

Universal register machine, U

High-level specification

Universal RM U carries out the following computation, starting with $R_0 = 0$, $R_1 = e$ (code of a program), $R_2 = a$ (code of a list of arguments) and all other registers zeroed:

- decode e as a RM program P
- decode a as a list of register values a_1, \dots, a_n
- carry out the computation of the RM program P starting with $R_0 = 0, R_1 = a_1, \dots, R_n = a_n$ (and any other registers occurring in P set to 0).

Mnemonics for the registers of U and the role they play in its program:

$R_1 \equiv P$ code of the RM to be simulated

$R_2 \equiv A$ code of current register contents of simulated RM

$R_3 \equiv PC$ program counter—number of the current instruction (counting from 0)

$R_4 \equiv N$ code of the current instruction body

$R_5 \equiv C$ type of the current instruction body

$R_6 \equiv R$ current value of the register to be incremented or decremented by current instruction (if not HALT)

$R_7 \equiv S$, $R_8 \equiv T$ and $R_9 \equiv Z$ are auxiliary registers.

Overall structure of U 's program

- 1 copy PC th item of list in P to N ; goto 2
- 2 if $N = 0$ then copy 0th item of list in A to R_0 and halt, else
(decode N as $\langle\langle y, z \rangle\rangle$; $C ::= y$; $N ::= z$; goto 3)
{at this point either $C = 2i$ is even and current instruction is $R_i^+ \rightarrow L_z$,
or $C = 2i + 1$ is odd and current instruction is $R_i^- \rightarrow L_j, L_k$ where $z = \langle j, k \rangle$ }
- 3 copy i th item of list in A to R ; goto 4
- 4 execute current instruction on R ; update PC to next label;
restore register values to A ; goto 1

Overall structure of U 's program

1 copy PC th item of list in P to N ; goto 2

2 if $N = 0$ then copy 0th item of list in A to R_0 and halt, else
(decode N as $\langle\langle y, z \rangle\rangle$; $C ::= y$; $N ::= z$; goto 3)

{at this point either $C = 2i$ is even and current instruction is $R_i^+ \rightarrow L_z$,
or $C = 2i + 1$ is odd and current instruction is $R_i^- \rightarrow L_j, L_k$ where $z = \langle j, k \rangle$ }

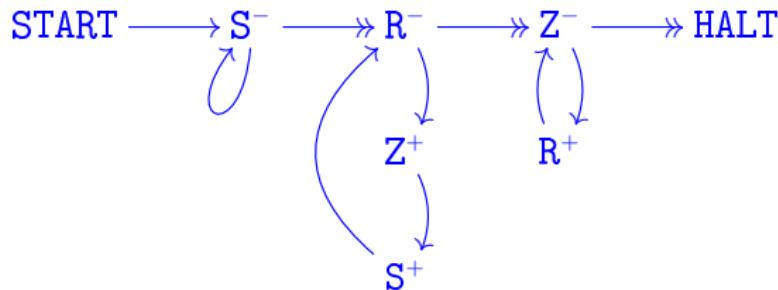
3 copy i th item of list in A to R ; goto 4

4 execute current instruction on R ; update PC to next label;
restore register values to A ; goto 1

To implement this, we need RMs for manipulating (codes of) lists of numbers...

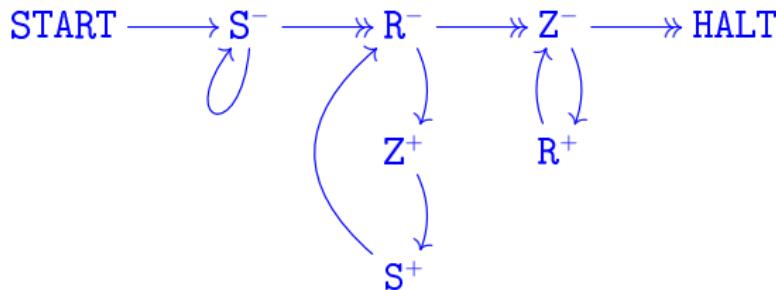
The program $\text{START} \rightarrow \boxed{S := R} \rightarrow \text{HALT}$

to copy the contents of R to S can be implemented by



The program $\text{START} \rightarrow \boxed{S := R} \rightarrow \text{HALT}$

to copy the contents of R to S can be implemented by



precondition:

$$R = x$$

$$S = y$$

$$Z = 0$$

postcondition:

