpc

$t0$t0

spsp

$a0$a0

$a1$a1

StackStack

Thread 2

registers

pcpc

$t0$t0

spsp

$a0$a0

$a1$a1

StackStack

1:N - user-level threading

• Kernel only knows about (and schedules)

processes.

• A userspace library implements threads,

context switching, scheduling,

synchronisation, …

– Eg. original JVM or a threading library

• Co-routine variant supports voluntary

yield only.

• Advantages:

– Lightweight creation/termination +

context switch; application-specific

scheduling; OS independence.

• Disadvantages:

– Awkward to handle blocking system

calls or page faults, preemption; cannot

use multiple CPUs.

• Very early 1990s! 15

KernelKernel

P1
P1

P2
P2

Core 1Core 1 … Core n… Core n

P1
P1

T1
T2

T3

1:1 - kernel-level threading

• Kernel provides threads directly

– By default, a process has one thread…

– …but can create further via system calls

• Kernel implements threads, thread

context switching, scheduling, etc..

• Userspace thread `library’ 1:1 maps user

threads into kernel threads

• Advantages:

– Handles preemption, blocking syscalls,

– Straightforward to use multiple CPUs.

• Disadvantages:

– Higher overhead (trap to kernel); less

flexible; less portable.

• Model of choice across major OSes

– Windows, Linux, MacOS, FreeBSD,

Solaris, …
16

KernelKernel

P1
P1

Core 1Core 1 … Core n… Core n

P1
P1 T1

T2

T3

KernelKernel

P1
P1

Core 1Core 1 … Core n… Core n

P1
P1

T1

T2
T3 T2

M:N - hybrid threading

• All sorts of other minor variations exist.

• Aim for best of all possible worlds.

• Advantages:
● Lightweight thread switching entirely in

user space is supported.
● A custom scheduller can understand user-

space inter-thread communication

primitives (eg. message passing).

• Disadvantages:
● Need a timer signal (user-space interrupt)

to implement time sharing? Perhaps better

to just use another kernel thread.
● Kernel threads are the only ones that can

block in a system call, so they are also

needed for that, and so on.

17

Advantages of concurrency

• Allows us to overlap computation and I/O on a single machine.

• Can simplify code structuring and/or improve responsiveness

– E.g. one thread redraws the GUI, another handles user input, and

another computes game logic

– E.g. one thread per HTTP request

– E.g. background GC thread in JVM/CLR

• Enables the seamless (?!) use of multiple CPUs –greater performance

through parallel processing.

18

Concurrent systems

• In general, have some number of processes…

– … each with some number of threads,

– … each with some number of CPU cores,

– … distributed over some number of computers.

• For this half of the course we’ll mostly focus on a single computer running a

multi-threaded process

– most problems & solutions generalize to multiple processes, CPUs, and

machines, but imperative programming for them becomes harder

– (we’ll look at distributed systems later in the term)

• Challenge of the thread model: threads will access shared resources

concurrently via their common address space leading to races.

• Concurrent programming disciplines without shared memory are generally

much ‘cleaner’ : easier to reason about and automatically map to available

cores or other execution resources (GPU, FPGA, Cloud).

19

Example: Housemates Buying Beer

• Thread 1 (person 1)
1.Look in fridge

2.If no beer, go buy beer

3.Put beer in fridge

• In most cases, this works just fine…

• But if both people look (step 1) before either refills the fridge (step

3)… we’ll end up with too much beer!

• Obviously more worrying if “look in fridge” is “check reactor”, and

“buy beer” is “toggle safety system” ;-)

• Thread 2 (person 2)
1.Look in fridge

2.If no beer, go buy beer

3.Put beer in fridge

20

Solution #1: Leave a Note

• Thread 1 (person 1)
1.Look in fridge

2.If no beer & no note
1.Leave note on fridge

2.Go buy beer

3.Put beer in fridge

4.Remove note

• Thread 2 (person 2)
1.Look in fridge

2.If no beer & no note
1.Leave note on fridge

2.Go buy beer

3.Put beer in fridge

4.Remove note

• Probably works for human beings…

• But computers are stooopid!

• Can you see the problem?

21

Non-Solution #1: Leave a Note

// thread 1

beer = checkFridge();

if(!beer) {

 if(!note) {

 note = 1;

 buyBeer();

 note = 0;

 }

}

// thread 1

beer = checkFridge();

if(!beer) {

 if(!note) {

 note = 1;

 buyBeer();

 note = 0;

 }

}

// thread 2

beer = checkFridge();

if(!beer) {

 if(!note) {

 note = 1;

 buyBeer();

 note = 0;

 }

}

// thread 2

beer = checkFridge();

if(!beer) {

 if(!note) {

 note = 1;

 buyBeer();

 note = 0;

 }

}

• Easier to see with pseudo-code…

22

Non-Solution #1: Leave a Note

// thread 1

beer = checkFridge();

if(!beer) {

 if(!note) {

 note = 1;

 buyBeer();

 note = 0;

 }

}

// thread 1

beer = checkFridge();

if(!beer) {

 if(!note) {

 note = 1;

 buyBeer();

 note = 0;

 }

}

// thread 2

beer = checkFridge();

if(!beer) {

 if(!note) {

 note = 1;

 buyBeer();

 note = 0;

 }

}

// thread 2

beer = checkFridge();

if(!beer) {

 if(!note) {

 note = 1;

 buyBeer();

 note = 0;

 }

}

• Easier to see with pseudo-code…

context switch

context switch

23

Non-Solution #1: Leave a Note

• Of course this won’t happen all the time
–Need threads to interleave in the just the right way

(or just the wrong way ;-).

• Unfortunately code that is ‘mostly correct’ is

much worse than code that is ‘mostly wrong’!
–DifÏcult to catch in testing, as occurs rarely.

–May even go away when running under debugger
• e.g. only context switches threads when they block

• (such bugs are sometimes called Heisenbugs).

24

Critical Sections & Mutual Exclusion

• The high-level problem here is that we have

two threads trying to solve the same problem
–Both execute buyBeer() concurrently

–Ideally want only one thread doing that at a time.

• We call this code a critical section
–A piece of code which should never be concurrently

executed by more than one thread.

• Ensuring this involves mutual exclusion
–If one thread is executing within a critical section, all

other threads are prohibited from entering it.

25

Achieving Mutual Exclusion

• One way is to let only one thread ever execute a particular

critical section – e.g. a nominated beer buyer – but this

restricts concurrency

• Alternatively our (broken) solution #1 was trying to provide

mutual exclusion via the note

– Leaving a note means “I’m in the critical section”;

–Removing the note means “I’m done”

–But, as we saw, it didn’t work ;-)

• This was because we could experience a context switch

between reading ‘note’, and setÝng it.

26

Non-Solution #1: Leave a Note

27

// thread 1

beer = checkFridge();

if(!beer) {

 if(!note) {

 note = 1;

 buyBeer();

 note = 0;

 }

}

// thread 1

beer = checkFridge();

if(!beer) {

 if(!note) {

 note = 1;

 buyBeer();

 note = 0;

 }

}

// thread 2

beer = checkFridge();

if(!beer) {

 if(!note) {

 note = 1;

 buyBeer();

 note = 0;

 }

}

// thread 2

beer = checkFridge();

if(!beer) {

 if(!note) {

 note = 1;

 buyBeer();

 note = 0;

 }

}

context switch

context switch

We decide to

enter the critical

section here…
But only mark the

fact here …

These problems are referred to as race

conditions in which multiple threads

“race” with one another during

conflicting access to shared resources

These problems are referred to as race

conditions in which multiple threads

“race” with one another during

conflicting access to shared resources

Atomicity

• What we want is for the checking of note and the (conditional)

setÝng of note to happen without any other thread being

involved

–We don’t care if another thread reads it after we’re done; or

sets it before we start our check

–But once we start our check, we want to continue without

any interruption.

• If a sequence of operations (e.g. read-and-set) are made to

occur as if one operation, we call them atomic

– Since indivisible from the point of view of the program.

• An atomic read-and-set operation is sufÏcient for us to

implement a correct beer program.

28

Solution #2: Atomic Note

// thread 1

beer = checkFridge();

if(!beer) {

 if(read-and-set(note)) {

 buyBeer();

 note = 0;

 }

}

// thread 1

beer = checkFridge();

if(!beer) {

 if(read-and-set(note)) {

 buyBeer();

 note = 0;

 }

}

// thread 2

beer = checkFridge();

if(!beer) {

 if(read-and-set(note)) {

 buyBeer();

 note = 0;

 }

}

// thread 2

beer = checkFridge();

if(!beer) {

 if(read-and-set(note)) {

 buyBeer();

 note = 0;

 }

}

• read-and-set(&address) atomically checks the value in memory

and iff it is zero, sets it to one

– returns 1 iff the value was changed from 0 -> 1

• This prevents the behavior we saw before, and is sufÏcient to

implement a correct program…

– although this is not that program :-)

29

Non-Solution #2: Atomic Note

// thread 1

beer = checkFridge();

if(!beer) {

 if(read-and-set(note)) {

 buyBeer();

 note = 0;

 }

}

// thread 1

beer = checkFridge();

if(!beer) {

 if(read-and-set(note)) {

 buyBeer();

 note = 0;

 }

}

// thread 2

beer = checkFridge();

if(!beer) {

 if(read-and-set(note)) {

 buyBeer();

 note = 0;

 }

}

// thread 2

beer = checkFridge();

if(!beer) {

 if(read-and-set(note)) {

 buyBeer();

 note = 0;

 }

}

• Our critical section doesn’t cover enough!

context switch

context switch

30

General mutual exclusion

• We would like the ability to define a region of

code as a critical section e.g.

// thread 1

ENTER_CS();

beer = checkFridge();

if(!beer)

 buyBeer();

LEAVE_CS();

// thread 1

ENTER_CS();

beer = checkFridge();

if(!beer)

 buyBeer();

LEAVE_CS();

// thread 2

ENTER_CS();

beer = checkFridge();

if(!beer)

 buyBeer();

LEAVE_CS();

// thread 2

ENTER_CS();

beer = checkFridge();

if(!beer)

 buyBeer();

LEAVE_CS();

• This should work …

• … providing that our implementation of

ENTER_CS() / LEAVE_CS() is correct
31

Implementing mutual exclusion

• One option is to prevent context switches

– e.g. disable interrupts (for kernel threads), or set an in-

memory flag (for user threads)

– ENTER_CS() = “disable context switches”;

– LEAVE_CS() = “re-enable context switches”

• Can work but:

–Rather brute force (stops all other threads, not just those

who want to enter the critical section)

–Potentially unsafe (if disable interrupts and then sleep

waiting for a timer interrupt ;-)

–And doesn’t work across multiple CPUs.

32

Implementing mutual exclusion

• Associate a mutual exclusion lock with each

critical section, e.g. a variable L
–(must ensure use correct lock variable!)

–ENTER_CS() = “LOCK(L)”

–LEAVE_CS() = “UNLOCK(L)”

• Can implement LOCK() using read-and-set():

LOCK(L) {

 while(!read-and-set(L))

 continue; // spin, doing nothing

}

LOCK(L) {

 while(!read-and-set(L))

 continue; // spin, doing nothing

}

UNLOCK(L) {

 L = 0;

}

UNLOCK(L) {

 L = 0;

}

33

Solution #3: mutual exclusion locks

// thread 1

LOCK(fridgeLock);

beer = checkFridge();

if(!beer)

 buyBeer();

UNLOCK(fridgeLock);

// thread 1

LOCK(fridgeLock);

beer = checkFridge();

if(!beer)

 buyBeer();

UNLOCK(fridgeLock);

// thread 2

LOCK(fridgeLock);

beer = checkFridge();

if(!beer)

 buyBeer();

UNLOCK(fridgeLock);

// thread 2

LOCK(fridgeLock);

beer = checkFridge();

if(!beer)

 buyBeer();

UNLOCK(fridgeLock);

• This is – finally! – a correct program

• Still not perfect

– Lock might be held for quite a long time (e.g. imagine another person

wanting to get the milk!)

– Waiting threads waste CPU time (or worse)

– Contention occurs when consumers have to wait for locks.

• Mutual exclusion locks often known as mutexes

– But we will prefer this term for sleepable locks – see Lecture 2

– So think of the above as a spin lock.

34

Summary + next time

• Definition of a concurrent system

• Origins of concurrency within a computer

• Processes and threads

• Challenge: concurrent access to shared resources

• Critical sections, mutual exclusion, race conditions, atomicity

• Mutual exclusion locks (mutexes)

• Next time:

– Operating System and hardware instructions and structures,

– Interacting automata view of concurrency,

– Introduction to formal modelling of concurrency.

35

Concurrent systems
Lecture 2: Hardware, OS and Automaton Views

Dr Martin Kleppmann

(Slides for lectures 1–8 by Dr Robert Watson,
Dr Steven Hand, Dr David Greaves, and others)

1

From last time ...

• Concurrency exploits parallel and distributed

computation.

• Concurrency is also a useful programming

paradigm and a virtualisation means.

• Race conditions arise with imperative

languages in shared memory (sadly(?) the

predominant paradigm of last 15 years).

• Concurrency bugs are hard to anticipate.

2

This time

• Computer architecture and O/S summary

• Hardware support for atomicity

• Basic Automata Theory/Jargon and

interactions.

• Simple model checking

• Dining Philosophers Taster

• Primitive-free atomicity (Lamport Bakery)

3

General comments

• Concurrency is essential in modern systems
– overlapping I/O with computation
– building distributed systems
– But throws up a lot of challenges

• need to ensure safety, allow synchronization, and avoid issues
of liveness (deadlock, livelock, …)

• A major risk of over-engineering exists: putÝng in too many
locks not really needed.

• Also its possible to get accidental, excessive serialisation,
killing the expected parallel speedup.

• Generally worth building a sequential system first
– and worth using existing libraries, tools and design

patterns rather than rolling your own!

4

Computer Architecture Reference Models

Even on a uniprocessor,
interrupt routines will ‘magically’
change stored values in
memory.

Stop-the-world atomic
operations are undesirable on
parallel hardware.

https://www.cl.cam.ac.uk/~djg11/socdam-patterns-hls-touchstones/soc-design-patterns/sp1-socparts/zhp6c8e57449.html

Some of the cores could
equally well be DMA controllers.

Operating System Behaviour

- TCB contains saved registers for non-running tasks.
- Ready-to-run tasks are in a nominal queue.
- Blocked TCBs reference a semaphore (or similar) they are awaiting.
- Most interrupt routines will invoke scheduller as they return.
- If nothing is ready-to-run, the core executes a ‘halt’ instruction, putting
it in low power mode until the next hardware interrupt arrives.

Hardware foundations for atomicity 1

• On a simple uni-processor, without DMA devices, the

crudest mechanism is to disable interrupts.

• We bracket critical section with ints_off and ints_on

instructions. This guarantees no preemption.

• Can disrupt real-time response

• Not suitable when other CPUs and DMA exist

• Requires supervisor privilege.

7

Hardware foundations for atomicity 2

• How can we implement atomic read-and-set?
• Simple pair of load and store instructions fail

the atomicity test (obviously divisible!)
• Need a new ISA primitive for protection

against parallel access to memory from
another CPU

• Two common flavours:
– Atomic Compare and Swap (CAS)
– Load Linked, Store Conditional (LL/SC)
– (But we also find atomic increment, bitset etc..)

