

Register machines

Algorithms, informally

No precise definition of “algorithm” at the time Hilbert posed the *Entscheidungsproblem*, just examples.

Common features of the examples:

- **finite** description of the procedure in terms of elementary operations
- **deterministic** (next step uniquely determined if there is one)
- procedure may not terminate on some input data, but we can recognize when it does terminate and what the **result** is.

Register Machines, informally

They operate on natural numbers $\mathbb{N} = \{0, 1, 2, \dots\}$ stored in (idealized) *registers* using the following “elementary operations”:

- add 1 to the contents of a register
- test whether the contents of a register is 0
- subtract 1 from the contents of a register if it is non-zero
- jumps (“goto”)
- conditionals (“if_then_else_”)

Definition. A **register machine** is specified by:

- finitely many **registers** R_0, R_1, \dots, R_n
(each capable of storing a natural number);
- a **program** consisting of a finite list of instructions of the form $label : body$, where for $i = 0, 1, 2, \dots$, the $(i + 1)^{\text{th}}$ instruction has label L_i .

Definition. A register machine is specified by:

- finitely many registers R_0, R_1, \dots, R_n
(each capable of storing a natural number);
- a program consisting of a finite list of instructions of the form $\text{label} : \text{body}$, where for $i = 0, 1, 2, \dots$, the $(i+1)^{\text{th}}$ instruction has label L_i .

Instruction **body** takes one of three forms:

$R^+ \rightarrow L'$	add 1 to contents of register R and jump to instruction labelled L'
$R^- \rightarrow L', L''$	if contents of R is > 0 , then subtract 1 from it and jump to L' , else jump to L''
HALT	stop executing instructions

Example

registers:

$R_0\ R_1\ R_2$

program:

$L_0 : R_1^- \rightarrow L_1, L_2$

$L_1 : R_0^+ \rightarrow L_0$

$L_2 : R_2^- \rightarrow L_3, L_4$

$L_3 : R_0^+ \rightarrow L_2$

$L_4 : \text{HALT}$

example computation:

L_i	R_0	R_1	R_2
0	0	1	2

Example

registers:

$R_0 \ R_1 \ R_2$

program:

$L_0 : R_1^- \rightarrow L_1, L_2$

$L_1 : R_0^+ \rightarrow L_0$

$L_2 : R_2^- \rightarrow L_3, L_4$

$L_3 : R_0^+ \rightarrow L_2$

$L_4 : \text{HALT}$

example computation:

L_i	R_0	R_1	R_2
0	0	1	2

Example

registers:

R_0 R_1 R_2

program:

$L_0 : R_1^- \rightarrow L_1, L_2$

$L_1 : R_0^+ \rightarrow L_0$

$L_2 : R_2^- \rightarrow L_3, L_4$

$L_3 : R_0^+ \rightarrow L_2$

$L_4 : \text{HALT}$

example computation:

L_i	R_0	R_1	R_2
0	0	1	2
1	0	0	2

Example

registers:

$R_0 R_1 R_2$

program:

$L_0 : R_1^- \rightarrow L_1, L_2$

$L_1 : R_0^+ \rightarrow L_0$

$L_2 : R_2^- \rightarrow L_3, L_4$

$L_3 : R_0^+ \rightarrow L_2$

$L_4 : \text{HALT}$

example computation:

L_i	R_0	R_1	R_2
0	0	1	2
1	0	0	2
0	1	0	2

Example

registers:

$R_0\ R_1\ R_2$

program:

$L_0 : R_1^- \rightarrow L_1, L_2$

$L_1 : R_0^+ \rightarrow L_0$

$L_2 : R_2^- \rightarrow L_3, L_4$

$L_3 : R_0^+ \rightarrow L_2$

$L_4 : \text{HALT}$

example computation:

L_i	R_0	R_1	R_2
0	0	1	2
1	0	0	2
0	1	0	2
2	1	0	2

Example

registers:

R_0 R_1 R_2

program:

$L_0 : R_1^- \rightarrow L_1, L_2$

$L_1 : R_0^+ \rightarrow L_0$

$L_2 : R_2^- \rightarrow L_3, L_4$

$L_3 : R_0^+ \rightarrow L_2$

$L_4 : \text{HALT}$

example computation:

L_i	R_0	R_1	R_2
0	0	1	2
1	0	0	2
0	1	0	2
2	1	0	2
3	1	0	1

Example

registers:

$R_0 R_1 R_2$

program:

$L_0 : R_1^- \rightarrow L_1, L_2$

$L_1 : R_0^+ \rightarrow L_0$

$L_2 : R_2^- \rightarrow L_3, L_4$

$L_3 : R_0^+ \rightarrow L_2$

$L_4 : \text{HALT}$

example computation:

