
Computation Theory

Andrew Pitts, Tobias Kohn

University of Cambridge, UK

© Andrew Pitts, Tobias Kohn
University of Cambridge, UK

Version of 26th March 2023

Contents

1 Introduction 9

1.1 Algorithmically undecidable problems . 9

1.1.1 Hilbert’s Entscheidungsproblem . 10

1.1.2 Decision problems . 10

1.2 From the Halting Problem to the Entscheidungsproblem 12

1.3 An Applied Example of the Halting Problem* . 13

1.4 Provability and Truth* . 15

2 Register Machines 17

2.1 Register Machines, Informally . 17

2.2 Graphical Representation . 19

2.3 Partial Functions . 20

2.3.1 Computable Functions . 21

3 Coding Programs as Numbers 23

3.1 Numerical Coding of Pairs . 23

3.2 Numerical Coding of Lists . 24

3.3 Numerical Coding of Programs . 25

4 Universal Register Machine 27

4.1 High-level specification . 27

4.2 Overall Structure of U ’s Program . 28

4.3 The Program for U . 30

3

4 CONTENTS

5 The Halting Problem 33

5.1 Computable Functions . 34

5.1.1 Enumerating Computable Functions . 34

5.1.2 An Uncomputable Function . 35

5.1.3 (Un)decidable Sets of Numbers . 35

6 Turing Machines 37

6.1 Turing Machines . 37

6.2 Turing Machine Computation . 39

6.3 Computable Functions . 42

7 Notions of Computability 43

7.1 Computable Partial Functions . 43

8 Partial Recursive Functions 47

8.1 Primitive Recursion . 48

8.2 Minimisation . 50

8.3 Partial Recursive Functions . 51

8.4 Ackermann’s Function . 53

9 Lambda-Calculus 55

9.1 Notions of Computability . 55

9.2 Introduction . 56

9.3 λ-Terms . 58

9.4 α-Equivalence . 60

9.5 β-Reduction . 61

9.5.1 Substitution . 61

9.5.2 Reduction . 61

9.5.3 β-Conversion M =β N . 62

9.6 β-Normal Forms . 64

9.7 Applications* . 65

9.7.1 Compiler Transformations . 65

9.7.2 Macros . 66

CONTENTS 5

10 Lambda-Definable Functions 69

10.1 Encoding Data in λ-Calculus . 69

10.2 λ-Definable Functions . 71

10.2.1 Representing Basic Functions . 72

10.2.2 Representing Composition . 72

10.2.3 Representing Predecessor . 73

10.3 Primitive Recursion . 73

10.3.1 Curry’s Fixed Point Combinator Y . 74

10.3.2 Representing Minimization . 76

10.4 λ-Definability . 77

6 CONTENTS

Preface

These notes are designed to accompany twelve lectures on computation theory for Part IB of the
Computer Science Tripos at the University of Cambridge. The aim of this course is to introduce
several apparently different formalisations of the informal notion of algorithm, to show that
they are equivalent, and to use them to demonstrate that there are uncomputable functions and
algorithmically undecidable problems.

At the end of the course you should:

• be familiar with the register machine, Turing machine and λ-calculus models of computabil-
ity;

• understand the notion of coding programs as data, and of a universal machine;

• be able to use diagonalisation to prove the undecidability of the Halting Problem;

• understand the mathematical notion of partial recursive function and its relationship to
computability.

The prerequisite for taking this course is the Part IA course Discrete Mathematics. This incaration
of the Computation Theory course builds on previous lecture notes by Ken Moody, Glynn Winskel,
Larry Paulson and Andrew Pitts. It contains some material that everyone who calls themselves a
computer scientist should know. It is also a prerequisite for the Part IB course on Complexity
Theory.

An exercise sheet, any corrections to the notes and additional material can be found on the
course web page: https://www.cl.cam.ac.uk/teaching/2021/CompTheory/.

7

https://www.cl.cam.ac.uk/teaching/2021/CompTheory/

8 PREFACE

1 Introduction

Where we set the (historic) stage and introduce one of the main protagonists: the halting
problem. You should leave with a good intuitive understanding of the halting problem
and decision problems in general.

1.1 Algorithmically undecidable problems

Computers cannot solve all mathematical problems, even if they are given unlimited time and
working space. Three famous examples of computationally unsolvable problems are sketched in
this lecture.