8

Atomic Compare and Swap (CAS)
• Instruction operands: memory address, prior + new values

– If prior value matches in-memory value, new value stored

– If prior value does not match in-memory value, instruction fails

– Software checks return value, can loop on failure

• Found on CISC systems such as x86 (cmpxchg)?

9

mov %edx, 1 # New value -> register

spin:

mov %eax, [foo_lock] # Load prior value

test %eax, %eax # If non-zero (owned),

jnz spin # loop

lock cmpxchg [foo_lock], %edx # If *foo_lock == %eax,

test %eax, %eax # swap in value from

jnz spin # %edx; else loop

mov %edx, 1 # New value -> register

spin:

mov %eax, [foo_lock] # Load prior value

test %eax, %eax # If non-zero (owned),

jnz spin # loop

lock cmpxchg [foo_lock], %edx # If *foo_lock == %eax,

test %eax, %eax # swap in value from

jnz spin # %edx; else loop

• Atomic Test and Set (TAS) is another variation

“It’s all done with the one instruction” - inner loop is an optimisation; outer is ‘acquire’.

Load Linked-Store Conditional (LL/SC)

• Found on RISC systems (MIPS, RISC-V, ARM, …)
– Load value from memory location with LL

– Manipulate value in register (e.g., compare, add, …)

– SC attempts to write back to same address and indicates success (or
not)

– SC fails if memory neighbourhood modified (or interrupt) since LL

– Software checks SC return value and typically loops on failure

– An example of optimistic concurrency (see later in course).

• Preferred since it does not lock up whole memory system

while one core makes an atomic operation.

10

test_and_set_bit: ! RISC-V code

spin:

 movli.l @mutex, %r_tmp1 ! Load linked

 mov %r_tmp1, %r_tmp2 ! Copy to second register

 or %r_bitno, %r_tmp1 ! Set the desired bit

 movco.l %r_tmp1, @mutex ! Store-conditional

 bf spin ! If store failed, try again

 and %r_bitno, %r_tmp2 ! Return old value of the bit.

 ret

test_and_set_bit: ! RISC-V code

spin:

 movli.l @mutex, %r_tmp1 ! Load linked

 mov %r_tmp1, %r_tmp2 ! Copy to second register

 or %r_bitno, %r_tmp1 ! Set the desired bit

 movco.l %r_tmp1, @mutex ! Store-conditional

 bf spin ! If store failed, try again

 and %r_bitno, %r_tmp2 ! Return old value of the bit.

 ret

Code below requires a
further outer loop
to become an acquire.

Finite State Machine Revision and Terminology

FSM is tuple: (Q, q
0
, Σ, Δ) being states, start state, input alphabet, transition function.

A live state is one that can be returned to infinitely often in the future.

A dead(lock) state has no successors – machine stops if we enter it.

Start-up states are those before the main live behaviour.

‘Bad’ states are those that lead away from the main alive behaviour.

In this course, live states typically encompass/denote the normal/ongoing operation of our system.

Finite State Machine: Fairness and Livelock Syphons

Ignoring the ‘F’, the live states of this FSM include Q5 and Q6.

F has been labelled as a ‘fair’ state. If we also discard the start-up ‘lasso
stem’, its existence changes the live states to just Q2, Q3, Q4. Manual
labelling defines the intended system behaviour.

Any fair state is live and states from which any fair state cannot be reached
are not live. [Hence if we also labelled Q5 as F, fairness cannot be achieved.]

Although more rigorous definitions exist, this is sufficient terminology for us to
define livelock as: we have not deadlocked but cannot make ‘useful’ progress.

Finite State Machine: FSM view of thread control flow.

FSM expresses program control flow per thread.
FSM arcs have ‘condition / action’ annotations.
Conditions and actions range over shared global state.

Forward reference to semantics course notation

• The semantics course models a computer as a program (expression)

e and a memory (store) s;

• It uses the vertical bar to denote stuttering parallel composition.

14

This slide says if either e1 or e2 is able to advance, one of them will go
forward, updating its PC (e becomes e’) and changing the shared memory
(s becomes s’).

[This slide content not examinable on this course.]

Example: Dining Philosophers

• 5 philosophers, 5 forks, round table…

15

while(true) { // philosopher i

 think();

 wait(fork[i]);

 wait(fork[(i+1) % 5];

 eat();

 signal(fork[i]);

 signal(fork[(i+1) % 5];

}

while(true) { // philosopher i

 think();

 wait(fork[i]);

 wait(fork[(i+1) % 5];

 eat();

 signal(fork[i]);

 signal(fork[(i+1) % 5];

}

Semaphore forks[] = new Semaphore[5];Semaphore forks[] = new Semaphore[5];

• For now, read ‘wait’ as ‘pick up’ and ‘signal’ as `put down’

• See next time for definitions.

Summary + next time

• We looked at underlying hardware structures (but this
was for completeness rather than for examination
purposes)

• We looked at finite-state models of programs and a
model checker, but do note that today’s tools can

cope only with highly-abstracted models or small sub-
systems of real-world applications.

• Next time
– Access to hardware primitives via O/S

– Mutual exclusion using semaphores

– Producer/consumer and one generalisation

16

Concurrent systems
Lecture 3: Mutual exclusion, semaphores,

and producer-consumer relationships

Dr Martin Kleppmann

(Slides for lectures 1–8 by Dr Robert Watson,
Dr Steven Hand, Dr David Greaves, and others)

1

Reminder from last time

• Automata models of concurrent systems

• Concurrency hardware mechanisms

• Challenge: concurrent access to shared resources

• Mutual exclusion, race conditions, and atomicity

• Mutual exclusion locks (mutexes)

2

From before: beer-buying example

• Thread 1 (person 1)
1. Look in fridge

2. If no beer, go buy beer

3. Put beer in fridge

• In most cases, this works just fine…

• But if both people look (step 1) before either refills the fridge (step 3)…
we’ll end up with too much beer!

• Obviously more worrying if “look in fridge” is “check reactor”, and “buy
beer” is “toggle safety system” ;-)

• Thread 2 (person 2)
1. Look in fridge

2. If no beer, go buy beer

3. Put beer in fridge

3

We spotted race conditions in obvious concurrent implementations.

Ad hoc solutions (e.g., leaving a note) failed.

Even naïve application of atomic operations failed.

Mutexes provide a general mechanism for mutual exclusion.

We spotted race conditions in obvious concurrent implementations.

Ad hoc solutions (e.g., leaving a note) failed.

Even naïve application of atomic operations failed.

Mutexes provide a general mechanism for mutual exclusion.

From first lectureFrom first lecture

This time

• Implementing mutual exclusion

• Semaphores for mutual exclusion, condition

synchronisation, and resource allocation

• Two-party and generalised producer-

consumer relationships

4

Implementing mutual exclusion

• Associate a mutual exclusion lock with each

critical section, e.g. a variable L

– (must ensure use correct lock variable!)

ENTER_CS() = “LOCK(L)”

LEAVE_CS() = “UNLOCK(L)”

• Can implement LOCK() using read-and-set():

LOCK(L) {

 while(!read-and-set(L))

 continue; // spin, doing nothing

}

LOCK(L) {

 while(!read-and-set(L))

 continue; // spin, doing nothing

}

UNLOCK(L) {

 L = 0;

}

UNLOCK(L) {

 L = 0;

}

5

Semaphores

• Despite with atomic ops, busy waiting remains inefÏcient…
– Lock contention with spinning-based solution wastes CPU

cycles.
– Better to sleep until resource available.

• Dijkstra (THE, 1968) proposed semaphores
– New type of variable
– Initialized once to an integer value (often 0).

• Supports two operations: wait() and signal()
– Sometimes called down() and up()
– (and originally called P() and V() ... blurk!).

• Can be used for mutual exclusion with sleeping
• Can also be used for condition synchronisation

– Wake up another waiting thread on a condition or event
– E.g. “There is an item available for processing in a queue.”

6

Semaphore implementation

• Implemented as an integer and a queue
wait(sem) {

 if(sem > 0) {

 sem = sem - 1;

 } else suspend caller & add thread to queue for sem

}

signal(sem) {

 if no threads are waiting {

 sem = sem + 1;

 } else wake up some thread on queue

}

wait(sem) {

 if(sem > 0) {

 sem = sem - 1;

 } else suspend caller & add thread to queue for sem

}

signal(sem) {

 if no threads are waiting {

 sem = sem + 1;

 } else wake up some thread on queue

}

• Method bodies are implemented atomically
• Think of “sem” as count of the number of available “items”
• “suspend” and “wake” invoke threading APIs

7

Hardware support for wakeups: IPIs

• CAS/LLSC/… support atomicity via shared memory
• But what about “wake up thread”?

– E.g., notify waiter of resources now free, work now waiting, …
– Generally known as condition synchronisation
– On a single CPU, wakeup triggers context switch
– How to wake up a thread on another CPU that is already busy

doing something else?

• Inter-Processor Interrupts (IPIs)
– Mark thread as “runnable”
– Send an interrupt to the target CPU
– IPI handler runs thread scheduler, preempts running thread,

triggers context switch.

• Together, shared memory and IPIs support atomicity and
condition synchronisation between processors.

8

Mutual exclusion with a semaphore

• Initialize semaphore to 1; wait() is lock(), signal() is unlock()

aSem

CS

A B

wait (aSem)

wait (aSem)

CS

1

0

1

0 B

C

wait (aSem)0 B, C

0 C

0 signal (aSem)

signal (aSem)

B blocked

C blocked

CS

signal (aSem)

9

Condition synchronisation

• Initialize semaphore to 0; A proceeds only after B signals

aSem
A B

 wait before signal signal before wait

0

wait (aSem)

1

0 A

0

0 signal (aSem)
0

A B

wait (aSem)

signal (aSem)

A blocked “wake-up waiting”

aSem

A continues
A continues

10

N-resource allocation

• Suppose there are N instances of a resource
– e.g. N printers attached to a print server daemon.

• Can manage allocation with a semaphore sem,
initialized to N
– Any job wanting a printer does wait(sem)

– After N jobs get a printer, next will sleep

– To release resource after last page, signal(sem)
• Will wake some job if any job is waiting.

• Will typically also require mutual exclusion
– E.g. to decide which printers are free and hand them work.

11

Semaphore design patterns

• Semaphores are quite powerful
– Can solve mutual exclusion…

– Can also provide condition synchronization
• Thread waits until some condition set by another thread

• Let’s look at three common examples:
– One producer thread, one consumer thread, with a N-

slot shared memory buffer

– Any number of producer and consumer threads,
again using an N-slot shared memory buffer

– Multiple reader, single writer synchronization (next
time)

12

Producer-consumer problem

• General “pipe” concurrent programming paradigm
– E.g. pipelines in Unix; staged servers; work stealing;

download thread vs. rendering thread in web browser
• Shared buffer B[] with N slots, initially empty
• Producer thread wants to:

– Produce an item
– If there’s room, insert into next slot;
– Otherwise, wait until there is room (this is called

“backpressure”)
• Consumer thread wants to:

– If there’s anything in buffer, remove an item (+consume it)
– Otherwise, wait until there is something

• Maintain order, use parallelism, avoid context switches.
13

Producer-consumer pseudo solution

// producer thread

while(true) {

 item = produce();

 if there is space {

 buffer[in] = item;

 in = (in + 1) % N;

 }

}

// producer thread

while(true) {

 item = produce();

 if there is space {

 buffer[in] = item;

 in = (in + 1) % N;

 }

}

// consumer thread

while(true) {

 if there is an item {

 item = buffer[out];

 out = (out + 1) % N;

 }

 consume(item);

}

// consumer thread

while(true) {

 if there is an item {

 item = buffer[out];

 out = (out + 1) % N;

 }

 consume(item);

}

int buffer[N]; int in = 0, out = 0;

spaces = new Semaphore(N);

items = new Semaphore(0);

int buffer[N]; int in = 0, out = 0;

spaces = new Semaphore(N);

items = new Semaphore(0);

ghijkl

out in0 N-1

buffer

14

OO-style producer-consumer FIFO

// producer thread(s)

while(true) {

 item = produce();

 the_fifo.enqueue(item);

}

// producer thread(s)

while(true) {

 item = produce();

 the_fifo.enqueue(item);

}

// consumer thread(s)

while(true) {

 item = the_fifo/dequeue();

 consume(item);

}

// consumer thread(s)

while(true) {

 item = the_fifo/dequeue();

 consume(item);

}

class FIFO<DT> {

 DT buffer[N]; int in = 0, out = 0;

 spaces = new Semaphore(N);

 items = new Semaphore(0);

 public void enqueue(DT item) { as before … };

 public DT dequeue() { as before … };

}

class FIFO<DT> {

 DT buffer[N]; int in = 0, out = 0;

 spaces = new Semaphore(N);

 items = new Semaphore(0);

 public void enqueue(DT item) { as before … };

 public DT dequeue() { as before … };

}

15

The buffer is often coded/refactored as a class like the above.
The code shape is different, but the executed code is identical.
Note: both exported methods are blocking.
Our method implementations will shortly be generalised to be re-entrant.

Producer-consumer solution

// producer thread

while(true) {

 item = produce();

 wait(spaces);

 buffer[in] = item;

 in = (in + 1) % N;

 signal(items);

}

// producer thread

while(true) {

 item = produce();

 wait(spaces);

 buffer[in] = item;

 in = (in + 1) % N;

 signal(items);

}

// consumer thread

while(true) {

 wait(items);

 item = buffer[out];

 out = (out + 1) % N;

 signal(spaces);

 consume(item);

}

// consumer thread

while(true) {

 wait(items);

 item = buffer[out];

 out = (out + 1) % N;

 signal(spaces);

 consume(item);

}

int buffer[N]; int in = 0, out = 0;

spaces = new Semaphore(N);

items = new Semaphore(0);

int buffer[N]; int in = 0, out = 0;

spaces = new Semaphore(N);

items = new Semaphore(0);

g h i j k l

out in0 N-1

buffer

16

ghijklbuffer

Producer-consumer solution

• Use of semaphores for N-resource allocation
– In this case, resource is a slot in the buffer
– spaces allocates empty slots (for producer)
– items allocates full slots (for consumer).

• No explicit mutual exclusion
– Threads will never try to access the same slot at

the same time; if “in == out” then either
• buffer is empty (and consumer will sleep on items), or
• buffer is full (and producer will sleep on spaces)

– NB: in and out are each accessed solely in one of
the producer (in) or consumer (out).

17

Generalized producer-consumer

• Previously had exactly one producer thread,
and exactly one consumer thread.

• More generally might have many threads
adding items, and many removing them

• If so, we do need explicit mutual exclusion
– E.g. to prevent two consumers from trying to

remove (and consume) the same item
– (Race conditions due to concurrent use of in or

out precluded when just one thread on each end)

• Can implement with one more semaphore…

18

Generalized P-C solution

• Exercise: Can we modify this design to allow concurrent access by 1
producer and 1 consumer by adding one further semaphore?