L_i	R_0	R_1	R_2
0	0	1	2
1	0	0	2
0	1	0	2
2	1	0	2
3	1	0	1
2	2	0	1

Example

registers:

$R_0 \ R_1 \ R_2$

program:

$L_0 : R_1^- \rightarrow L_1, L_2$

$L_1 : R_0^+ \rightarrow L_0$

$L_2 : R_2^- \rightarrow L_3, L_4$

$L_3 : R_0^+ \rightarrow L_2$

$L_4 : \text{HALT}$

example computation:

L_i	R_0	R_1	R_2
0	0	1	2
1	0	0	2
0	1	0	2
2	1	0	2
3	1	0	1
2	2	0	1
3	2	0	0

Example

registers:

R_0 R_1 R_2

program:

$L_0 : R_1^- \rightarrow L_1, L_2$

$L_1 : R_0^+ \rightarrow L_0$

$L_2 : R_2^- \rightarrow L_3, L_4$

$L_3 : R_0^+ \rightarrow L_2$

$L_4 : \text{HALT}$

example computation:

L_i	R_0	R_1	R_2
0	0	1	2
1	0	0	2
0	1	0	2
2	1	0	2
3	1	0	1
2	2	0	1
3	2	0	0
2	3	0	0

Example

registers:

R_0 R_1 R_2

program:

$L_0 : R_1^- \rightarrow L_1, L_2$

$L_1 : R_0^+ \rightarrow L_0$

$L_2 : R_2^- \rightarrow L_3, L_4$

$L_3 : R_0^+ \rightarrow L_2$

$L_4 : \text{HALT}$

example computation:

L_i	R_0	R_1	R_2
0	0	1	2
1	0	0	2
0	1	0	2
2	1	0	2
3	1	0	1
2	2	0	1
3	2	0	0
2	3	0	0
4	3	0	0

Register machine computation

Register machine **configuration**:

$$c = (\ell, r_0, \dots, r_n)$$

where ℓ = current label and r_i = current contents of R_i .

Notation: “ $R_i = x$ [in configuration c]” means $c = (\ell, r_0, \dots, r_n)$ with $r_i = x$.

Register machine computation

Register machine **configuration**:

$$c = (\ell, r_0, \dots, r_n)$$

where ℓ = current label and r_i = current contents of R_i .

Notation: “ $R_i = x$ [in configuration c]” means $c = (\ell, r_0, \dots, r_n)$ with $r_i = x$.

Initial configurations:

$$c_0 = (0, r_0, \dots, r_n)$$

where r_i = initial contents of register R_i .

Register machine computation

A **computation** of a RM is a (finite or infinite) sequence of configurations

$$c_0, c_1, c_2, \dots$$

where

- $c_0 = (0, r_0, \dots, r_n)$ is an **initial configuration**
- each $c = (\ell, r_0, \dots, r_n)$ in the sequence determines the next configuration in the sequence (if any) by carrying out the program instruction labelled L_ℓ with registers containing r_0, \dots, r_n .

Halting

For a finite computation c_0, c_1, \dots, c_m , the last configuration $c_m = (\ell, r, \dots)$ must be a **halting** configuration, i.e. ℓ must satisfy:

either ℓ^{th} instruction in program has body **HALT**
(a “proper halt”)

or ℓ is greater than the number of instructions in
program, so that there is no instruction labelled L_ℓ
(an “erroneous halt”)

Halting

For a finite computation c_0, c_1, \dots, c_m , the last configuration $c_m = (\ell, r, \dots)$ must be a halting configuration, i.e. ℓ must satisfy:

either ℓ^{th} instruction in program has body HALT
(a “proper halt”)

or ℓ is greater than the number of instructions in program, so that there is no instruction labelled L_ℓ
(an “erroneous halt”)

E.g.

$L_0 : R_0^+ \rightarrow L_2$
 $L_1 : \text{HALT}$

halts erroneously.

Halting

For a finite computation c_0, c_1, \dots, c_m , the last configuration $c_m = (\ell, r, \dots)$ must be a halting configuration, i.e. ℓ must satisfy:

either ℓ^{th} instruction in program has body HALT
(a “proper halt”)

or ℓ is greater than the number of instructions in
program, so that there is no instruction labelled L_ℓ
(an “erroneous halt”)

N.B. can always modify programs (without affecting their computations)
to turn all erroneous halts into proper halts by adding extra HALT
instructions to the list with appropriate labels.

Halting

For a finite computation c_0, c_1, \dots, c_m , the last configuration $c_m = (\ell, r, \dots)$ must be a halting configuration.

