Computation Theory

Anuj Dawar

12 lectures for
University of Cambridge 2026 Computer Science Tripos Part 1B
based on notes by Prof. Andrew Pitts

Resources

Course Webpage
https://www.cst.cam.ac.uk/current/CompTheory/

® Course Notes
® Exercise Sheets
e Additional Material

Moodle
® | ecture Recordings

® Links to Course webpage

Prerequisites

® This course assumes familiarity with Part 1A Discrete
Mathematics

® This course is a prerequisite for Part 1B Complexity Theory

Anuj Dawar Computation Theory

Useful Books

® Hopcroft, J.E., Motwani, R. & Ullman, J.D. (2001).
Introduction to Automata Theory, Languages and
Computation, Second Edition. Addison-Wesley.

e Hindley, J.R. & Seldin, J.P. (2008). Lambda-Calculus and
Combinators, an Introduction. Cambridge University Press
(2nd ed.).

e Cutland, N.J. (1980) Computability. An introduction to
recursive function theory. Cambridge University Press.

e Sipser, M. (2013) Introduction to the Theory of Computation.
Thompson Course Technology (3rd ed.).

® Sudkamp, T.A. (1995). Languages and Machines, 2nd edition.
Addison-Wesley.

Anuj Dawar Computation Theory

Outline

Introduction: algorithmically undecidable problems
Decision problems. The informal notion of algorithm, or effective
procedure. Examples of algorithmically undecidable problems. [1 lecture]
Register machines
Definition and examples; graphical notation. Register machine
computable functions. Doing arithmetic with register machines.

[1 lecture]
Coding programs as numbers
Natural number encoding of pairs and lists. Coding register machine
programs as numbers. [1 lecture]
Universal register machine
Specification and implementation of a universal register machine.

[1 lecture]
The halting problem
Statement and proof of undecidability. Example of an uncomputable
partial function. Decidable sets of numbers; examples of undecidable sets
of numbers. [1 lecture]

Anuj Dawar Computation Theory

Outline

Turing machines

Informal description. Definition and examples. Turing computable
functions. Equivalence of register machine computability and Turing
computability. The Church-Turing Thesis. [2 lectures]
Primitive and partial recursive functions

Definition and examples. Existence of a recursive, but not primitive
recursive function. A partial function is partial recursive if and only if it is
computable. [2 lectures]
Lambda calculus

Alpha and beta conversion. Normalization. Encoding data. Writing
recursive functions in the A-calculus. The relationship between
computable functions and A-definable functions. [3 lectures]

Anuj Dawar Computation Theory

Introduction

Anuj Dawar

Algorithmically undecidable problems

Computers cannot solve all mathematical problems, even if they are
given unlimited time and working space.
Three famous examples of computationally unsolvable problems are
sketched in this lecture.

® Hilbert's Entscheidungsproblem

® The Halting Problem

® Hilbert's 10th Problem.

Anuj Dawar Computation Theory

Hilbert's Entscheidungsproblem

Is there an algorithm which when fed any statement in the formal
language of first-order arithmetic, determines in a finite number of
steps whether or not the statement is provable from Peano’s
axioms for arithmetic, using the usual rules of first-order logic?

Such an algorithm would be useful! For example, by running it on
Vk > 13p,q(2k = p+ q A prime(p) A\ prime(q))

(where prime(p) is a suitable arithmetic statement that p is a prime
number) we could solve Goldbach's Conjecture (“every even integer
strictly greater than two is the sum of two primes”), a famous open
problem in number theory.

Anuj Dawar Computation Theory

Hilbert's Entscheidungsproblem

Is there an algorithm which when fed any statement in the formal
language of first-order arithmetic, determines in a finite number of
steps whether or not the statement is provable from Peano’s
axioms for arithmetic, using the usual rules of first-order logic?

Posed by Hilbert at the 1928 International Congress of Mathematicians.
The problem was actually stated in a more ambitious form, with a more
powerful formal system in place of first-order logic.

In 1928, Hilbert believed that such an algorithm could be found.

A few years later he was proved wrong by the work of Church and Turing
in 1935/36, as we will see.

Anuj Dawar Computation Theory

Decision problems

Entscheidungsproblem means “decision problem”. Given
® a set S whose elements are finite data structures of some kind
(e.g. formulas of first-order arithmetic)
® a property P of elements of S
(e.g. property of a formula that it has a proof)
we want to

find an algorithm which

terminates with result 0 or 1 when fed an element s € S
and

yields result 1 when fed s if and only if s has property P.

Anuj Dawar Computation Theory

Algorithms, informally

No precise definition of “algorithm™ at the time Hilbert posed the
Entscheidungsproblem, just examples, such as:

® Procedure for multiplying numbers in decimal place notation.
® Procedure for extracting square roots to any desired accuracy.

® Euclid’s algorithm for finding highest common factors.