// producer threads

while(true) {

 item = produce();

 wait(spaces);

 wait(guard);

 buffer[in] = item;

 in = (in + 1) % N;

 signal(guard);

 signal(items);

}

// producer threads

while(true) {

 item = produce();

 wait(spaces);

 wait(guard);

 buffer[in] = item;

 in = (in + 1) % N;

 signal(guard);

 signal(items);

}

// consumer threads

while(true) {

 wait(items);

 wait(guard);

 item = buffer[out];

 out = (out + 1) % N;

 signal(guard);

 signal(spaces);

 consume(item);

}

// consumer threads

while(true) {

 wait(items);

 wait(guard);

 item = buffer[out];

 out = (out + 1) % N;

 signal(guard);

 signal(spaces);

 consume(item);

}

int buffer[N]; int in = 0, out = 0;

spaces = new Semaphore(N);

items = new Semaphore(0);

guard = new Semaphore(1); // for mutual exclusion

int buffer[N]; int in = 0, out = 0;

spaces = new Semaphore(N);

items = new Semaphore(0);

guard = new Semaphore(1); // for mutual exclusion

19

Semaphores: summary

• Powerful abstraction for implementing
concurrency control:
– Mutual exclusion & condition synchronization

• Better than read-and-set()… but correct use
requires considerable care
– E.g. forget to wait(), can corrupt data

– E.g. forget to signal(), can lead to infinite delay

– Generally get more complex as add more semaphores

• Used internally in some OSes and libraries, but
generally deprecated for other mechanisms…

20

Mutual exclusion and invariants

• One important goal of locking is to avoid exposing
inconsistent intermediate states to other threads

• This suggests an invariants-based strategy:
– Invariants hold as mutex is acquired

– Invariants may be violated while mutex is held

– Invariants must be restored before mutex is released.

• E.g. deletion from a doubly linked list:
– Invariant: an entry is in the list, or not in the list.

– Individually non-atomic updates of forward and backward
pointers around a deleted object are fine as long as the
lock isn’t released in between the pointer updates

21
A B C

Summary + next time

• Implementing mutual exclusion: hardware support for
atomicity and inter-processor interrupts

• Semaphores for mutual exclusion, condition
synchronisation, and resource allocation

• Two-party and generalised producer-consumer
relationships

• Invariants and locks

• Next time:
– Multi-Reader Single-Writer (MRSW) locks
– Starvation and fairness
– Alternatives to semaphores/locks
– Concurrent primitives in practice

22

Concurrent systems
Lecture 4: CCR, monitors, and

concurrency in practice.

Dr Martin Kleppmann

(Slides for lectures 1–8 by Dr Robert Watson,

Dr Steven Hand, Dr David Greaves, and others)

1

Reminder from last time

• Implementing mutual exclusion: hardware

support for atomicity and inter-processor

interrupts

• Semaphores for mutual exclusion, condition

synchronisation, and resource allocation

• Two-party and generalised producer-

consumer relationships

• Invariants and locks

2

From last time: Semaphores summary

• Powerful abstraction for implementing concurrency control:

– mutual exclusion & condition synchronization

• Better than read-and-set()… but correct use requires

considerable care

– e.g. forget to wait(), can corrupt data

– e.g. forget to signal(), can lead to infinite delay

– generally get more complex as add more semaphores

• Used internally in some OSes and libraries, but generally

deprecated for other mechanisms…

3

Semaphores are a low-level implementation

primitive – they say what to do, rather than

describing programming goals

Semaphores are a low-level implementation

primitive – they say what to do, rather than

describing programming goals

This time

• Multi-Reader Single-Writer (MRSW) locks
– Starvation and fairness

• Alternatives to semaphores/locks:
– Conditional critical regions (CCRs)

– Monitors

– Condition variables

– Signal-and-wait vs. signal-and-continue semantics

• Concurrency primitives in practice

• Concurrency primitives wrap-up

4

Multiple-Readers Single-Writer (MRSW)

• Another common synchronisation paradigm is MRSW
– Shared resource accessed by a set of threads

• e.g. cached set of DNS results

– Safe for many threads to read simultaneously, but a writer

(updating) must have exclusive access

– MRSW locks have read lock and write lock operations

– Mutual exclusion vs. data stability

• Simple implementation uses two semaphores

• First semaphore is a mutual exclusion lock (mutex)
– Any writer must wait to acquire this

• Second semaphore protects a reader count
– Reader count incremented whenever a reader enters

– Reader count decremented when a reader exits

– First reader acquires mutex; last reader releases mutex.
5

Simplest MRSW solution

// a writer thread

wait(wSem);

.. perform update to data

signal(wSem);

// a writer thread

wait(wSem);

.. perform update to data

signal(wSem);

// a reader thread

wait(rSem);

nr = nr + 1;

if (nr == 1) // first in

 wait(wSem);

signal(rSem);

.. read data

wait(rSem);

nr = nr - 1;

if (nr == 0) // last out

 signal(wSem);

signal(rSem);

// a reader thread

wait(rSem);

nr = nr + 1;

if (nr == 1) // first in

 wait(wSem);

signal(rSem);

.. read data

wait(rSem);

nr = nr - 1;

if (nr == 0) // last out

 signal(wSem);

signal(rSem);

int nr = 0; // number of readers

rSem = new Semaphore(1); // protects access to nr

wSem = new Semaphore(1); // protects writes to data

int nr = 0; // number of readers

rSem = new Semaphore(1); // protects access to nr

wSem = new Semaphore(1); // protects writes to data

Code for writer is simple…

.. but reader case more complex: must

track number of readers, and acquire or

release overall lock as appropriate
6

Simplest MRSW solution

• Solution on previous slide is “correct”
– Only one writer will be able to access data structure,

but – providing there is no writer – any number of

readers can access it

• However writers can starve
– If readers continue to arrive, a writer might wait

forever (since readers will not release wSem)

– Would be fairer if a writer only had to wait for all

current readers to exit…

– Can implement this with an additional semaphore.

7

A fairer MRSW solution

// a writer thread

wait(turn);

wait(wSem);

.. perform update to data

signal(turn);

signal(wSem);

// a writer thread

wait(turn);

wait(wSem);

.. perform update to data

signal(turn);

signal(wSem);

// a reader thread

wait(turn);

signal(turn);

wait(rSem);

nr = nr + 1;

if (nr == 1) // first in

 wait(wSem);

signal(rSem);

.. read data

wait(rSem);

nr = nr - 1;

if (nr == 0) // last out

 signal(wSem);

signal(rSem);

// a reader thread

wait(turn);

signal(turn);

wait(rSem);

nr = nr + 1;

if (nr == 1) // first in

 wait(wSem);

signal(rSem);

.. read data

wait(rSem);

nr = nr - 1;

if (nr == 0) // last out

 signal(wSem);

signal(rSem);

int nr = 0; // number of readers

rSem = new Semaphore(1); // protects access to nr

wSem = new Semaphore(1); // protects writes to data

turn = new Semaphore(1); // write is awaiting a turn

int nr = 0; // number of readers

rSem = new Semaphore(1); // protects access to nr

wSem = new Semaphore(1); // protects writes to data

turn = new Semaphore(1); // write is awaiting a turn

Once a writer tries to enter,

it will acquire turn…

… which prevents any further

readers from entering

8

Monitors

• Monitors are a more powerful synchronisation primitive
– Waiting for a condition to become true

– All related methods are combined together, along with

initialization code, in a single construct

• Idea is that only one thread can ever be executing

‘within’ the monitor
– If a thread calls a monitor method, it will block (enqueue)

if another thread is holding the monitor

– Hence all methods within the monitor can proceed on the

basis that mutual exclusion has been ensured

• Java’s synchronized primitive implements monitors.

9

Example Monitor syntax

10

monitor <foo> {

 // declarations of shared variables

 // set of procedures (or methods)

 procedure P1(...) { ... }

 procedure P2(...) { ... }

 ...

 procedure PN(...) { ... }

 {

 /* monitor initialization code */

 }

}

monitor <foo> {

 // declarations of shared variables

 // set of procedures (or methods)

 procedure P1(...) { ... }

 procedure P2(...) { ... }

 ...

 procedure PN(...) { ... }

 {

 /* monitor initialization code */

 }

}

All related data and

methods kept together

Shared variables can be

initialized here

Invoking any procedure

causes an [implicit] mutual

exclusion lock to be taken

Shared variables only

accessible from within

monitor methods

Condition Variables (Queues)

• Mutual exclusion not always sufÏcient
– Condition synchronization -- e.g., wait for a condition to occur

• Monitors allow condition variables
– Explicitly declared and managed by programmer

– NB: No integrated counter – not a stateful semaphore!

– Support three operations:

11

wait(cv) {

 suspend thread and add it to the queue for CV,

 release monitor lock;

}

signal(cv) {

 if any threads queued on CV, wake one thread;

}

broadcast(cv) {

 wake all threads queued on CV;

}

wait(cv) {

 suspend thread and add it to the queue for CV,

 release monitor lock;

}

signal(cv) {

 if any threads queued on CV, wake one thread;

}

broadcast(cv) {

 wake all threads queued on CV;

}

Monitor Producer-Consumer solution?

12

monitor ProducerConsumer {

 int in, out, buffer[N];

 condition notfull = TRUE, notempty = FALSE;

 procedure produce(item) {

 if ((in-out) == N) wait(notfull);

 buffer[in % N] = item;

 if ((in-out) == 0) signal(notempty);

 in = in + 1;

 }

 procedure int consume() {

 if ((in-out) == 0) wait(notempty);

 item = buffer[out % N];

 if ((in-out) == N) signal(notfull);

 out = out + 1;

 return(item);

 }

 /* init */ { in = out = 0; }

}

monitor ProducerConsumer {

 int in, out, buffer[N];

 condition notfull = TRUE, notempty = FALSE;

 procedure produce(item) {

 if ((in-out) == N) wait(notfull);

 buffer[in % N] = item;

 if ((in-out) == 0) signal(notempty);

 in = in + 1;

 }

 procedure int consume() {

 if ((in-out) == 0) wait(notempty);

 item = buffer[out % N];

 if ((in-out) == N) signal(notfull);

 out = out + 1;

 return(item);

 }

 /* init */ { in = out = 0; }

}

If buffer is full,

wait for consumer

If buffer was full,

signal the producer

If buffer is empty,

wait for producer

If buffer was empty,

signal the consumer

Does this work?

• Depends on implementation of wait() & signal()

• Imagine two threads, T1 and T2, and a condition variable C
– T1 enters the monitor and calls wait(C) – this suspends T1,

places it on the queue for C, and unlocks the monitor

– Next T2 enters the monitor, and invokes signal(C)

– Now T1 is unblocked (i.e. capable of running again)…

– … but can only have one thread active inside a monitor!

• If we let T2 continue (signal-and-continue), T1 must queue for

re-entry to the monitor
– And no guarantee it will be next to enter

• Otherwise T2 must be suspended (signal-and-wait), allowing

T1 to continue…

13

Signal-and-Wait (“Hoare Monitors”)

• Consider the queue E to enter the monitor
– If monitor is occupied, threads are added to E

– May not be FIFO, but should be fair.

• If thread T1 waits on C, added to queue C

• If T2 enters monitor & signals, waking T1
– T2 is added to a new queue S “in front of” E

– T1 continues and eventually exits (or re-waits)

• Some thread on S chosen to resume
– Only admit a thread from E when S is empty.

14

Signal-and-Wait pros and cons

• We call signal() exactly when condition is true, then

directly transfer control to waking thread
– Hence condition will still be true!

• But more difÏcult to implement…

• And can be complex to reason about (a call to signal may

or may not result in a context switch)
– Hence we must ensure that any invariants are maintained

at time we invoke signal()

• With these semantics, our example is broken:
– We signal() before incrementing in/out.

15

Monitor Producer-Consumer solution?

16

monitor ProducerConsumer {

 int in, out, buf[N];

 condition notfull,notempty;

 procedure produce(item) {

 if ((in-out) == N) wait(notfull);

 buffer[in % N] = item;

 if ((in-out) == 0) signal(notempty);

 in = in + 1;

 }

 procedure int consume() {

 if ((in-out) == 0) wait(notempty);

 item = buffer[out % N];

 if ((in-out) == N) signal(notfull);

 out = out + 1;

 return(item);

 }

 /* init */ { in = out = 0; }

}

monitor ProducerConsumer {

 int in, out, buf[N];

 condition notfull,notempty;

 procedure produce(item) {

 if ((in-out) == N) wait(notfull);

 buffer[in % N] = item;

 if ((in-out) == 0) signal(notempty);

 in = in + 1;

 }

 procedure int consume() {

 if ((in-out) == 0) wait(notempty);

 item = buffer[out % N];

 if ((in-out) == N) signal(notfull);

 out = out + 1;

 return(item);

 }

 /* init */ { in = out = 0; }

}

Same code as slide 15Same code as slide 15

RaceRace

RaceRace

If buffer is full,

wait for consumer

If buffer was full,

signal the producer

If buffer is empty,

wait for producer

If buffer was empty,

signal the consumer

Signal-and-Continue

• Alternative semantics introduced by Mesa

programming language (Xerox PARC).

• An invocation of signal() moves a thread from the

condition queue C to the entry queue E
– Invoking threads continues until exits (or waits).

• Simpler to build… but now not guaranteed that

condition holds (is true) when resume!
– Other threads may have executed after the signal, but

before you continue.

17

Signal-and-Continue example (1)

18

P1

P2

Thread in monitor

Thread waits for condition

Buffer

Buffer is full - !(not full)

fullfull

C1

Thread waits for monitor

not fullnot full

P1 entersP1 enters P1 waits as

!(not full)

P1 waits as

!(not full)

C1 entersC1 enters

P2 tries to enter,

enqueued on E

P2 tries to enter,

enqueued on E

C1 removes item,

signals not full

C1 removes item,

signals not full

fullfull

P1 tries to enter,

enqueued on E

P1 tries to enter,

enqueued on E

P2 inserts item,

sets !(not full)

P2 inserts item,

sets !(not full)

P1 wakes up

despite !(not full)

P1 wakes up

despite !(not full)

P2 entersP2 enters

Buffer has space - (not full)

With signal-and-continue semantics,

must use while instead of if in case the

condition becomes false while waiting

With signal-and-continue semantics,

must use while instead of if in case the

condition becomes false while waiting

Signal-and-Continue example (2)

• Consider multiple producer-consumer threads

1. P1 enters. Buffer is full so blocks on queue for C

2. C1 enters.

3. P2 tries to enter; occupied, so queues on E

4. C1 continues, consumes, and signals C (“notfull”)

5. P1 unblocks; monitor occupied, so queues on E

6. C1 exits, allowing P2 to enter

7. P2 fills buffer, and exits monitor

8. P1 resumes and tries to add item – BUG!

• Hence must re-test condition:

 i.e. while((in - out) == N) wait(not full);

19

Monitor Producer-Consumer solution?