• Hilbert’s Entscheidungsproblem

• The Halting Problem

• Hilbert’s 10th Problem

Historic background. Around 300 BC, Euclid of Alexandria not only collected the mathemat-
ical knowledge and wisdom of his time, but set out to formally prove the known theorems. He
established a set of basic definitions and basic “truths” (the axioms), which lay the groundwork
for proving all other propositions and theorems. For over two thousand years, the rigor of geo-
metric proofs was virtually unmatched by anything else.

In the 19th century, the development of set theory and modern logic led to a revolution. For
the first time it was possible to precisely define what a number is and thus start to establish
axioms and proofs as rigorous as in geometry. Similar to Euclid’s programme of collecting and
proving the mathematical wisdom of its time, the mathematicians of the 19th century started on
a quest to systematically prove all mathematical theorems by strictly adhering to the established
ground rules of logic. With his programme of open problems and questions, David Hilbert was
on the forefront of this: in the spirit of this “Euclidean” programme, he formulated a set of most
pressing open questions to answer.

The later discovery that this programme of systematically collecting and proving all mathematical
theorems is impossible was a severe blow to the mathematical community. However, it gave very
strong impetus to the development of new areas of research, with computer science being one of
the most prominent ones.

9

10 CHAPTER 1. INTRODUCTION

1.1.1 Hilbert’s Entscheidungsproblem

Hilbert’s Entscheidungsproblem

Is there an algorithm which when fed any statement in the formal language of first-
order arithmetic, determines in a finite number of steps whether or not the statement is
provable from Peano’s axioms for arithmetic, using the usual rules of first-order logic?

Such an algorithm would be useful. For example, by running it on

∀k > 1 : ∃p, q : (2k = p+ q ∧ prime(p) ∧ prime(q))

(where prime(p) is a suitable arithmetic statement that p is a prime number) we could solve
Goldbach’s Conjecture (“every even integer strictly greater than two is the sum of two primes”), a
famous open problem in number theory.

We have been searching for a counterexample to Goldbach’s conjecture for years. Computer
programs checked every possibility in a wide range of integers to see whether there is one even
integer that could not be written as the sum of two prime numbers. If one such example was
found, we would know that there is no proof for the conjecture. On the other hand, if the
conjecture was true, checking numbers would never yield a definitive answer. In a way, what
we really want to know is: does the program that looks for a counterexample to Goldbach’s
conjecture ever halt, or does it keep on running forever because there is no such counterexample?

The Entscheidungsproblem was posed by Hilbert at the 1928 International Congress of Math-
ematicians. The problem was actually stated in a more ambitious form, with a more powerful
formal system in place of first-order logic. In 1928, Hilbert believed that such an algorithm could
be found. A few years later (in 1935/36) he was proved wrong by the work of Church and
Turing, as we will see.

Note that the algorithm in the Entscheidungsproblem does not need to actually yield a proof
if the statement is provable, but only needs to tell whether the statement is provable or not.
Compare this to, e.g., the famous example of the Four Colour Theorem, which was proven in
the 1970s using a computer. Although this computer assisted proof showed that the theorem is
provable, many mathematicians did not accept it as a valid mathematical proof.

1.1.2 Decision problems

Entscheidungsproblem means “decision problem”. Given

• a set S whose elements are finite data structures of some kind,

• a property P of elements of S (i.e. a function P : S → {⊥,⊤}),

the associated decision problem is to determine whether an element s ∈ S has property P or
not:

1.1. ALGORITHMICALLY UNDECIDABLE PROBLEMS 11

Decision problem

Find an algorithm which terminates with result 0 or 1 when fed an element s ∈ S and
yields result 1 when fed s if and only if s has property P .

At the time Hilbert posed the Entscheidungsproblem, there was no precise definition of “algo-
rithm”, just examples, such as:

• procedure for multiplying numbers in decimal place notation;

• procedure for extracting square roots to any desired accuracy;

• Euclid’s algorithm for finding highest common factors.

These examples share some common features:

• a finite description of the procedure in terms of elementary operations,

• it is deterministic (the next step is uniquely determined if there is one),

• the procedure may not terminate on some input data, but we can recognise when it does
terminate and what the result is.

In 1935/36 Turing in Cambridge and Church in Princeton independently gave negative solutions
to Hilbert’s Entscheidungsproblem. The first step was to give a precise, mathematical definition of
“algorithm”. Turing’s definition used Turing Machines, Church’s definition was based on Lambda-
Calculus. Then one can regard algorithms as data on which algorithms can act and reduce the
problem to the Halting Problem.