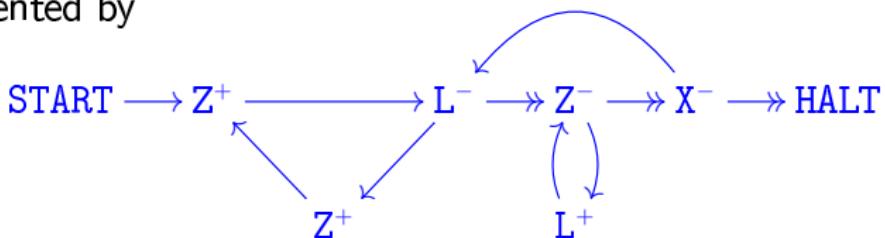
$$R = x$$

$$S = x$$

$$Z = 0$$

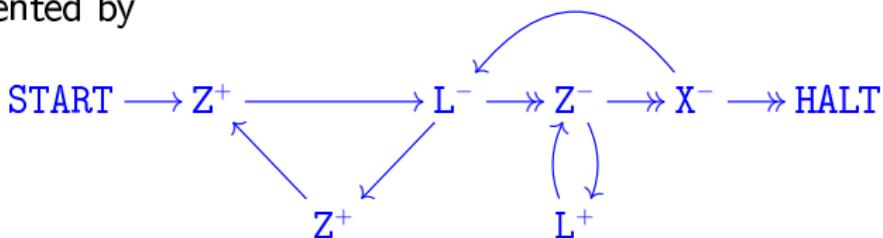
The program $\text{START} \rightarrow \boxed{\text{push } X \text{ to } L} \rightarrow \text{HALT}$

to carry out the assignment $(X, L) ::= (0, X :: L)$ can be implemented by



The program $START \rightarrow$ push X to L $\rightarrow HALT$

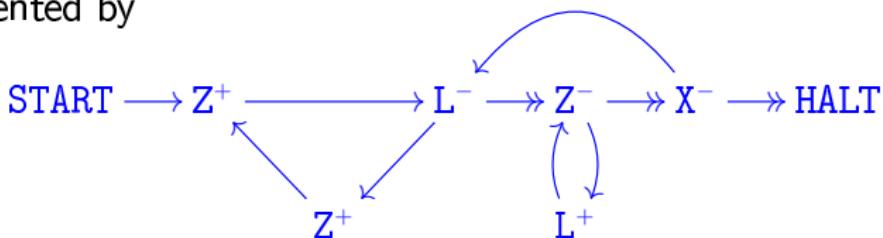
to carry out the assignment $(X, L) ::= (0, X :: L)$ can be implemented by



$$2^X(2L + 1)$$

The program $\text{START} \rightarrow \boxed{\text{push } X \text{ to } L} \rightarrow \text{HALT}$

to carry out the assignment $(X, L) ::= (0, X :: L)$ can be implemented by



precondition:

$$X = x$$

$$L = \ell$$

$$Z = 0$$

postcondition:

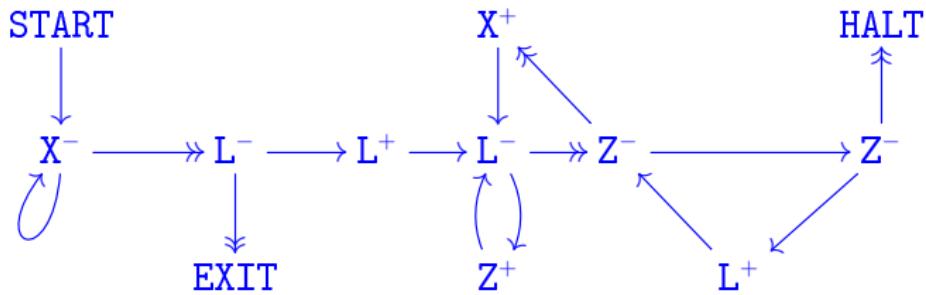
$$X = 0$$

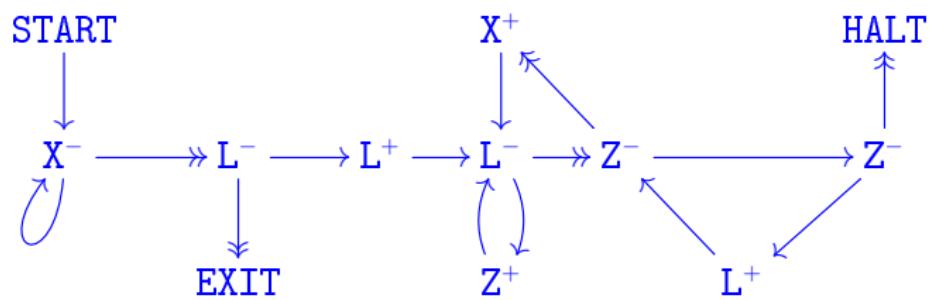
$$L = \langle\langle x, \ell \rangle\rangle = 2^x(2\ell + 1)$$

$$Z = 0$$

The program $START \rightarrow \boxed{\begin{array}{l} pop\ L \\ to\ X \end{array}} \rightarrow HALT \rightarrow EXIT$ specified by

*"if $L = 0$ then ($X ::= 0$; goto EXIT) else
let $L = \langle\langle x, \ell \rangle\rangle$ in ($X ::= x$; $L ::= \ell$; goto HALT)"*
can be implemented by





Overall structure of U 's program

1 copy PC th item of list in P to N ; goto 2

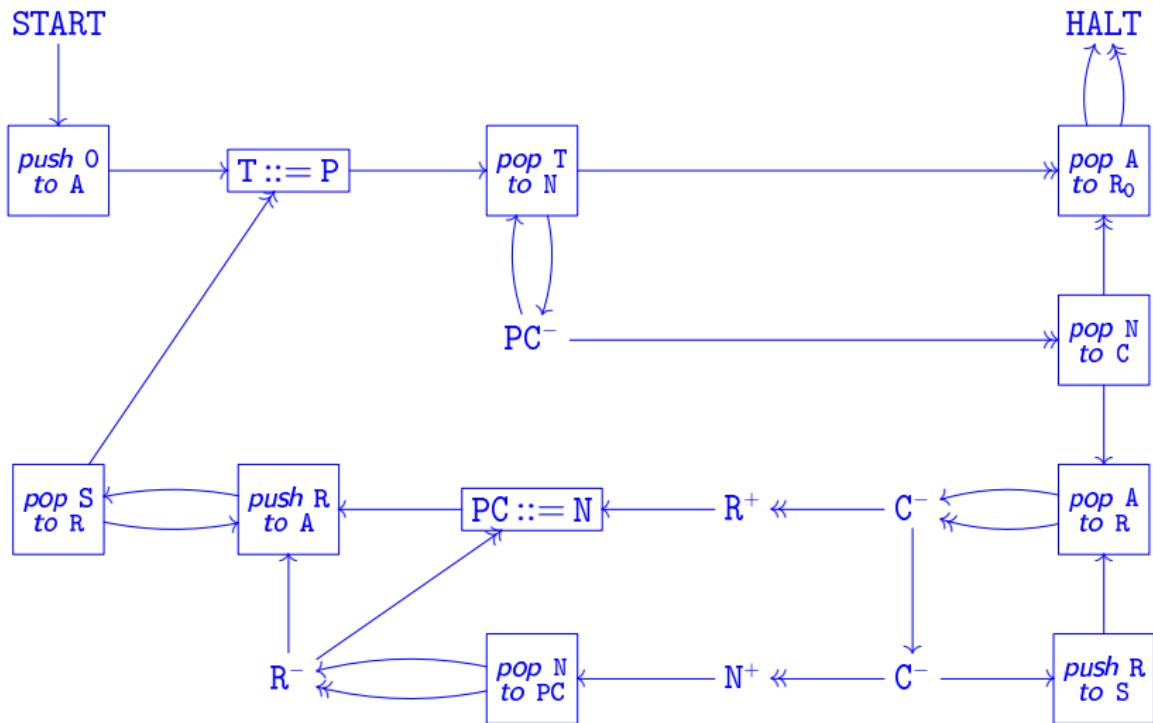
2 if $N = 0$ then copy 0th item of list in A to R_0 and halt, else
(decode N as $\langle\langle y, z \rangle\rangle$; $C ::= y$; $N ::= z$; goto 3)