20

monitor ProducerConsumer {

 int in, out, buf[N];

 condition notfull, notempty;

 procedure produce(item) {

 while ((in-out) == N) wait(notfull);

 buf[in % N] = item;

 if ((in-out) == 0) signal(notempty);

 in = in + 1;

 }

 procedure int consume() {

 while ((in-out) == 0) wait(notempty);

 item = buf[out % N];

 if ((in-out) == N) signal(notfull);

 out = out + 1;

 return(item);

 }

 /* init */ { in = out = 0; }

}

monitor ProducerConsumer {

 int in, out, buf[N];

 condition notfull, notempty;

 procedure produce(item) {

 while ((in-out) == N) wait(notfull);

 buf[in % N] = item;

 if ((in-out) == 0) signal(notempty);

 in = in + 1;

 }

 procedure int consume() {

 while ((in-out) == 0) wait(notempty);

 item = buf[out % N];

 if ((in-out) == N) signal(notfull);

 out = out + 1;

 return(item);

 }

 /* init */ { in = out = 0; }

}

if() replaced with while() for conditionsif() replaced with while() for conditions

While buffer is full,

wait for consumer

If buffer was full,

signal the producer

While buffer is empty,

wait for producer

If buffer was empty,

signal the consumer

With signal-and-continue

semantics, increment after

signal does not race.

With signal-and-continue

semantics, increment after

signal does not race.

Monitors: summary

• Structured concurrency control
– groups together shared data and methods

– (today we’d call this object-oriented)

• Considerably simpler than semaphores, but still perilous

in places

• May be overly conservative sometimes:
– e.g. for MRSW cannot have >1 reader in monitor

– Typically must work around with entry and exit methods

(BeginRead(), EndRead(), BeginWrite(), etc)

• Exercise: sketch a working MRSW monitor

implementation.

21

Concurrency in practice

• Seen a number of abstractions for concurrency

control
– Mutual exclusion and condition synchronization

• Next let’s look at some concrete examples:
– POSIX pthreads (C/C++ API)

– FreeBSD kernels

– Java.

22

Example: pthreads (1)

• A thread calling lock() blocks if the mutex is held
– trylock() is a non-blocking variant: returns immediately;

returns 0 if lock acquired, or non-zero if not.

23

int pthread_mutex_init(pthread_mutex_t *mutex, ...);
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_init(pthread_mutex_t *mutex, ...);
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

• Standard (POSIX) threading API for C, C++, etc
• mutexes, condition variables, and barriers

• Mutexes are essentially binary semaphores:

Example: pthreads (2)

• No proper monitors: must manually code e.g.

24

• Condition variables are Mesa-style:

int pthread_cond_init(pthread_cond_t *cond, ...);
int pthread_cond_wait(pthread_cond_t *cond,
 pthread_mutex_t *mutex);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

int pthread_cond_init(pthread_cond_t *cond, ...);
int pthread_cond_wait(pthread_cond_t *cond,
 pthread_mutex_t *mutex);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

pthread_mutex_lock(&M);
while (!condition)
 pthread_cond_wait(&C,&M);
// do stuff
if (condition)
 pthread_cond_broadcast(&C);
pthread_mutex_unlock(&M);

pthread_mutex_lock(&M);
while (!condition)
 pthread_cond_wait(&C,&M);
// do stuff
if (condition)
 pthread_cond_broadcast(&C);
pthread_mutex_unlock(&M);

Notice: while() and not if() due to

signal-and-continue semantics

Example: pthreads (3)

25

• Barriers: explicit synchronization mechanism

• Wait until all threads reach some point

• E.g., in discrete event simulation, all parallel threads

must complete one epoch before any begin on the next

pthread_barrier_init(&B, ..., NTHREADS);
for(i=0; i<NTHREADS; i++)
 pthread_create(..., worker, ...);

worker() {
 while(!done) {
 // do work for this round
 pthread_barrier_wait(&B);
 }
}

pthread_barrier_init(&B, ..., NTHREADS);
for(i=0; i<NTHREADS; i++)
 pthread_create(..., worker, ...);

worker() {
 while(!done) {
 // do work for this round
 pthread_barrier_wait(&B);
 }
}

int pthread_barrier_init(pthread_barrier_t *b, ..., N);
int pthread_barrier_wait(pthread_barrier_t *b);
int pthread_barrier_init(pthread_barrier_t *b, ..., N);
int pthread_barrier_wait(pthread_barrier_t *b);

Example: FreeBSD kernel

• Kernel provides spin locks, mutexes, conditional variables,

reader-writer + read-mostly locks
– Semantics (roughly) modelled on POSIX threads

• A variety of deferred work primitives
• “Fully preemptive” and highly threaded

– (e.g., interrupt processing in threads)

– Interesting debugging tools

– such as DTrace, lock

– contention measurement,

• lock-order checking

• Further details are in 2019’s

lecture 8 ...

26

 For modern C++ support, see https://en.cppreference.com/w/cpp/thread

Example: Java synchronization (1)

27

public synchronized void myMethod() throws ...{
 // This code runs with the intrinsic lock held.
}

public synchronized void myMethod() throws ...{
 // This code runs with the intrinsic lock held.
}

public void myMethod() throws ...{
 synchronized(this) {
 // This code runs with the intrinsic lock held.
}}

public void myMethod() throws ...{
 synchronized(this) {
 // This code runs with the intrinsic lock held.
}}

• Inspired by monitors – objects have intrinsic locks

• Synchronized methods:

• Method return / statement exit release lock.

• Synchronized statements:

• Locks are reentrant: a single thread can re-enter synchronized

statements/methods without waiting.

• synchronized() can accept other objects than this.

Example: Java synchronization (2)

• Objects have condition variables for guarded blocks

• wait() puts the thread to sleep:

• notify() and notifyAll() wake threads up:

• As with Mesa, signal-and-continue semantics

• As with locks, can name object (thatObject.wait()) 28

public synchronized void waitDone() {
 while (!done) {
 wait();
 }
}

public synchronized void waitDone() {
 while (!done) {
 wait();
 }
}

public synchronized void notifyDone() {
 done = true;
 notifyAll();
}

public synchronized void notifyDone() {
 done = true;
 notifyAll();
}

Example: Java synchronization (3)

• Java also specifies memory consistency and atomicity

properties that make some lock-free concurrent access safe –

if used very carefully
– We will consider lock-free structures later in the term

• java.util.concurrent (especially as of Java 8) includes many

higher-level primitives –for example, thread pools, concurrent

collections, semaphores, cyclic barriers, …

• Because Java is a type-safe, managed language, it is a much

safer place to experiment with concurrent programming than

(for example) C.

29

Concurrency Primitives: Summary

• Concurrent systems require means to ensure:
– Safety (mutual exclusion in critical sections), and

– Progress (condition synchronization)

• Spinlocks (busy wait); semaphores; MRSWs, CCRs, and

monitors
– Signal-and-Wait vs. Signal-and-Continue

• Many of these are used in practice
– Subtle minor differences can be dangerous

– Much care required to avoid bugs, especially where concurrency

is a bolt-on to an existing imperative language.

– E.g., failing to take out a lock or failing to release it,

– E.g., “lost wakeups” – signal w/o waiter.

30

Summary + next time

• Multi-Reader Single-Writer (MRSW) locks

• Alternatives to semaphores/locks:
– Conditional critical regions (CCRs)

– Monitors

– Condition variables

– Signal-and-wait vs. signal-and-continue semantics

• Concurrency primitives in practice

• Concurrency primitives wrap-up

• Next time:
– Problems with concurrency: deadlock, livelock, priorities

– Resource allocation graphs; deadlock {prevention, detection, recovery}

– Priority and scheduling; priority inversion; (auto) parallelism limits.

31

Concurrent systems
Lecture 5: Liveness and Priority Guarantees

1

Dr Martin Kleppmann

(Slides for lectures 1–8 by Dr Robert Watson,
Dr Steven Hand, Dr David Greaves, and others)

Reminder from last time

• Multi-Reader Single-Writer (MRSW) locks

• Alternatives to semaphores/locks:

– Conditional critical regions (CCRs)

– Monitors

– Condition variables

– Signal-and-wait vs. signal-and-continue semantics

• Concurrency primitives in practice

• Concurrency primitives wrap-up

2

From last time: primitives summary

• Concurrent systems require means to ensure:

– Safety (mutual exclusion in critical sections), and

– Progress (condition synchronization)

• Spinlocks (busy wait); semaphores; CCRs and monitors

– Hardware primitives for synchronisation

– Signal-and-Wait vs. Signal-and-Continue

• Many of these are still used in practice

– Subtle minor differences can be dangerous

– Require care to avoid bugs – e.g., “lost wakeups”

• More detail on implementation in additional material on web page.

3

Progress is particularly difÏcult, in large part because of

primitives themselves, which is the topic of this lecture

Progress is particularly difÏcult, in large part because of

primitives themselves, which is the topic of this lecture

This time

• Liveness properties
• Deadlock

– Requirements
– Resource allocation graphs and detection
– Prevention – the Dining Philosophers Problem –

and recovery

• Thread priority and the scheduling problem
• Priority inversion and priority inheritance
• Limits to parallelisation and automation.

4

Liveness properties

• From a theoretical viewpoint must ensure that
we eventually make progress, i.e. want to avoid
– Deadlock (threads sleep waiting for one another), and

– Livelock (threads execute but make no progress)

• Practically speaking, also want good performance
– No starvation (single thread must make progress)

– (more generally may aim for fairness)

– Minimality (no unnecessary waiting or signalling)

• The properties are often at odds with safety :-(

5

https://www.reddit.com/r/pics/comments/6qulze/traffic_deadlock/

https://en.wikipedia.org/wiki/Gridlock

(Compositional) Deadlock

• Set of k threads go asleep and cannot wake up
– each can only be woken by another who’s asleep!

• Real-life example (Kansas, 1920s):
“When two trains approach each other at a crossing, both
shall come to a full stop and neither shall start up again
until the other has gone.”

• In concurrent programs, tends to involve the taking of
mutual exclusion locks, e.g.:

8

// thread 2

lock(Y);

 ...

 if(<cond>) {

 lock(X);

 ...

// thread 2

lock(Y);

 ...

 if(<cond>) {

 lock(X);

 ...

// thread 1

lock(X);

 ...

 lock(Y);

 // critical section

 unlock(Y);

// thread 1

lock(X);

 ...

 lock(Y);

 // critical section

 unlock(Y);

Risk of deadlock if

both threads get here

simultaneously

Requirements for deadlock

• Like all concurrency bugs, deadlock may be rare (e.g.
imagine <cond> is mostly false)

• In practice there are four necessary conditions
1. Mutual Exclusion: resources have bounded #owners

2. Hold-and-Wait: can acquire Rx and wait for Ry

3. No Preemption: keep Rx until you release it

4. Circular Wait: cyclic dependency
• Require all four to hold for deadlock

–. But most modern systems always satisfy 1, 2, 3
• Tempting to think that this applies only to locks …

–. But it also can occur for many other resource classes
whose allocation meets conditions: memory, CPU time, …

9

Resource allocation graphs
• Graphical way of thinking about deadlock:

– Circles are threads (or processes)

– Boxes are single-owner resources (e.g. mutexes)

– Edges show lock hold and wait conditions

– A cycle means we (will) have deadlock.

10

T1 T3T2

Ra Rb Rc Rd

Thick line R->T means

T holds resource R

Dashed line T->R

T wants resource R

Deadlock!Deadlock!

Resource allocation graphs (2)

• Can generalize to resources which can have K distinct
users (c/f semaphores)

• Absence of a cycle means no deadlock…
– but presence only means may encounter deadlock, e.g.

11

Ra(1) Rb(2) Rc(2) Rd(1)

T1 T3T2 T4

Resource in

quantity 1

Resource in

quantity 1

Resource in quantity 2Resource in quantity 2
No deadlock: If T1 releases Rb, then

T2’s acquire of Rb can be satisfied

No deadlock: If T1 releases Rb, then

T2’s acquire of Rb can be satisfied

Resource allocation graphs (3)

• Another generalisation is for threads to have several
possible ways forward and that are able to select
according to which locks have already been taken.

• Read up on generalised AND-OR wait-for graphs for
those interested (link will be on course web site).

• [This slide non-examinable].

Deadlock: 3 Design Approaches

1. Ensure it never happens
– Deadlock (static) prevention (using code structure rules)

– Deadlock (dynamic) avoidance (cycle finding or Banker’s Alg)

2. Let it happen, but recover
– Deadlock (dynamic) detection & recovery

3. Ignore it!
– The so-called “Ostrich Algorithm” ;-)

– “Have you tried turning it off and back on again?”

– Very widely used in practice!

13

Deadlock Static Prevention

1. Mutual Exclusion: resources have bounded #owners
– Could always allow access… but probably unsafe ;-(
– However can help e.g. by using MRSW locks

2. Hold-and-Wait: can get Rx and wait for Ry
– Require that we request all resources simultaneously;

deny the request if any resource is not available now
– But must know maximal resource set in advance = hard?

3. No Preemption: keep Rx until you release it
– Stealing a resource generally unsafe (but see later)

4. Circular Wait: cyclic dependency
– Impose a partial order on resource acquisition,
– Can work: but requires programmer discipline.
– Lock order enforcement rules used in many systems e.g.,

FreeBSD WITNESS – static and dynamic orders checked.
14

Example: Dining Philosophers

• 5 philosophers, 5 forks, round table…

15

while(true) { // philosopher i

 think();

 wait(fork[i]);

 wait(fork[(i+1) % 5];

 eat();

 signal(fork[i]);

 signal(fork[(i+1) % 5];

}

while(true) { // philosopher i

 think();

 wait(fork[i]);

 wait(fork[(i+1) % 5];

 eat();

 signal(fork[i]);

 signal(fork[(i+1) % 5];

}

Semaphore forks[] = new Semaphore[5];Semaphore forks[] = new Semaphore[5];

• Possible for everyone to acquire ‘left’ fork

• Q: what happens if we swap order of wait()s?

Example: Dining Philosophers Sltn

• (one) Solution: always take lower fork first

16

while(true) { // philosopher i

 think();

 first = MIN(i, (i+1) % 5);

 second = MAX(i, (i+1) % 5);

 wait(fork[first]);

 wait(fork[second];

 eat();

 signal(fork[second]);

 signal(fork[first]);

}

while(true) { // philosopher i

 think();

 first = MIN(i, (i+1) % 5);

 second = MAX(i, (i+1) % 5);

 wait(fork[first]);

 wait(fork[second];

 eat();

 signal(fork[second]);

 signal(fork[first]);

}

Semaphore forks[] = new Semaphore[5];Semaphore forks[] = new Semaphore[5];

• Now even if 0, 1, 2, 3 are held, 4 will not acquire final fork.

Deadlock Dynamic Avoidance

• Prevention aims for deadlock-free “by design”.

• Deadlock avoidance is a dynamic scheme:
– Assumption: We know maximum possible resource

allocation for every process / thread,

– Assumption: A process granted all desired resources will
complete, terminate, and free its resources.

– Track actual allocations in real-time,

– When a request is made, only grant if guaranteed no
deadlock even if all others take max resources.

• E.g. Banker’s Algorithm
– Not really useful in general as need a priori knowledge of

#processes/threads, and their max resource needs.

17

Deadlock detection (anticipation)

• Deadlock detection is a dynamic scheme that determines if
deadlock exists (or would exist if we granted a request).
– Principle: At specific moments in execution, examine resource

allocations and graph.

– Determine if there is at least one plausible sequence of events in
which all threads could make progress.

– I.e., check that we are not in an unsafe state in which no further
sequences can complete without deadlock.