Note that computations may never halt. For example,

$L_0 : \mathbb{R}_0^+ \rightarrow L_0$
 $L_1 : \text{HALT}$

only has infinite computation sequences

$(0, r), (0, r + 1), (0, r + 2), \dots$

Graphical representation

- one node in the graph for each instruction
- arcs represent jumps between instructions
- lose sequential ordering of instructions—so need to indicate initial instruction with **START**.

instruction	representation
$R^+ \rightarrow L$	$R^+ \longrightarrow [L]$
$R^- \rightarrow L, L'$	$R^- \begin{cases} \nearrow [L] \\ \searrow [L'] \end{cases}$
HALT	HALT
L_0	START $\longrightarrow [L_0]$

Example

registers:

R_0 R_1 R_2

program:

$L_0 : R_1^- \rightarrow L_1, L_2$

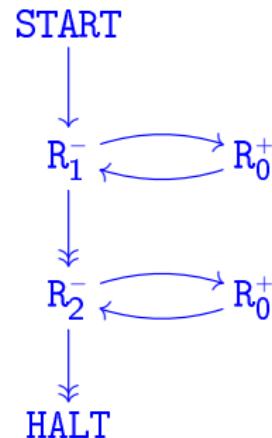
$L_1 : R_0^+ \rightarrow L_0$

$L_2 : R_2^- \rightarrow L_3, L_4$

$L_3 : R_0^+ \rightarrow L_2$

$L_4 : \text{HALT}$

graphical representation:



Example

registers:

$R_0 R_1 R_2$

program:

$L_0 : R_1^- \rightarrow L_1, L_2$

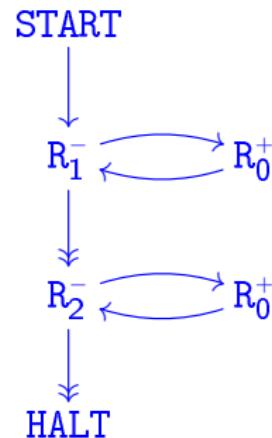
$L_1 : R_0^+ \rightarrow L_0$

$L_2 : R_2^- \rightarrow L_3, L_4$

$L_3 : R_0^+ \rightarrow L_2$

$L_4 : \text{HALT}$

graphical representation:



Claim: starting from initial configuration $(0, 0, x, y)$, this machine's computation halts with configuration $(4, x + y, 0, 0)$.

Partial functions

Register machine computation is **deterministic**: in any non-halting configuration, the next configuration is uniquely determined by the program.

So the relation between initial and final register contents defined by a register machine program is a **partial function**...

Partial functions

Register machine computation is **deterministic**: in any non-halting configuration, the next configuration is uniquely determined by the program.

So the relation between initial and final register contents defined by a register machine program is a **partial function**...

Definition. A **partial function** from a set X to a set Y is specified by any subset $f \subseteq X \times Y$ satisfying

$$(x, y) \in f \wedge (x, y') \in f \rightarrow y = y'$$

for all $x \in X$ and $y, y' \in Y$

Partial functions

ordered pairs $\{(x, y) \mid x \in X \wedge y \in Y\}$

i.e. for all $x \in X$ there is
at most one $y \in Y$ with
 $(x, y) \in f$

Definition. A partial function from a set X to a set Y
is specified by any subset $f \subseteq X \times Y$ satisfying

$$(x, y) \in f \wedge (x, y') \in f \rightarrow y = y'$$

for all $x \in X$ and $y, y' \in Y$

Partial functions

Notation:

- “ $f(x) = y$ ” means $(x, y) \in f$
- “ $f(x) \downarrow$ ” means $\exists y \in Y (f(x) = y)$
- “ $f(x) \uparrow$ ” means $\neg \exists y \in Y (f(x) = y)$
- $X \rightarrow Y$ is the set of all partial functions from X to Y
 $X \rightarrow Y$ is the set of all (total) functions from X to Y

Definition. A partial function from a set X to a set Y is specified by any subset $f \subseteq X \times Y$ satisfying

$$(x, y) \in f \wedge (x, y') \in f \rightarrow y = y'$$

for all $x \in X$ and $y, y' \in Y$

Partial functions

Notation:

- “ $f(x) = y$ ” means $(x, y) \in f$
- “ $f(x) \downarrow$ ” means $\exists y \in Y (f(x) = y)$
- “ $f(x) \uparrow$ ” means $\neg \exists y \in Y (f(x) = y)$
- $X \rightarrow Y$ is the set of all partial functions from X to Y
 $X \rightarrow Y$ is the set of all (total) functions from X to Y

Definition. A partial function from a set X to a set Y is **total** if it satisfies

$f(x)$ is defined

for all $x \in X$.