Halting Problem

The Halting Problem is a decision problem where

• the set S consists of all pairs (A,D), where A is an algorithm and D is a datum on
which it is designed to operate;

• the propery P holds for (A,D) if the algorithm A, when applied to datum D, even-
tually produces a result (that is, eventually halts – we write A(D) ↓ to indicate
this).

Turing and Church’s work shows that the Halting Problem is undecidable, that is, there is no
algorithm H such that for all (A,D) ∈ S:

H(A,D) =

{
1 if A(D) ↓
0 otherwise.

For instance, you cannot build a compiler that detects infinite loops in all programs. There is at
least one program for which the compiler could not decide whether it will loop forever or not.

12 CHAPTER 1. INTRODUCTION

Informal proof by contradiction. If there where such an H, let C be the algorithm:

“given input A, compute H(A,A); if H(A,A) = 0 then return 1, else loop forever.”

So:

∀A : (C(A) ↓↔ H(A,A) = 0) since H is total

∀A : (H(A,A) = 0 ↔ ¬A(A) ↓) definition of H

∀A : (C(A) ↓↔ ¬A(A) ↓)

Taking A to be C, we get C(C) ↓↔ ¬C(C) ↓, which is a contradiction! □

1.2 From the Halting Problem to the Entscheidungsproblem

The final step in Turing/Church’s proof of undecidability of the Entscheidungsproblem is that
they constructed an algorithm encoding instances (A,D) of the Halting Problem as arithmetic
statements ΦA,D with the property:

ΦA,D is provable ↔ A(D) ↓

Thus any algorithm deciding provability of arithmetic statements could be used to decide the
Halting Problem—so no such algorithm exists.

With hindsight, a positive solution of the Entscheidungsproblem would be too good to be true.
However, the algorithmic unsolvability of some decision problems is much more surprising. A
famous example is Hilbert’s 10th Problem.

Hilbert’s 10th Problem

Give an algorithm which, when started with any Diophantine equation, determines in
a finite number of operations whether or not there are natural numbers satisfying the
equation.

This is one of a number of important open problems listed by Hilbert at the International
Congress of Mathematicians in 1900.

A Diophantine equation is of the form:

p(x1, x2, . . . , xn) = 0

where p is a polynomial in unknowns x1, . . . , xn with coefficients from N = {0, 1, 2, . . .}. These
equations are named after Diophantus of Alexandria (c. 250 AD). An example is problem 7 from
his third book: “find three whole numbers x1, x2 and x3 such that the product of any two added to
the third is a square.” In modern notation: find x1, x2, x3 ∈ N for which there exists x, y, z ∈ N
with: (

x1x2 + x3 − x2
)2

+
(
x2x3 + x1 − y2

)2
+
(
x3x1 + x2 − z2

)2
= 0

1.3. AN APPLIED EXAMPLE OF THE HALTING PROBLEM* 13

Note that we actually want all of the three terms xixj + xk − x2 to be zero at the same time, i.e.
A = 0 ∧B = 0 ∧ C = 0. By first squaring the three terms and then adding them up, none of the
A2, B2, and C2 could ne negative, and hence the overall sum is only zero if each of A, B, and C
is zero.

Hilbert’s 10th Problem was posed in 1900, but only solved in 1970: Y. Matijasevič, J. Robinson,
M. Davis and H. Putnam showed it is undecidable by reducing it to the Halting Problem. Their
orginal proof used Turing machines. A later, simpler proof used Minsky and Lambek’s register
machines – we will use them in this course to begin with and return to Turing and Church’s
formulations of the notion of “algorithm” later.

1.3 An Applied Example of the Halting Problem*

If you are a programmer, you might be more comfortable expressing algorithms in the form of
program code. Then the following explanation might help you understand the argumentation
behind the Halting Problem. However, if you are more interested in the mathematical formalism,
you can savely skip this section.

You have probably already written programs which did not terminate because of some sort of
infinite loop. Would it not be nice if the compiler somehow warned you beforehand that your
program might run forever and never properly terminates? As it turns out, it is impossible to
write a program that could decide for all possible programs whether they halt in finite time or
not. Let us consider this with a concrete example.