• When only a single instance of each resource, can explicitly check
for a cycle:
– Keep track which object each thread is waiting for,

– From time to time, iterate over all threads and build the resource
allocation graph,

– Run a cycle detection algorithm on graph O(n2).

• Or use Banker’s Alg if have multi-instance resources (more difÏcult)

18

Banker’s Algorithm (1)

• Have m distinct resources and n threads

• V[0:m-1], vector of currently available resources

• A, the m x n resource allocation matrix, and
R, the m x n (outstanding) request matrix
– Ai,j is the number of objects of type j owned by i

– Ri,j is the number of objects of type j further needed

by i

• Proceed by successively marking rows in A for
threads that are not part of a deadlocked set.
– If we cannot mark all rows of A we have deadlock.

19

Optimistic assumption: if we can fulfil thread i’s request R
i
, then it will run to

completion and release held resources for other threads to allocate.

Optimistic assumption: if we can fulfil thread i’s request R
i
, then it will run to

completion and release held resources for other threads to allocate.

Banker’s Algorithm (2)

• Mark all zero rows of A (since a thread holding
zero resources can’t be part of deadlock set)

• Initialize a working vector W[0:m-1] to V
– W[] describes any free resources at start, plus any

resources released by a hypothesized sequence of
satisfied threads freeing and terminating

• Select an unmarked row i of A s.t. R[i] <= W
– (i.e. find a thread who’s request can be satisfied)
– Set W = W + A[i]; mark row i, and repeat

• Terminate when no such row can be found
– Unmarked rows (if any) are in the deadlock set 20

Banker’s Algorithm: Example 1

• Five threads and three resources (none free)

21

 X Y Z X Y Z X Y Z

T0 0 1 0 0 0 0 0 0 0

T1 2 0 0 2 0 2

T2 3 0 3 0 0 0

T3 2 1 1 1 0 0

T4 0 0 1 0 0 2

 X Y Z X Y Z X Y Z

T0 0 1 0 0 0 0 0 0 0

T1 2 0 0 2 0 2

T2 3 0 3 0 0 0

T3 2 1 1 1 0 0

T4 0 0 1 0 0 2

 A R V A R V

• Find an unmarked row, mark it, and update W

• T0, T2, T3, T4, T1

 W W

X Y Z

0 0 0

X Y Z

0 0 0

X Y Z

0 1 0

X Y Z

0 1 0

X Y Z

3 1 3

X Y Z

3 1 3

X Y Z

5 2 4

X Y Z

5 2 4

X Y Z

5 2 5

X Y Z

5 2 5

X Y Z

7 2 5

X Y Z

7 2 5

At the end of the algorithm, all rows are marked:

the deadlock set is empty.

At the end of the algorithm, all rows are marked:

the deadlock set is empty.

Banker’s Algorithm: Example 2

• Five threads and three resources (none free)

22

 X Y Z X Y Z X Y Z

T0 0 1 0 0 0 0 0 0 0

T1 2 0 0 2 0 2

T2 3 0 3 0 0 1

T3 2 1 1 1 0 0

T4 0 0 1 0 0 2

 X Y Z X Y Z X Y Z

T0 0 1 0 0 0 0 0 0 0

T1 2 0 0 2 0 2

T2 3 0 3 0 0 1

T3 2 1 1 1 0 0

T4 0 0 1 0 0 2

 A R V A R V

• One minor tweak to T2’s request vector…

 W W

X Y Z

0 0 0

X Y Z

0 0 0

X Y Z

0 1 0

X Y Z

0 1 0

Cannot find a row in

R <= W!!

Now wants one unit

of resource Z
Threads T1, T2, T3 &

T4 in deadlock set

Deadlock recovery

• What can we do when we detect deadlock?

• Simplest solution: kill something!
– Ideally someone in the deadlock set ;-)

• Brutal, and not guaranteed to work
– But sometimes the best (only) thing we can do

– E.g. Linux OOM killer (better than system reboot?)

– … Or not – often kills the X server!

• Could also resume from checkpoint
– Assuming we have one

• In practice computer systems seldom detect or recover
from deadlock: rely on programmer.

23Note: “kill someone” breaks the no preemption precondition for deadlock.Note: “kill someone” breaks the no preemption precondition for deadlock.

Livelock

• Deadlock is at least ‘easy’ to detect by humans

– System basically blocks & stops making any progress

• Livelock is less easy to detect as threads continue to
run… but do nothing useful

• Often occurs from trying to be clever, e.g.:

24

// thread 2

lock(Y);

 ...

 while(!trylock(X)) {

 unlock(Y);

 yield();

 lock(Y);

 }

 ...

// thread 2

lock(Y);

 ...

 while(!trylock(X)) {

 unlock(Y);

 yield();

 lock(Y);

 }

 ...

// thread 1

lock(X);

 ...

 while (!trylock(Y)) {

 unlock(X);

 yield();

 lock(X);

 }

 ...

// thread 1

lock(X);

 ...

 while (!trylock(Y)) {

 unlock(X);

 yield();

 lock(X);

 }

 ...

Livelock if both

threads get here

simultaneously

Scheduling and thread priorities
• Which thread should run when >1 runnable? E.g., if:

– A thread releases a contended lock and continues to run,
– CV broadcast wakes up several waiting threads.

• Many possible scheduling policies:
– Round robin – rotate between threads to ensure progress,
– Fixed priorities – assign priorities to threads, schedule

highest– e.g., real-time > interactive > bulk > idle-time
– Dynamic priorities – adjust priorities to balance goals –

e.g. boost priority after I/O to improve interactivity,
– Gang scheduling – schedule for patterns such as P-C
– AfÏnity – schedule for efÏcient resource use (e.g. caches).

• Goals: latency vs. throughput, energy, “fairness”, …
– NB: These competing goals cannot generally all be

satisfied.

25

Priority inversion

• Another liveness problem…
– Due to interaction between locking and scheduler.

• Consider three threads: T1, T2, T3
– T1 is high priority, T2 medium priority, T3 is low

– T3 gets lucky and acquires lock L…

– … T1 preempts T3 and sleeps waiting for L…

– … then T2 runs, preventing T3 from releasing L!

– Priority inversion: despite having higher priority and no
shared lock, T1 waits for lower priority thread T2

• This is not deadlock or livelock
– But not desirable (particularly in real-time systems)!

– Disabled Mars Pathfinder robot for several months.
26

Priority inheritance

• Typical solution is priority inheritance:
– Temporarily boost priority of lock holder to that of the

highest waiting thread

– T3 would have run with T1’s priority while holding a lock
T1 was waiting for – preventing T2 from preempting T3

– Concrete benefits to system interactivity

– (some RT systems (like VxWorks) allow you specify on a
per-mutex basis [to Rover’s detriment ;-])

• Windows “solution”
– Check if any ready thread hasn’t run for 300 ticks

– If so, double its quantum and boost its priority to 15

– ☺

27

Problems with priority inheritance

• Hard to reason about resulting behaviour: heuristic

• Works for locks
– More complex than it appears: propagation might need to

be propagated across chains containing multiple locks

– (How might we handle reader-writer locks?)

• How about condition synchronisation, res. allocation?
– With locks, we know what thread holds the lock

– Semaphores do not record which thread might issue a
signal or release an allocated resource

– Must compose across multiple waiting types: e.g. “waiting
for a signal while holding a lock.”

• Where possible, avoid the need for priority inheritance
– Avoid sharing between threads of differing priorities.

28

Limits to Parallelisation

• No dependencies (embarassingly parallel): No dependencies

between work units, such as Mandelbrot pixel or JPEG tile.

• Data dependencies: where the result of one computation is

needed for others.

• Control dependencies: where its not known if a result will be

needed.

• One can speculate on both types of dependency, guessing the

outcome, but some amount of work will be wasted and

results must not be committed.
29

Depending on how it is coded, a program or task can exhibit
various levels of dependency between its parts:

Summary + next time

• Liveness properties
• Deadlock

– Requirements
– Resource allocation graphs and detection
– Prevention – the Dining Philosophers Problem – and recovery

• Thread priority and the scheduling problem
• Priority inversion and inheritance
• Limits to parallelisation.

• Next time:
– Concurrency without shared data
– Active objects; message passing
– Composite operations; transactions
– ACID properties; isolation; serialisability

30

Concurrent systems
Lecture 6: Concurrency without shared data, composite operations

 and transactions, and serialisability

Dr Martin Kleppmann

(Slides for lectures 1–8 by Dr Robert Watson,
Dr Steven Hand, Dr David Greaves, and others)

1

Reminder from last time

• Liveness properties

• Deadlock (requirements; resource allocation graphs; detection;

prevention; recovery)

• The Dining Philosophers

• Priority inversion

• Priority inheritance

2

Concurrency is so hard!

If only there were some way that programmers could accomplish useful concurrent

computation without…

(1) the hassles of shared memory concurrency

(2) blocking synchronisation primitives

Concurrency is so hard!

If only there were some way that programmers could accomplish useful concurrent

computation without…

(1) the hassles of shared memory concurrency

(2) blocking synchronisation primitives

This time

• Concurrency without shared data

– Use same hardware+OS primitives, but expose higher-level models via

software libraries or programming languages

• Active objects

– Ada

• Message passing; the Actor model

– Occam, Erlang

• Composite operations

– Transactions, ACID properties

– Isolation and serialisability

• History graphs; good (and bad) schedules

3

This material has significant overlap with databases and distributed

systems – but is presented here from a concurrency perspective

This material has significant overlap with databases and distributed

systems – but is presented here from a concurrency perspective

Concurrency without shared data

• The examples so far have involved threads which can

arbitrarily read & write shared data

– A key need for mutual exclusion has been to avoid race-

conditions (i.e. ‘collisions’ on access to this data)

• An alternative approach is to have only one thread

access any particular piece of data

– Different threads can own distinct chunks of data

• Retain concurrency by allowing other threads to ask for

operations to be done on their behalf

– This ‘asking’ of course needs to be concurrency safe…

4

Fundamental design dimension: concurrent access via

shared data vs. concurrent access via explicit communication

Fundamental design dimension: concurrent access via

shared data vs. concurrent access via explicit communication

Example: Active objects

• A monitor with an associated server thread

– Exports an entry for each operation it provides

– Other (client) threads ‘call’ methods

– Call returns when operation is done

• All complexity bundled up in an active object

– Must manage mutual exclusion where needed

– Must queue requests from multiple threads

– May need to delay requests pending conditions

• E.g. if a producer wants to insert but buffer is full.

5

Observation: the code of exactly one thread, and the data that

only it accesses, effectively experience mutual exclusion

Observation: the code of exactly one thread, and the data that

only it accesses, effectively experience mutual exclusion

Producer-Consumer in Ada

6

task-body ProducerConsumer is

 ...

 loop

 SELECT

 when count < buffer-size

 ACCEPT insert(item) do

 // insert item into buffer

 end;

 count++;

 or

 when count > 0

 ACCEPT consume(item) do

 // remove item from buffer

 end;

 count--;

 end SELECT

 end loop

task-body ProducerConsumer is

 ...

 loop

 SELECT

 when count < buffer-size

 ACCEPT insert(item) do

 // insert item into buffer

 end;

 count++;

 or

 when count > 0

 ACCEPT consume(item) do

 // remove item from buffer

 end;

 count--;

 end SELECT

 end loop

Non-deterministic choice

between a set of

guarded ACCEPT clauses

Clause is active only

when condition is true

ACCEPT dequeues a

client request and

performs the operation

Single thread: no need

for mutual exclusion

Reliable Message Passing
• Dynamic invocations between threads can be thought

of as general message passing
– Thread X can send a message to Th read Y

– Contents of message can be arbitrary data values

• Can be used to build Remote Procedure Call (RPC)
– Message includes name of operation to invoke along with

as any parameters

– Receiving thread checks operation name, and invokes the
relevant code

– Return value(s) sent back as another message

• (Called Remote Method Invocation (RMI) in Java)

7

We will discuss message passing and RPC in detail 2nd half; a taster

now, as these ideas apply to local, not just distributed, systems.

We will discuss message passing and RPC in detail 2nd half; a taster

now, as these ideas apply to local, not just distributed, systems.

Message passing semantics

• Can conceptually view sending a message to be similar
to sending an email within a reliable system:
1. Sender prepares contents locally, and then sends

2. System eventually delivers a copy to receiver

3. Receiver checks for messages
• In this model, sending is asynchronous:

–. Sender doesn’t need to wait for message delivery
–. (but they may, of course, choose to wait for a reply)
–. Bounded FIFO may ultimately apply sender backpressure.

• Receiving is also asynchronous:
–. messages first delivered to a mailbox, later retrieved
–. message is a copy of the data (ie. no actual sharing).

8

Synchronous Message Passing

• FSM view: both (all) participating FSMs execute the message passing primitive
simultaneously.

• Send and receive operations must be part of edge guard (before the slash).

9

Asynchronous Message Passing

• We will normally assume asynchronous unless obviously
or explicitly otherwise.

• Send and receive operations in action part (after slash). 10

Message passing advantages

• Copy semantics avoid race conditions
– At least directly on the data

• Flexible API: e.g.
– Batching: can send K messages before waiting; and can

similarly batch a set of replies
– Scheduling: can choose when to receive, whom to receive

from, and which messages to prioritise.
– Broadcast/multicast: can send messages to many

recipients
• Works both within and between machines

– ie. same design works for distributed systems.

• Explicitly used as basis of some languages …

11

Example: Occam
• Language based on Hoare’s Communicating Sequential Processes (CSP)

– A projection of a process algebra into a real-world language.

• No shared variables.

• Processes synchronously communicate via channels

12

<channel> ? <variable> // an input operation

<channel> ! <expression> // an output operation

<channel> ? <variable> // an input operation

<channel> ! <expression> // an output operation

• Build complex processes via SEQ, PAR and ALT, eg.

ALT

 count1 < 100 & c1 ? Data

 SEQ

 count1:= count1 + 1

 merged ! data

 count2 < 100 & c2 ? Data

 SEQ

 count2:= count2 + 1

 merged ! data

ALT

 count1 < 100 & c1 ? Data

 SEQ

 count1:= count1 + 1

 merged ! data

 count2 < 100 & c2 ? Data

 SEQ

 count2:= count2 + 1

 merged ! data

Example: Erlang
• Functional programming language designed in mid 80’s, made popular

more recently (especially in eternal systems such as telephone network).

• Implements the actor model

• Actors: lightweight language-level processes

– Can spawn() new processes very cheaply

• Single-assignment: each variable is assigned only once, and thereafter is

immutable

– But values can be sent to other processes

• Guarded receives (as in Ada, occam)

– Messages delivered in-order to local mailbox

• Message/actor-oriented model allows run-time restart or replacement of

modules to limit downtime.

13

Proponents of Erlang argue that lack of synchronous message

passing prevents deadlock. Why might this claim be misleading?

Proponents of Erlang argue that lack of synchronous message

passing prevents deadlock. Why might this claim be misleading?

Producer-Consumer in Erlang

14

-module(producerconsumer).

-export([start/0]).

start() ->

 spawn(fun() -> loop() end).

loop() ->

 receive

 {produce, item } ->

 enter_item(item),

 loop();

 {consume, Pid } ->

 Pid ! remove_item(),

 loop();

 stop ->

 ok

end.

-module(producerconsumer).