Computable functions

Definition. $f \in \mathbb{N}^n \rightarrow \mathbb{N}$ is (register machine) computable if there is a register machine M with at least $n + 1$ registers R_0, R_1, \dots, R_n (and maybe more)

such that for all $(x_1, \dots, x_n) \in \mathbb{N}^n$ and all $y \in \mathbb{N}$,

the computation of M starting with $R_0 = 0, R_1 = x_1, \dots, R_n = x_n$ and all other registers set to 0, halts with $R_0 = y$

if and only if $f(x_1, \dots, x_n) = y$.

Note the [somewhat arbitrary] I/O convention: in the initial configuration registers R_1, \dots, R_n store the function's arguments (with all others zeroed); and in the halting configuration register R_0 stores its value (if any).

Computable functions

Definition. $f \in \mathbb{N}^n \rightarrow \mathbb{N}$ is (register machine) computable if there is a register machine M with at least $n + 1$ registers R_0, R_1, \dots, R_n (and maybe more)

such that for all $(x_1, \dots, x_n) \in \mathbb{N}^n$ and all $y \in \mathbb{N}$,

the computation of M starting with $R_0 = 0, R_1 = x_1, \dots, R_n = x_n$ and all other registers set to 0, halts with $R_0 = y$

if and only if $f(x_1, \dots, x_n) = y$.

N.B. there may be many different M that compute the same partial function f .

Example

registers:

R_0 R_1 R_2

program:

$L_0 : R_1^- \rightarrow L_1, L_2$

$L_1 : R_0^+ \rightarrow L_0$

$L_2 : R_2^- \rightarrow L_3, L_4$

$L_3 : R_0^+ \rightarrow L_2$

$L_4 : \text{HALT}$

graphical representation:

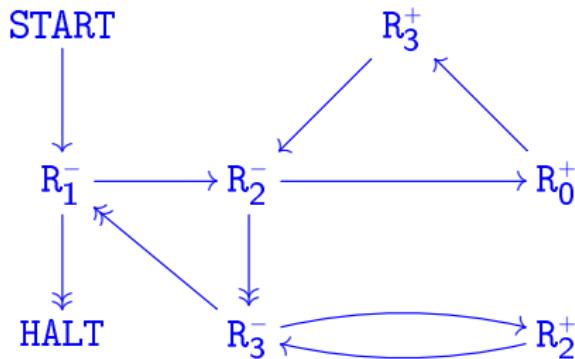
START

HALT

Claim: starting from initial configuration $(0, 0, x, y)$, this machine's computation halts with configuration $(4, x + y, 0, 0)$. So $f(x, y) \triangleq x + y$ is computable.

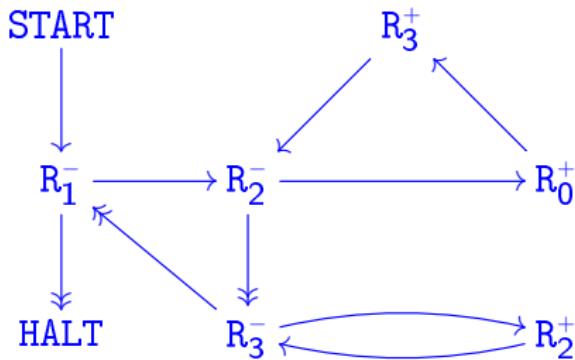
Multiplication is computable

$$f(x, y) \triangleq xy$$



Multiplication is computable

$$f(x, y) \triangleq xy$$



If the machine is started with $(R_0, R_1, R_2, R_3) = (0, x, y, 0)$, it halts with $(R_0, R_1, R_2, R_3) = (xy, 0, y, 0)$.

Further examples

The following arithmetic functions are all computable. (Proof—left as an exercise!)

projection: $p(x, y) \triangleq x$

constant: $c(x) \triangleq n$

truncated subtraction: $x \dot{-} y \triangleq \begin{cases} x - y & \text{if } y \leq x \\ 0 & \text{if } y > x \end{cases}$

Further examples

The following arithmetic functions are all computable. (Proof—left as an exercise!)

integer division: $x \text{ div } y \triangleq \begin{cases} \text{integer part of } x/y & \text{if } y > 0 \\ 0 & \text{if } y = 0 \end{cases}$

integer remainder: $x \text{ mod } y \triangleq x - y(x \text{ div } y)$

exponentiation base 2: $e(x) \triangleq 2^x$

logarithm base 2:

$\log_2(x) \triangleq \begin{cases} \text{greatest } y \text{ such that } 2^y \leq x & \text{if } x > 0 \\ 0 & \text{if } x = 0 \end{cases}$