Anuj Dawar Computation Theory

Algorithms, informally

No precise definition of “algorithm” at the time Hilbert posed the
Entscheidungsproblem, just examples.
Common features of the examples:

® finite description of the procedure in terms of elementary
operations

e deterministic (next step uniquely determined if there is one)

® procedure may not terminate on some input data, but we can
recognize when it does terminate and what the result is.

Anuj Dawar Computation Theory

Algorithms, informally

No precise definition of “algorithm” at the time Hilbert posed the
Entscheidungsproblem, just examples.

In 1935/36 Turing in Cambridge and Church in Princeton
independently gave negative solutions to Hilbert's
Entscheidungsproblem.

® First step: give a precise, mathematical definition of
“algorithm”.
(Turing: Turing Machines; Church: lambda-calculus.)

® Then one can regard algorithms as data on which algorithms
can act and reduce the problem to. ..

Anuj Dawar Computation Theory

The Halting Problem

is the decision problem with

® set S consists of all pairs (A, D), where A is an algorithm and D is
a datum on which it is designed to operate;

® property P holds for (A, D) if algorithm A when applied to datum
D eventually produces a result (that is, eventually halts—we write
A(D)] to indicate this).
Turing and Church’s work shows that the Halting Problem is
undecidable, that is, there is no algorithm H such that for all
(A,D)eS
1 if A(D))
0 otherwise.

H(A, D) = {

Anuj Dawar Computation Theory

1 if A(D))

" forall (A D).
0 otherwise.

There's no H such that H(A, D) = {
Informal proof, by contradiction. If there were such an H, let C
be the algorithm:
“input A; compute H(A, A); if H(A, A) = 0 then return 1,
else loop forever.”
So VA(C(A)L<> H(A, A) = 0) (since H is total)
and YA (H(A, A) = 0 <> —2A(A)]) (definition of H).
So VA (C(A)l+ —A(A)]).
Taking A to be C, we get C(C)]«+» = C(C), contradiction!

Anuj Dawar Computation Theory

1 if A(D))

" for all (A D).
0 otherwise.

There's no H such that H(A, D) = {
Informal proof, by contradiction. If there were such an H, let C
be the algorithm:

“input A; compute H(A, A); if H(A, A) = 0 then return 1,

else loop forever.” _/ , -
why is A a “datum on which

So VA(C(A)L <+ H(A, A) = 0) (since H is total) [A5desinedto operate?
and YA (H(A, A) = 0 <> —2A(A)]) (definition of H).

So VA (C(A1L< —A(A))).

Taking A to be C, we get C(C)]«+» = C(C), contradiction!

Anuj Dawar Computation Theory

Anuj Dawar
why is A a “datum on which A is designed to operate”?

Anuj Dawar

From HP to Entscheidungsproblem

Final step in Turing/Church proof of undecidability of the
Entscheidungsproblem: they constructed an algorithm encoding
instances (A, D) of the Halting Problem as arithmetic statements
4 p with the property

®,p is provable <> A(D){

Thus any algorithm deciding provability of arithmetic statements
could be used to decide the Halting Problem—so no such exists.

Anuj Dawar Computation Theory

Hilbert's Entscheidungsproblem

Is there an algorithm which when fed any statement in the formal
language of first-order arithmetic, determines in a finite number of
steps whether or not the statement is provable from Peano’s
axioms for arithmetic, using the usual rules of first-order logic?

With hindsight, a positive solution to the Entscheidungsproblem would be
too good to be true. However, the algorithmic unsolvability of some
decision problems is much more surprising. A famous example of this

is. ..

Anuj Dawar Computation Theory

Hilbert’'s 10th Problem

Give an algorithm which, when started with any Diophantine
equation, determines in a finite number of operations whether or
not there are natural numbers satisfying the equation.

One of a number of important open problems listed by Hilbert at the
International Congress of Mathematicians in 1900.

Anuj Dawar Computation Theory

Diophantine equations

p(xi,....xn) =0

where p is a polynomial in unknowns x,...,x, with coefficients
fromZ =1{0,1,-1,2,-2,...}.

Named after Diophantus of Alexandria (c. 250AD).

Example: “find three whole numbers such that the product of any two
added to the third is a square”

[Diophantus’ Arithmetica, Book Ill, Problem 7].

In modern notation: find xi, xp, x3 € Z for which there exists x,y,z € Z
with

(x1xa +x3 — x2)? + (xaxs + x1 — y2)% + (axg +x2 — 22)? = 0

Anuj Dawar Computation Theory

Hilbert’'s 10th Problem

Give an algorithm which, when started with any Diophantine
equation, determines in a finite number of operations whether or
not there are natural numbers satisfying the equation.

® Posed in 1900, but only solved in 1970: Y Matijasevi¢, J Robinson,
M Davis and H Putnam show it undecidable by reduction from the
Halting Problem.

® Original proof used Turing machines. Later, simpler proof [JP Jones
& Y Matijasevic, J. Symb. Logic 49(1984)] used Minsky and
Lambek’s register machines—we will use them in this course to
begin with and return to Turing and Church's formulations of the
notion of “algorithm” later.

Anuj Dawar Computation Theory