-export([start/0]).

start() ->

 spawn(fun() -> loop() end).

loop() ->

 receive

 {produce, item } ->

 enter_item(item),

 loop();

 {consume, Pid } ->

 Pid ! remove_item(),

 loop();

 stop ->

 ok

end.

Invoking start() will

spawn an actor…

receive matches

messages to patterns

explicit tail-recursion is

required to keep the

actor alive…

… so if send ‘stop’,

process will terminate.

Message passing: summary

• A way of sidestepping (at least some of) the issues with

shared memory concurrency

– No direct access to data => no data race conditions

– Threads choose actions based on message.

• Explicit message passing can be awkward

– Many weird and wonderful languages ;-)

• Can also use with traditional languages, eg.

– Transparent messaging via RPC/RMI

– Scala, Kilim (actors on Java), Bastion for Rust, …

• May overcome cache-consistency scaling issues?

15

We have eliminated some of the issues associated with shared memory, but

these are still concurrent programs subject to deadlock, livelock, etc.

We have eliminated some of the issues associated with shared memory, but

these are still concurrent programs subject to deadlock, livelock, etc.

Composite operations

• So far have seen various ways to ensure safe
concurrent access to a single object
– e.g. monitors, active objects, message passing

• More generally want to handle composite operations:
– ie. build systems which act on multiple distinct objects

• As an example, imagine an internal bank system which
allows account access via three method calls:

16

int amount = getBalance(account);

bool credit(account, amount);

bool debit(account, amount);

int amount = getBalance(account);

bool credit(account, amount);

bool debit(account, amount);

• If each is thread-safe, is this sufÏcient?
• Or are we going to get into trouble???

Composite operations

• Consider two concurrently executing client threads:
– One wishes to transfer 100 quid from the savings account

to the current account,
– The other wishes to learn the combined balance.

17

// thread 1: transfer 100

// from savings->current

 debit(savings, 100);

 credit(current, 100);

// thread 1: transfer 100

// from savings->current

 debit(savings, 100);

 credit(current, 100);

// thread 2: check balance

 s = getBalance(savings);

 c = getBalance(current);

 tot = s + c;

// thread 2: check balance

 s = getBalance(savings);

 c = getBalance(current);

 tot = s + c;

• If we’re unlucky then:
– Thread 2 could see balance that’s too small
– Thread 1 could crash after doing debit() – ouch!
– Server thread could crash at any point – ouch?

Problems with composite operations

Two separate kinds of problem here:

1. InsufÏcient Isolation
– Individual operations being atomic is not enough,

– Eg. want the credit & debit making up the transfer to
happen as one operation.

– Could fix this particular example with a new transfer()
method, but not very general ...

2. Fault Tolerance
– In the real-word, programs (or systems) can fail.

– Need to make sure we can recover safely.

18

Transactions

• Want programmer to be able to specify that a set of
operations should happen atomically, eg.

19

// transfer amt from A -> B

transaction {

 if (getBalance(A) > amt) {

 debit(A, amt);

 credit(B, amt);

 return true;

 } else return false;

}

// transfer amt from A -> B

transaction {

 if (getBalance(A) > amt) {

 debit(A, amt);

 credit(B, amt);

 return true;

 } else return false;

}

• A transaction either executes correctly (in which case we
say it commits), or has no effect at all (i.e. it aborts).
• regardless of other transactions, or system crashes!

ACID Properties

Want committed transactions to satisfy four properties:

• Atomicity: either all or none of the transaction’s operations are
performed

– Programmer doesn’t need to worry about clean up.

• Consistency: a transaction transforms the system from one
consistent state to another – ie. preserves invariants.

– Programmer must still ensure eg. conservation of money.

• Isolation: each transaction executes [as if] isolated from the
concurrent effects of others

– We can then ignore partial updates from concurrent transactions.

• Durability: the effects of committed transactions survive
subsequent system failures

– If system reports success, must ensure this is recorded on disk.

20

This is a different use of the word “atomic” from previously;

we will just have to live with that, unfortunately.

This is a different use of the word “atomic” from previously;

we will just have to live with that, unfortunately.

ACID Properties

Can group these into two categories

1. Atomicity & Durability deal with making sure the system is safe

even across failures:

– (A) No partially complete txactions

– (D) Transactions previously reported as committed don’t disappear,

even after a system crash.

2. Consistency & Isolation ensure correct behavior even in the face

of concurrency:

– (C) Can always code as if invariants in place,

– (I) Concurrently executing transactions are indivisible.

21

Isolation

• To ensure a transaction executes in isolation, could just
have a server-wide lock… simple!

22

// transfer amt from A -> B

transaction { // acquire server lock

 if (getBalance(A) > amt) {

 debit(A, amt);

 credit(B, amt);

 return true;

 } else return false;

} // release server lock

// transfer amt from A -> B

transaction { // acquire server lock

 if (getBalance(A) > amt) {

 debit(A, amt);

 credit(B, amt);

 return true;

 } else return false;

} // release server lock

• But doesn’t allow any concurrency…
• And doesn’t handle mid-transaction failure

(e.g. what if we are unable to credit the amount to B?).

Isolation – Serialisability

• The idea of executing transactions serially (one after
the other) is a useful model for the programmer:
– To improve performance, transaction systems execute

many transactions concurrently,
– But programmers must only observe behaviours consistent

with a possible serial execution: serialisability.

• Consider two transactions, T1 and T2

23

T2 transaction {

 debit(S, 100);

 credit(C, 100);

 return true;

}

T2 transaction {

 debit(S, 100);

 credit(C, 100);

 return true;

}

• If assume individual operations are atomic, then there
are six possible ways the operations can interleave…

T1 transaction {

 s = getBalance(S);

 c = getBalance(C);

 return (s + c);

}

T1 transaction {

 s = getBalance(S);

 c = getBalance(C);

 return (s + c);

}

Isolation – serialisability

• First case is a serial execution and hence serialisable

24

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

• Second case is not serial as transactions are interleaved
– Its results are identical to serially executing T2 and then T1
– The schedule is therefore serialisable.

• Informally: it is serialisable because we have only swapped
the execution orders of non-conflicting operations.
– All of T1’s operations on any object happen after T2’s updates.

Isolation – serialisability

• This execution is neither serial nor serialisable
– T1 sees inconsistent values: old S and new C.

25

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

• This execution is also neither serial nor serialisable
– T1 sees inconsistent values: new S, old C.

• Both orderings swap conflicting operations such that
there is no matching serial execution.

Conflict Serialisability

• There are many flavours of serialisability

• Conflict serialisability is satisfied for a schedule S
if (and only if):
– It contains the same set of operations as some serial

schedule T; and

– All conflicting operations are ordered the same way
as in T.

• Define conflicting as non-commutative
– IE. differences are permitted between the execution

ordering and T, but they can’t have a visible impact.

26

History graphs

• Can construct a graph for any execution schedule:

– Nodes represent individual operations, and

– Arrows represent “happens-before” relations.

• Insert edges between operations within a given transaction in

program order (ie. as written).

• Insert edges between conflicting operations operating on the

same objects, ordered by execution schedule

– e.g. A.credit(), A.debit() commute [don’t conflict]

– A.credit() and A.addInterest() do conflict

• NB: Graphs represent particular execution schedules not sets

of allowable schedules.

27

History graphs: good schedules

• Same schedules as before (both ok)

• Can easily see that everything in T1 either happens
before everything in T2, or vice versa
– Hence schedule can be serialised.

28

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

COMMITSTART

START COMMIT

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

COMMITSTART

START COMMIT

History graphs: bad schedules

• Cycles between threads indicate that schedules are bad :-(

• Neither transaction strictly “happened before” the other:

– Arrows from T1 to T2 mean “T1 must happen before T2”

– But arrows from T2 to T1 => “T2 must happen before T1”

– Notice the cycle in the graph (where each thread is considered one node)!

• Can’t both be true --- schedules are non-serialisable.

29

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

COMMITSTART

START COMMIT

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

COMMITSTART

START COMMIT

Isolation – serialisability

• This execution is neither serial nor serialisable

– T1 sees inconsistent values: old S and new C

30

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

• This execution is also neither serial nor serialisable

– T1 sees inconsistent values: new S, old C

• Both orderings swap conflicting operations such that there is no matching

serial execution

The transaction system must ensure that, regardless of any actual concurrent execution used to improve

performance, only results consistent with serialisable orderings are visible to the transaction programmer.

The transaction system must ensure that, regardless of any actual concurrent execution used to improve

performance, only results consistent with serialisable orderings are visible to the transaction programmer.

Same as earlier slide.

Summary + next time

• Concurrency without shared data (Active Objects)

• Message passing, actor model (Occam, Erlang)

• Composite operations; transactions; ACID properties

• Isolation and serialisability

• History graphs; good (and bad) schedules.

• Next time – more on transactions:

– Isolation vs. strict isolation; enforcing isolation.

– Two-phase locking; rollback

– Timestamp ordering (TSO); optimistic concurrency control (OCC)

– Isolation and concurrency summary.

31

Concurrent Systems
Lecture 7: Isolation vs. Strict Isolation,

2-Phase Locking (2PL), Time Stamp Ordering (TSO), and
Optimistic Concurrency Control (OCC)

Dr Martin Kleppmann

(Slides for lectures 1–8 by Dr Robert Watson,
Dr Steven Hand, Dr David Greaves, and others)

1

Reminder from last time

• Concurrency without shared data

– Active objects

• Message passing; the actor model

– Occam, Erlang

• Composite operations

– Transactions, ACID properties

– Isolation and serialisability

• History graphs; good (and bad) schedules

2

Last time: isolation – serialisability

• The idea of executing transactions serially (one after the other) is a
useful model

– We want to run transactions concurrently

– But the result should be as if they ran serially

• Consider two transactions, T1 and T2

3

T2 transaction {

 debit(S, 100);

 credit(C, 100);

 return true;

}

T2 transaction {

 debit(S, 100);

 credit(C, 100);

 return true;

}

• If assume individual operations are atomic, then there are six

possible ways the operations can interleave…

T1 transaction {

 s = getBalance(S);

 c = getBalance(C);

 return (s + c);

}

T1 transaction {

 s = getBalance(S);

 c = getBalance(C);

 return (s + c);

}

Isolation allow transaction programmers to reason about the interactions between transactions trivially:they appear

to execute in serial.

Transaction systems execute transactions concurrently for performance and rely on the definition of serialisability

to decide if an actual execution schedule is allowable.

Isolation allow transaction programmers to reason about the interactions between transactions trivially:they appear

to execute in serial.

Transaction systems execute transactions concurrently for performance and rely on the definition of serialisability

to decide if an actual execution schedule is allowable.

Isolation – serialisability

• This execution is neither serial nor serialisable

– T1 sees inconsistent values: old S and new C

4

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

• This execution is also neither serial nor serialisable

– T1 sees inconsistent values: new S, old C

• Both orderings swap conflicting operations such that there is no matching serial

execution

From last lectureFrom last lecture

The transaction system must ensure that, regardless of any actual concurrent execution used to improve

performance, only results consistent with serialisable orderings are visible to the transaction programmer.

The transaction system must ensure that, regardless of any actual concurrent execution used to improve

performance, only results consistent with serialisable orderings are visible to the transaction programmer.

This time

• Effects of bad schedules

• Isolation vs. strict isolation; enforcing isolation

• Two-phase locking; rollback

• Timestamp ordering (TSO)

• Optimistic concurrency control (OCC)

• Isolation and concurrency summary.

5

This lecture considers how the transaction implementation

itself can provide transactional (ACID) guarantees

This lecture considers how the transaction implementation

itself can provide transactional (ACID) guarantees

Effects of bad schedules

• Lost Updates
– T1 updates (writes) an object, but this is then overwritten by concurrently

executing T2

– (if T1 prevails when T2 logically later, write-write conflict, WaW)

• Dirty Reads
– T1 reads an object which has been updated by an uncommitted transaction T2

– (can be a read-after-write conflict, RaW)

• Unrepeatable Reads
– T1 reads an object which is then updated by T2

– Not possible for T1 to read the same value again

– (also called a write-after-read conflict, WaR or

anti-dependance. T2 needs to be held off)

6

Atomicity: all or none of operations performed – abort must be “clean”

Isolation: transactions execute as if isolated from concurrent effects

Atomicity: all or none of operations performed – abort must be “clean”

Isolation: transactions execute as if isolated from concurrent effects

Lack of isolation:

partial result seen

Lack of isolation:

partial result seen

Lack of atomicity:

operation results “lost”

Lack of atomicity:

operation results “lost”

Lack of isolation:

read value

unstable

Lack of isolation:

read value

unstable

Isolation and strict isolation

• Ideally want to avoid all three problems
• Two ways: Strict Isolation and Non-Strict Isolation

– Strict Isolation: guarantee we never experience lost
updates, dirty reads, or unrepeatable reads

– Non-Strict Isolation: let transaction continue to execute
despite potential problems (i.e., more optimistic)

• Non-strict isolation usually allows more concurrency
but can lead to complications
– E.g. if T2 reads something written by T1 (a “dirty read”)

then T2 cannot commit until T1 commits
– And T2 must abort if T1 aborts: cascading aborts

• Both approaches ensure that only serialisable
schedules are visible to the transaction programmer.

7

Enforcing isolation

• In practice there are a number of techniques we can
use to enforce isolation (of either kind)

• We will look at:
– Two-Phase Locking (2PL);
– Timestamp Ordering (TSO); and
– Optimistic Concurrency Control (OCC)

• Essential difference: when is a serialisation decided?
• More complete descriptions and examples of these

approaches can be found in:
Operating Systems, Concurrent and Distributed Software Design,
Jean Bacon and Tim Harris, Addison-Wesley 2003.

[Also, Chapter 12 of 1st year Databases book Lemahieu.]

8

Two-phase locking (2PL)

• Associate a lock with every object
– Could be mutual exclusion, or MRSW

• Transactions proceed in two phases:
– Expanding Phase: during which locks are acquired but

none are released,

– Shrinking Phase: during which locks are released, and
no further are acquired.

• Operations on objects occur in either phase,
providing appropriate locks are held
– Guarantees serializable execution.

9

2PL example

10

// transfer amt from A -> B

transaction {

 readLock(A);

 if (getBalance(A) > amt) {

 writeLock(A);

 debit(A, amt);

 writeLock(B);

 credit(B, amt);

 writeUnlock(B);

 addInterest(A);

 writeUnlock(A);

 tryCommit(return=true);

 } else {

 readUnlock(A);

 tryCommit(return=false);

}

// transfer amt from A -> B

transaction {

 readLock(A);

 if (getBalance(A) > amt) {

 writeLock(A);

 debit(A, amt);

 writeLock(B);

 credit(B, amt);

 writeUnlock(B);

 addInterest(A);

 writeUnlock(A);

 tryCommit(return=true);

 } else {

 readUnlock(A);

 tryCommit(return=false);

}

Expanding

Phase

Shrinking

Phase

Acquire a read lock

(shared) before ‘read’ A

Upgrade to a write lock

(exclusive) before write A

Acquire a write lock

(exclusive) before write B

Release locks when done

to allow concurrency

Problems with 2PL
• Requires knowledge of which locks required:

– Complexity arises if complex control flow inside a transaction

– Some transactions look up objects dynamically

– But not really a problem and can be automated in many systems:
● User may declare affected objects statically to assist checker tool

or have built-in mechanisms in high-level language (HLL)
compilers.