{at this point either $C = 2i$ is even and current instruction is $R_i^+ \rightarrow L_z$,
or $C = 2i + 1$ is odd and current instruction is $R_i^- \rightarrow L_j, L_k$ where $z = \langle j, k \rangle$ }

3 copy i th item of list in A to R ; goto 4

4 execute current instruction on R ; update PC to next label;
restore register values to A ; goto 1

The program for U



The Halting Problem

Computable functions

Recall:

Definition. $f \in \mathbb{N}^n \rightarrow \mathbb{N}$ is (register machine) computable if there is a register machine M with at least $n + 1$ registers R_0, R_1, \dots, R_n (and maybe more)

such that for all $(x_1, \dots, x_n) \in \mathbb{N}^n$ and all $y \in \mathbb{N}$,

the computation of M starting with $R_0 = 0, R_1 = x_1, \dots, R_n = x_n$ and all other registers set to 0, halts with $R_0 = y$

if and only if $f(x_1, \dots, x_n) = y$.

Definition. A register machine H decides the Halting Problem if for all $e, a_1, \dots, a_n \in \mathbb{N}$, starting H with

$$R_0 = 0 \quad R_1 = e \quad R_2 = \ulcorner [a_1, \dots, a_n] \urcorner$$

and all other registers zeroed, the computation of H always halts with R_0 containing 0 or 1; moreover when the computation halts, $R_0 = 1$ if and only if

the register machine program with index e eventually halts when started with $R_0 = 0, R_1 = a_1, \dots, R_n = a_n$ and all other registers zeroed.

Definition. A register machine H decides the Halting Problem if for all $e, a_1, \dots, a_n \in \mathbb{N}$, starting H with

$$R_0 = 0 \quad R_1 = e \quad R_2 = \ulcorner [a_1, \dots, a_n] \urcorner$$

and all other registers zeroed, the computation of H always halts with R_0 containing 0 or 1; moreover when the computation halts, $R_0 = 1$ if and only if

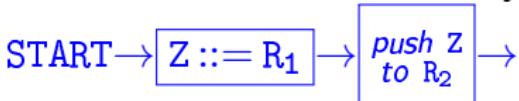
the register machine program with index e eventually halts when started with $R_0 = 0, R_1 = a_1, \dots, R_n = a_n$ and all other registers zeroed.

Theorem. No such register machine H can exist.

Proof of the theorem

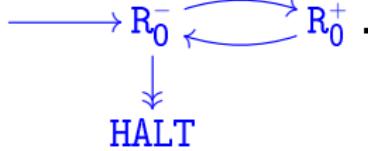
Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

- Let H' be obtained from H by replacing $\text{START} \rightarrow$ by



(where Z is a register not mentioned in H 's program).

- Let C be obtained from H' by replacing each HALT (& each erroneous halt) by



- Let $c \in \mathbb{N}$ be the index of C 's program.

Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

C started with $R_1 = c$ eventually halts
if & only if

H' started with $R_1 = c$ halts with $R_0 = 0$

Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

C started with $R_1 = c$ eventually halts
if & only if

H' started with $R_1 = c$ halts with $R_0 = 0$
if & only if

H started with $R_1 = c, R_2 = \ulcorner [c] \urcorner$ halts with $R_0 = 0$

Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

C started with $R_1 = c$ eventually halts
if & only if

H' started with $R_1 = c$ halts with $R_0 = 0$
if & only if

H started with $R_1 = c, R_2 = \ulcorner [c] \urcorner$ halts with $R_0 = 0$
if & only if

$prog(c)$ started with $R_1 = c$ does not halt

Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

C started with $R_1 = c$ eventually halts
if & only if

H' started with $R_1 = c$ halts with $R_0 = 0$
if & only if

H started with $R_1 = c, R_2 = \ulcorner [c] \urcorner$ halts with $R_0 = 0$
if & only if

$prog(c)$ started with $R_1 = c$ does not halt
if & only if

C started with $R_1 = c$ does not halt

Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

C started with $R_1 = c$ eventually halts
if & only if

H' started with $R_1 = c$ halts with $R_0 = 0$
if & only if

H started with $R_1 = c, R_2 = \ulcorner [c] \urcorner$ halts with $R_0 = 0$
if & only if

$prog(c)$ started with $R_1 = c$ does not halt
if & only if

C started with $R_1 = c$ does not halt
—contradiction!