● Risk of deadlock:

– Can attempt to impose a partial order,

– Or can detect deadlock and abort, releasing locks

– (this is safe for transactions due to rollback, which is nice)

• Non-Strict Isolation: releasing locks during execution means others
can access those objects
– e.g. T1 updates B, then releases write lock; now T2 can read or

overwrite the uncommitted value

– Hence T2’s fate is tied to T1 (whether commit or abort).

– Fixed using strict 2PL: hold all locks until transaction end.
11

Strict(er) 2PL example

12

// transfer amt from A -> B

transaction {

 readLock(A);

 if (getBalance(A) > amt) {

 writeLock(A);

 debit(A, amt);

 writeLock(B);

 credit(B, amt);

 addInterest(A);

 tryCommit(return=true);

 } else {

 readUnlock(A);

 tryCommit(return=false);

} on commit, abort {

 unlock(A);

 unlock(B);

}

// transfer amt from A -> B

transaction {

 readLock(A);

 if (getBalance(A) > amt) {

 writeLock(A);

 debit(A, amt);

 writeLock(B);

 credit(B, amt);

 addInterest(A);

 tryCommit(return=true);

 } else {

 readUnlock(A);

 tryCommit(return=false);

} on commit, abort {

 unlock(A);

 unlock(B);

}

Expanding

Phase

Unlock All

Phase

Retain lock on B here to

ensure strict isolation

By holding locks longer, Strict

2PL risks greater contention

By holding locks longer, Strict

2PL risks greater contention

2PL: rollback

• Recall that transactions can abort
– Could be due to run-time conflicts (non-strict 2PL), or

could be programmed (e.g. on an exception).

• Using locking for isolation works, but means that
updates are made ‘in place’
– ie. once acquire write lock, can directly update.

– If transaction aborts, need to ensure no visible effects.

• Rollback is the process of returning the world to
the state it in was before the transaction started
– IE. to implement atomicity: all happened, or none.

13

Why might a transaction abort?

• Some failures are internal to transaction systems:

– Transaction T2 depends on T1, and T1 aborts,

– Deadlock is detected between two transactions,

– Memory is exhausted or a system error occurs.

• Some are programmer-triggered:

– Transaction self-aborted – e.g., debit() was not

possible owing to inadequate balance or account being

locked ...

• Some failures must be programmer visible,

• Others may simply trigger retry of the transaction.

14

Implementing rollback: undo

• One strategy is to undo operations, e.g.
– Keep a log of all operations, in order: O1, O2, .. On

– On abort, undo changes of On, O(n-1), .. O1

• Must know how to undo an operation:
– Assume we log both operations and parameters

– Programmer can provide an explicit counter action
• UNDO(credit(A, x) ⇒ debit(A, x));

• May not be sufÏcient (e.g. setBalance(A, x))
– Would need to record previous balance, which we

may not have explicitly read within transaction…

15

Implementing rollback: copy

• A more brute-force approach is to take a copy of an
object before [first] modification
– On abort, just revert to original copy.

• Has some advantages:
– Doesn’t require programmer effort

– Undo is simple, and can be efÏcient (e.g. if there are many
operations, and/or they are complex).

• However can lead to high overhead if objects are large
… and may not be needed if don’t abort!
– Can reduce overhead with partial copy on write, shadow

pages, etc..

16

Timestamp ordering (TSO)

• 2PL and Strict 2PL are widely used in practice
– But can limit concurrency (certainly the latter)
– And must be able to deal with deadlock.

• Time Stamp Ordering (TSO) is an alternative approach:
– As a transaction begins, it is assigned a timestamp – the

proposed eventual (total) commit order / serialisation.
– Timestamps are comparable, and unique (can think of as eg.

current time – or a logical incrementing version number).
– Every object O records the timestamp of the last transaction to

successfully access (read? write?) it: V(O).
– T can access object O iff V(T) >= V(O), where V(T) is the

timestamp of T (otherwise rejected as “too late”).
– If T is non-serialisable with timestamp, abort with roll back.

17

Timestamps allow us to explicitly track new “happens-before”

edges, detecting (and preventing) violations.

Timestamps allow us to explicitly track new “happens-before”

edges, detecting (and preventing) violations.

TSO Concrete Example 1

Imagine that objects S and C start off with version 10

1. T1 and T2 both start concurrently:

• T1 gets version 27, T2 gets version 29

2. T1 reads S => ok! (27 >= 10); S gets version 27

3. T2 does debit(S, 100) => ok! (29 >= 27); S gets version 29

4. T1 reads C => ok! (27 => 10); C gets version 27

5. T2 does credit(C, 100) => ok! (29 >= 27); C gets version 29

6. Both transactions commit.

18

T2 transaction {

 debit(S, 100);

 credit(C, 100);

 return true;

}

T2 transaction {

 debit(S, 100);

 credit(C, 100);

 return true;

}

T1 transaction {

 s = getBalance(S);

 c = getBalance(C);

 return = s + c;

}

T1 transaction {

 s = getBalance(S);

 c = getBalance(C);

 return = s + c;

}

Succeeded as all conflicting operations executed in timestamp orderSucceeded as all conflicting operations executed in timestamp order

TSO Concrete Example 2

As before, S and C start off with version 10

1. T1 and T2 both start concurrently:

• T1 gets version 27, T2 gets version 29

2. T1 reads S => ok! (27 >= 10); S gets version 27

3. T2 does debit(S, 100) => ok! (29 >= 27); S gets version 29

4. T2 does credit(C, 100) => ok! (29 >= 10); C gets version 29

5. T1 reads C => FAIL! (27 < 29); T1 aborts

6. T2 commits; T1 restarts, gets version 30…

19

T2 transaction {

 debit(S, 100);

 credit(C, 100);

 return true;

}

T2 transaction {

 debit(S, 100);

 credit(C, 100);

 return true;

}

T1 transaction {

 s = getBalance(S);

 c = getBalance(C);

 return = s + c;

}

T1 transaction {

 s = getBalance(S);

 c = getBalance(C);

 return = s + c;

}

Consider steps 4 and 5 now have different interleaving.

Advantages of TSO

• Deadlock free.
• Can allow more concurrency than 2PL.
• Can be implemented in a decentralized fashion.
• Can be augmented to distinguish reads & writes

– objects have read version R & write version W.

20

WRITE(O, T) {

 if(V(T) < R(O)) abort;

 if(V(T) < W(O)) return;

 // do actual write

 W(O) := V(T);

}

WRITE(O, T) {

 if(V(T) < R(O)) abort;

 if(V(T) < W(O)) return;

 // do actual write

 W(O) := V(T);

}

READ(O, T) {

 if(V(T) < W(O)) abort;

 // do actual read

 R(O): = MAX(V(T), R(O));

}

READ(O, T) {

 if(V(T) < W(O)) abort;

 // do actual read

 R(O): = MAX(V(T), R(O));

}

R(O) holds version of

latest transaction to read

Only safe to read if no-

one wrote “after” us

Unsafe to write if later

txaction has read value
But if later txaction wrote it,

just skip write (he won!).

However…

• TSO needs a rollback mechanism (like 2PL)
• TSO does not provide strict isolation:

– Hence subject to cascading aborts
– (Can provide strict TSO by locking objects when access is

granted – still remains deadlock free if can abort).
• TSO decides a priori on one serialisation

– Even if others might have been possible.
• And TSO does not perform well under contention

– Will repeatedly have transactions aborting & retrying & …
• In general, TSO is a good choice for distributed

systems [decentralized management] where conflicts
are rare.

21

Optimistic concurrency control

• OCC is an alternative to 2PL or TSO
• Optimistic since assume conflicts are rare

– Execute transaction on a shadow [copy] of the data
– On commit, check if all “OK”; if so, apply updates;

otherwise discard shadows & retry.
• “OK” means:

– All shadows read were mutually consistent, and
– No one else has committed “later” changes to any object

that we are hoping to update.
• Advantages: no deadlock, no cascading aborts

– And “rollback” comes pretty much for free!
• Key idea: when ready to commit, search for a

serialisable order that accepts the transaction.
22

Implementing OCC (1)

• All objects are tagged with version/generation numbers

– e.g. the Validation timestamp of the transaction which most recently wrote its
updates to that object

– Nominally stored with the object, but possibly held as a validator data
structure.

• Many threads execute transactions

– When wish to read any object, take a shadow copy, and take note of the
version number

– If wish to write: edit the shadows (perhaps as held as html data in hidden web
forms while booking a multi-part holiday)

• When a thread/customer want to finally commit a transaction, it submits
the edited shadows to a validator.

• Validator nominally single-threaded (but parallel and distributed exist …).

• Validator could work on a batch of submissions at once, finding an
optimal, non-conflicting subset to commit with retries requested for the
remainder.

23

Implementing OCC (2)

• NB: There are many approaches following this basic technique.

• Various efÏcient schemes for shadowing
– eg. write buffering, page-based copy-on-write.

• All complexity resides in the two-step validator that must reflect a
serialisable commit order in its ultimate side effects.

• Read validation:
– Must ensure that all versions of data read by T (all shadows) were

valid at some particular time t

– This becomes the tentative start time for T

• Serialisability validation:
– Must ensure that there are no conflicts with any committed

transactions which have a later start time.

• Optimality matching:
– For a batch, must choose a serialisation that commits as many as

possible, possibly weighted on other heuristic, such as success for
those rejected last attempt.

24

OCC Example (1)

• A log of the most recent validated transactions, with

their timestamps etc

25

Transaction Validation Timestamp Objects Updated Writeback Done?

T5 10 A, B, C Yes

T6 11 D Yes

T7 12 A, E No

• The versions of the objects are as follows:
• T7 has started, but not finished; writingback

• (A has been updated, but not E)

Object Version

A 12

B 10

C 10

D 11

E 9What will happen if we now start a new

transaction T8 on {B, E} before T7 writes back E?

What will happen if we now start a new

transaction T8 on {B, E} before T7 writes back E?

OCC example (2)

• Consider T8: { updates(B), updates(E) };

• T8 executes and makes shadows of B & E

– Records timestamps: B@10, E@9

– When done, T8 submits for validation

• Phase 1: read validation

– Check shadows are part of a consistent snapshot

– Latest committed start time is 11 = OK (10, 9 < 11)

• Phase 2: serializability validation

– Check T8 against all later transactions (here, T7)

– Conflict detected! (T7 updates E, but T8 read old E)

26

Looking at log: have

other transactions

interfered with T8’s

inputs?

Looking at log: have

other transactions

interfered with T8’s

inputs?

Looking at log: would commitÝng T8 invalidate

other now-committed transactions?

Looking at log: would commitÝng T8 invalidate

other now-committed transactions?

Issues with OCC
• Preceding example uses a simple validator

– Possible it will abort even when don’t need to,

– (e.g. can search for a ‘better’ start time).

• In general OCC can find more serializable schedules than
TSO
– Timestamps assigned after the fact, and taking the actual

data read and written into account.

– e.g. both stored 27, value-based conflict detection easy to
deploy.

• However OCC is not suitable when high conflict rate
– Can perform lots of work with ‘stale’ data => wasteful!

– Starvation possible if conflicting set continually retries,

– Will the transaction system always make progress?
27

Isolation & Concurrency: Summary
• 2PL explicitly locks items as required, then releases

– Guarantees a serializable schedule

– Strict 2PL avoids cascading aborts

– Can limit concurrency & prone to deadlock

• TSO assigns timestamps when transactions start

– Cannot deadlock, but may miss serializable schedules

– Suitable for distributed/decentralized systems.

• OCC executes with shadow copies, then validates

– Validation assigns timestamps when transactions end

– Lots of concurrency & admits many serializable schedules

– No deadlock but potential livelock when contention is high.

• Differing tradeoffs between optimism, concurrency, but also potential starvation,

livelock, and deadlock.

• Ideas like TSO/OCC will recur in Distributed Systems.

28

Summary & Next Time

• History graphs; good (and bad) schedules
• Isolation vs. strict isolation; enforcing isolation
• Two-phase locking; rollback
• Timestamp ordering (TSO)
• Optimistic concurrency control (OCC)
• Isolation and concurrency summary

• Next time:
– Transactional durability: crash recovery and logging,
– Lock-free programming,
– Transactional memory (if time permits).

29

Concurrent systems
Lecture 8a: Durability & crash recovery.

Lecture 8b: lock-free programming & transactional memory.

Dr Martin Kleppmann

(Slides for lectures 1–8 by Dr Robert Watson,
Dr Steven Hand, Dr David Greaves, and others)

1

This time

• Transaction durability: crash recovery, logging

– Write-ahead logging

– Checkpoints

– Recovery and Rollback

• Advanced topics (as time permits)

– Lock-free programming

– Transactional memory

2

Crash Recovery & Logging

• Transactions require ACID properties

– So far have focused on I (and implicitly C).

• How can we ensure Atomicity & Durability?

– Need to make sure that a transaction is always done entirely or

not at all (i.e. make sure rollback happens).

– Need to make sure that a transaction reported as committed

remains so, even after a crash.

• Consider for now a fail-stop model:

– If system crashes, all in-memory contents are lost

– Data on disk, however, remains available after reboot.

3

The small print: we must keep in mind the limitations of fail-stop, even as we assume it.

Failing hardware/software do weird stuff. Pay attention to hardware price differentiation.

The small print: we must keep in mind the limitations of fail-stop, even as we assume it.

Failing hardware/software do weird stuff. Pay attention to hardware price differentiation.

Semantics of secondary store
• Most computers have volatile primary (DRAM) and non-

volatile secondary storage (tape, SSD, disks, USB-sticks).

• Systems rely (perhaps falsely) on an idealised, erasure-
channel, abstract semantics for secondary storage:

4

 type blkaddress_t = integer 0 to 2^19-1 // say
 type block_t = array [0..4095] of integer 0 to 255
 method write : blkaddress_t * block_t -> unit
 method read : blkaddress_t -> block_t option
 method trim : blkaddress_t -> unit // Forget a block (SSD)
 method fsync : unit -> unit // Blocking flush

[From https://www.cl.cam.ac.uk/~djg11/howcomputerswork]

• It is critical that read returns an option: a failed write results in
either exactly the previously written data or None

• a garbled mixture of new, old and random bits is never returned.

Using persistent (non-volatile) storage

• Simplest “solution”: write all updated objects to disk on
commit, read back on reboot
– Doesn’t work, since crash could occur between writes

– Can fail to provide transaction Atomicity and/or Consistency.

• Instead split update into two stages:

1. Write proposed updates to a write-ahead log

2. Write actual updates.

• Crash during #1 => no actual updates done;

• Crash during #2 => use log to redo, or undo.

• Recall transactions can also abort (and cascading aborts), so
log can help undo the changes made.

5

Write-ahead logging

• Log: an ordered, append-only file on disk (aka journal).

• Contains entries like <txid, obj, op, old, new>

– ID of transaction, object modified, (optionally) the operation

performed, the old value and the new value.

– This means we can both “roll forward” (redo operations) and

“rollback” (undo operations).

• When persisting a transaction to disk:

– First log a special entry <txid, START>,

– Next log a number of entries to describe operations,

– Finally log another special entry <txid, COMMIT>.

• We build composite-operation atomicity from fundamental atomic

operation: the single-sector write.

– Much like building high-level primitives over LL/SC or CAS!

6

Using a write-ahead log (WAL)

• When executing transactions, perform updates to objects in memory with

lazy write back

– I.e. the OS will normally delay all disk writes to improve efÏciency.

• Golden rule: write log records before corresponding data.

• But when wish to commit a transaction, must first synchronously flush a

commit record to the log

– Assume there is a fsync() or fsyncdata() operation or similar which allows

us to force data out to disk.

– Only report transaction committed after fsync() returns.

• Can improve performance by delaying flush until we have a number of

transaction to commit – batching.

– Hence at any point in time we have some prefix of the write-ahead log on disk,

and the rest in memory.

7

The Big Picture

8

RAM

Object Values

x = 3

y = 27

Disk

Object Values

x = 1

y = 17

z = 42

Log Write Order

Log Entries

T2, z, 40, 42

T2, START

T1, START

T0, COMMIT

T0, x, 1, 2

T0, START

T3, START

T2, ABORT

T2, y, 17, 27

T1, x, 2, 3

Log Entries

RAM acts as a cache of disk

(e.g. no in-memory copy of z)

On-disk values may be older versions of objects

(e.g. x) – or new uncommitted values as long as

the on-disk log describes rollback (e.g. z)

Log conceptually infinite,

and spans RAM & Disk

Log has saved x is now 2, but
on-disk x is still 1.

Checkpoint Approach

• As described, log will get infeasibly/very long

– And need to process every entry in log to recover.

• Better to periodically write a checkpoint

1. Flush all current in-memory log records to disk.

2. Write a special checkpoint record to log with a list of active

transactions

(pointers to earliest undo/redo log entries that must be searched

during recovery)

3. Flush all ‘dirty’ objects (i.e. ensure object values on disk are up-to-

date)

4. Atomic (single sector) write of location of new checkpoint record to

a special, well-known place in persistent store (disk). Truncate log,

discarding no longer needed parts (perhaps by the same action).

• Atomic checkpoint location write supports crash during recovery.
9

Checkpoints and recovery

• Key benefit of a checkpoint is it lets us focus
our attention on possibly-affected transactions

10

Time

Checkpoint Time Failure Time

T1

T2

T3

T4

T5

T1: no action required

T2: REDO

T3: UNDO

T4: REDO

T5: UNDO

Active at checkpoint.

Has since committed;

and record in log.

Active at checkpoint;

in progress at crash.
Not active at checkpoint.

But has since committed,

and commit record in log.

Not active at checkpoint,

and still in progress.

Recovery algorithm

• Initialize undo set U = { set of active txactions }

• Also have redo set R, initially empty.

• Walk log forward as indicated by checkpoint record:

– If see a START record, add transaction to U

– If see a COMMIT record, move transaction from U->R

• When hit end of log, perform undo:

– Walk backward and undo all records for all Tx in U

• When reach checkpoint timestamp again, Redo:

– Walk forward, and re-do all records for all Tx in R

• After recovery, we have effectively checkpointed

– On-disk store is consistent, so can (generally) truncate the log.

11

The order in which we apply undo/redo records is important to properly

handle cases where multiple transactions touch the same data.

Write-ahead logging: Assumptions

• What can go wrong writing commits to disk?

• Even if sector writes are atomic:

– All affected objects may not fit in a single sector, large objects may span

multiple sectors

– Trend towards copy-on-write, rather than journalled, filesystems (btrfs etc).

– Many of the problems seen with in-memory commit (ordering and atomicity)

apply to disks as well!

• Contemporary disks may not be entirely honest about sector size and

atomicity

– E.g., unstable write caches to improve efÏciency

– E.g., larger or smaller sector sizes than advertised

– E.g., non-atomicity when writing to mirrored disks (RAID).

• These assume fail-stop – not true for some media (SSD?)

12

Transactions: Summary

• Standard mutual exclusion techniques not programmer friendly

when dealing with >1 object

– intricate locking (& lock order) required, or

– single coarse-grained lock, limiting concurrency

• Transactions allow us a better way:

– potentially many operations (reads and updates) on many objects, but

should execute as if atomically

– underlying system deals with providing isolation, allowing safe

concurrency, and even fault tolerance!

• Appropriate only if operations are “transactional”

– E.g., discrete events in time, as must commit to be visible

• Transactions are used both in databases and filesystems.

13

Advanced Topics

• Will briefly look at two advanced topics

– lock-free data structures, and

– transactional memory

• Then, next time, Distributed Systems

14

Lock-free programming

• What’s wrong with locks?

– DifÏcult to get right (if locks are fine-grained)

– Don’t scale well (if locks too coarse-grained)

– Don’t compose well (deadlock!)

– Poor cache behavior (and convoying https://davekilian.com/lock-convoys.html)

– Priority inversion

– And can be expensive

• Lock-free programming involves getÝng rid of locks ... but not at the cost

of safety!

• Recall TAS, CAS, LL/SC from our early lecture: what if we used them to

implement something other than locks?

15

Memory API Assumptions

• We have a cache-consistent shared-memory system (and we

understand the sequential consistency model)

• Low-level (assembly instructions) include:

16

val = read(addr); // atomic read from memory

(void) write(addr, val); // atomic write to memory

done = CAS(addr, old, new); // atomic compare-and-swap

val = read(addr); // atomic read from memory

(void) write(addr, val); // atomic write to memory

done = CAS(addr, old, new); // atomic compare-and-swap

• Compare-and-Swap (CAS) is atomic
• Reads value of addr (‘val’), compares with ‘old’, and updates

memory to ‘new’ iff old==val -- without interruption.

• Something like this instruction common on most modern
processors (e.g. cmpxchg on x86 – or LL/SC on RISC)

• Typically used to build spinlocks (or mutexes, or semaphores,
or whatever...)

Lock-free approach

• Directly use CAS to update shared data

• For example, consider a lock-free linked list of integers
– list is singly linked, and sorted

– Use CAS to update pointers

– Handle CAS failure cases (i.e., races)

• Represents the ‘set’ abstract data type, i.e.
– Find: int -> bool

– Insert: int -> bool

– Delete: int -> bool

• Insert/delete return values indicate if operation failed, requiring
retry (typically in a loop).

• Assumption: hardware supports atomic operations on pointer-size
types.

• Assumption: Full sequential consistency (or fences used as needed).

17

Searching a sorted list

• find(20):

H 10 30 T

20?

find(20) -> false

18

20? 20?

Inserting an item with a simple store

• insert(20):

H 10 30 T

2020

30  20

insert(20) -> true

19

Inserting an item with CAS

• insert(20):

H 10 30 T

20

30  20

25

30  25

• insert(25):

20

Concurrent find+insert

• find(20)

H 10 30 T

-> false

20

20?

• insert(20) -> true

21

20? 20?

Concurrent find+insert

• find(20)

H 10 30 T

-> false

20

• insert(20) -> true

This thread saw 20

was not in the set...

...but this thread

succeeded in putÝng

it in!

• Is this a correct implementation of a set?

• Should the programmer be surprised if this happens?

• What about more complicated mixes of operations?

• Is this a correct implementation of a set?

• Should the programmer be surprised if this happens?

• What about more complicated mixes of operations?
22

Linearisability

• As with transactions, we return to a conceptual model to define
correctness:

– a lock-free data structure is ‘correct’ if all changes (and return values) are
consistent with some serial view: we call this a linearisable schedule.

– Lock-free structure and code must be designed to tolerate all possible thread
interleaving patterns that may occur.

• Hence in the previous example, we are always ok:

– Either the insert() or the find() can be deemed to have occurred first.

• Gets a lot more complicated for more complicated data structures &
operations – (eg. money conservation in the credit/debit/xfer example)

• On some hardware, atomic primitives do more than just provide
atomicity:

– Eg. CAS may embody a memory fence for sequential consistency (observable
memory ordering).

– LL/SC may not and so explicit “happens-before” load and stores fences may be
needed in the code.

– Lock-free structures must take this into account as well.

23

(S/W) Transactional Memory (TM)

• Based on optimistic concurrency control.

• Instead of: lock(&sharedx_mutex);

sharedx[i] *= sharedx[j] + 17;

unlock(&sharedx_mutex);

lock(&sharedx_mutex);

sharedx[i] *= sharedx[j] + 17;

unlock(&sharedx_mutex);

Use: atomic {

sharedx[i] *= sharedx[j] + 17;

}

atomic {

sharedx[i] *= sharedx[j] + 17;

}

Has “obvious” semantics, i.e. all operations within block

occur as if atomically

Transactional since under-the-bonnet it looks like:

do { txid = tx_begin(&thd, sharedx);

sharedx[i] *= sharedx[j] + 17;

} while !(tx_commit(txid));

do { txid = tx_begin(&thd, sharedx);

sharedx[i] *= sharedx[j] + 17;

} while !(tx_commit(txid)); 24

TM advantages
• Simplicity:

– Programmer just puts atomic { } around anything they want to occur in
isolation.

– Fine-grain concurrency is possible without manual partition of variables
or array locations into locking groups.

• Composability:
– Unlike locks, atomic { } blocks nest, e.g.:

credit(a, x) = atomic {

setbal(a, readbal(a) + x);

}

debit(a, x) = atomic {

setbal(a, readbal(a) - x);

}

transfer(a, b, x) = atomic {

debit(a, x);

credit(b, x);

}

credit(a, x) = atomic {

setbal(a, readbal(a) + x);

}

debit(a, x) = atomic {

setbal(a, readbal(a) - x);

}

transfer(a, b, x) = atomic {

debit(a, x);

credit(b, x);

} 25

TM advantages

• Cannot deadlock:

– No locks, so don’t have to worry about locking order

– (Though may get live lock if not careful)

• No races (mostly):

– Cannot forget to take a lock (although you can forget to put

atomic { } around your critical section ;-))

• Scalability:

– High performance possible via OCC

– No need to worry about complex fine-grained locking

• There remains a simplicity vs. performance tradeoff

– Too much atomic {} and implementation can’t find concurrency.

Too little, and errors arise from poor interleaving.

26

TM is very promising…

• Essentially does ‘ACI’ but no D
– no need to worry about crash recovery
– can work entirely in memory
– can be implemented in HLL, VM or hardware (S/W v H/W TM)
– x86 xbegin/xend instructions

• Last decade, both x86 and Arm offered direct support for
transactions using augmented cache protocols
– … And promptly withdrawn in errata
– Now back on the street again
– Security vulnerabilities (timing attacks and the like)?

• But not a panacea

– Contention management can get ugly (lack of parallel speedup)
– DifÏculties with irrevocable actions / side effects (e.g. I/O)
– Still working out exact semantics (type of atomicity, handling

exceptions, signalling, ...)
27

Concurrent systems: summary

• Concurrency is essential in modern systems
– overlapping I/O with computation,
– exploiting multi-core,
– building distributed systems.

• But throws up a lot of challenges
– need to ensure safety, allow synchronization, and avoid

issues of liveness (deadlock, livelock, ...)
• Major risks of bugs and over-engineering

– generally worth running as a sequential system first,
– too much locking leads to too much serial execution,
– and worth using existing libraries, tools and design

patterns rather than rolling your own!

28

Summary + next time

• Transactional durability: crash recovery and logging

– Write-ahead logging; checkpoints; recovery.

• Advanced topics

– Lock-free programming

– Transactional memory.

• Next time: Distributed Systems!

29

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 1
	Reminder from last time
	Slide 3
	Concurrent systems: summary
	Slide 5
	Slide 6
	Hardware foundations for atomicity
	Slide 8
	Atomic Compare and Swap (CAS)
	Load Linked-Store Conditional (LL/SC)
	Slide 11
	Slide 12
	Slide 13
	Example: Dining Philosophers_clipboard0
	Slide 15
	Slide 16
	Slide 1
	Reminder from last time
	From last time: beer-buying example
	This time
	Implementing mutual exclusion
	Semaphores
	Semaphore implementation
	Hardware support for wakeups: IPIs
	Mutual exclusion with a semaphore
	Condition synchronisation
	N-resource allocation
	Semaphore design patterns
	Producer-consumer problem
	Producer-consumer solution
	Slide 15
	Producer-consumer solution
	Producer-consumer solution
	Generalized producer-consumer
	Generalized P-C solution
	Semaphores: summary
	Mutual exclusion and invariants
	Summary + next time
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 1
	Reminder from last time
	From last time: primitives summary
	This time
	Liveness properties
	Slide 6
	Slide 7
	Deadlock
	Requirements for deadlock
	Resource allocation graphs
	Resource allocation graphs
	Slide 12
	Dealing with deadlock
	Deadlock prevention
	Example: Dining Philosophers_clipboard0
	Example: Dining Philosophers
	Deadlock avoidance
	Deadlock detection
	Deadlock detection
	Deadlock detection algorithm
	Deadlock detection example 1
	Deadlock detection example 2
	Deadlock recovery
	Livelock
	Scheduling and thread priorities
	Priority inversion
	Priority inheritance
	Problems with priority inheritance
	Summary + next time
	Slide 30
	Slide 1
	Reminder from last time
	This time
	Concurrency without shared data
	Example: Active Objects
	Producer-Consumer in Ada
	Message passing
	Message passing semantics
	Slide 9
	Slide 10
	Message passing advantages
	Example: occam
	Example: Erlang
	Producer-Consumer in Erlang
	Message passing: summary
	Composite operations
	Composite operations
	Problems with composite operations
	Transactions
	ACID Properties
	ACID Properties
	Isolation
	Isolation – Serialisability
	Isolation – serialisability
	Isolation – serialisability
	Conflict Serialisability
	History graphs
	History graphs: good schedules
	History graphs: bad schedules
	Isolation – serialisability
	Summary + next time
	Slide 1
	Reminder from last time
	Last time: isolation – serialisability
	Isolation – serialisability
	This time
	Effects of bad schedules
	Isolation and strict isolation
	Enforcing isolation
	Two-phase locking (2PL)
	2PL example
	Problems with 2PL
	Strict 2PL example
	2PL: rollback
	Why might a transaction abort?
	Implementing rollback: undo
	Implementing rollback: copy
	Timestamp ordering (TSO)
	TSO example 1
	TSO example 2
	Advantages of TSO
	However…
	Optimistic concurrency control
	Implementing OCC (2)
	Implementing OCC (1)
	OCC example (1)
	OCC example (2)
	Issues with OCC
	Isolation & concurrency: summary
	Summary + next time
	Slide 1
	This time
	Crash Recovery & Logging
	Using persistent storage
	Slide 5
	Write-ahead logging
	Using a write-ahead log
	The Big Picture
	Checkpoints
	Checkpoints and recovery
	Recovery algorithm
	Write-ahead logging: assumptions
	Transactions: summary
	Advanced Topics
	Lock-free programming
	Assumptions
	Lock-free approach
	Searching a sorted list
	Inserting an item with CAS
	Inserting an item with CAS
	Concurrent find+insert
	Concurrent find+insert
	Linearisability
	Transactional Memory (TM)
	TM advantages
	TM advantages
	TM is very promising…
	Concurrent systems: summary
	Summary + next time