The Collatz conjecture. The Collatz conjecture is based on the following simple algorithm:
pick any natural number n to start with. If n is even, divide it by two, if it is odd, multiply it
by three and add one. Python and ML functions implementing this algorithm are given below.
In order to avoid later confusion with the term function in other context, we will just refer to
this as a program – for our purposes it does not matter if you implement it as a function inside a
program or if you think of a program that can be run with command line arguments.

def collatz(n):
while n != 1:

if n % 2 == 0:
n = n // 2

else:
n = 3*n + 1

fun collatz(n) =
if n == 1
then 1
else if n % 2 == 0
then collatz(n / 2)
else collatz(3*n + 1)

According to the Collatz conjecture, you will always reach the number 1 at some point. While
we have not found any number n to start with that would not end up at 1, it is still an open
question: does the program collatz(n) halt in finite time for all possible integers n, or is there
an n for which it runs forever?

As long as our program collatz(n) halts in finite time for an n, it is easy to see that it halts.
But if there is an n∞ for which collatz(n) never stops, how do we determine that? How do
you discern between an extremely long running time and infinite running time? Just running
the program obviously won’t do and we might want to use more elaborate schemes. Perhaps

14 CHAPTER 1. INTRODUCTION

the numbers n go into a cycle (where 1 never occurs), so we could track the n’s and check if we
ever go back to an n that has already occurred before. But if the n are ever increasing without
repetition, then this will not work, either. So we might try to think of some sort of static analysis
or come up with an even more complex program.

However, even if we finally managed to write a program that could decide with certainty for all
n whether the collatz program terminates, there will be another program f for which we do not
succeed. This is what Church and Turing’s answer to Halting Problem says: no matter how good
our program is, there is always at least one combination of a program f and some input n, for
which we cannot decide whether f(n) halts in finite time or not.

Another informal proof. Let us assume that we have written a program check_halt(a, d) that
takes some program code a and the input/arguments d with which to run the program in a. If
for some given input d, a(d) halts in finite time, then check_halt(a, d) returns true, otherwise
it returns false. To determine if the collatz program above halts for n = 12345, say, you would
then call:

check_halt("def collatz(n):\n while n != 1: ...", [12345])

We now construct a new program C that takes some program code as its argument a. It then
checks whether the program in a would halt if it was given the string a as its argument. If the
program in a halts, then it checks again, being caught in an infinite loop. If the program does
not halt, it returns true.

def C(a: str):
while check_halt(a, a):

pass
return True

Obviously, C("def f(): f()") would return true but never halt for C("def g(): return 123").

What happens now if we feed C with its own program code? That is, we run:

code = """
def C(a: st):

while check_halt(a, a):
pass

return True
"""

C(code)

If C – when run with its own program code – halts (i.e. check_halt(C, C) is true), then C
obviously checks again and never halts. However, if C does not halt, then check_halt(C, C) is
false and the program halts and returns true.

We are caught in a circle here: if C halted when fed its own program code, then it would not halt,
and if C did not halt, it would halt. This is obviously a logical contradiction and we therefore
conclude that there cannot be a function check_halt(a, d) in the first place. In other words:
there cannot be an algorithm that determines for all possible combinations of programs and
inputs whether the program would halt with the given input.

1.4. PROVABILITY AND TRUTH* 15

Code and data From our modern point of view, there is certainly nothing spectacular or note-
worthy about the idea of having a value (a text string) that represents the program (code). With
some ASCII or unicode encoding, we can even easily understand how the program might be
expressed as a (potentially very large) integer number. Likewise, executable binaries encode a
program as a sequence of bytes, essentially forming a very long integer number as well.

However, in the early 20th century, when Turing, Church, and Gödel were working on these
problems, the idea of expressing a formula, computation or algorithm as an integer number was
absolutely revolutionary! It is really this insight that code can be expressed as data that lies at
the heart of their proofs.

1.4 Provability and Truth*

Although strongly related, provable and true are not exactly the same thing. While we would
expect from any sensible and correct system that all provable theorems are true, there might be
true theorems, which are not provable. In fact, it was one of the open problems whether all
true theorems (in mathematics) are provable. The answer was given by Kurt Gödel in his famous
incompleteness theorem: if you have a consistent set of formulas (theorems) that is strong enough
to express arithmetic, then there are always formulas which could (consistently) be either true
or false, i.e. are not provable within the system.

This might become clearer if we look at a concrete example. The fifth axiom in Euclid’s geometry
(also known as the parallel postulate) basically says that given a line and a point not on it, there
is at most one line parallel to the given line such that the point lies on the parallel line.

For centuries, mathematicians felt that this postulate should not be an axiom, but that you could
prove it based on the other axioms. However, all attempts of finding a proof failed. Finally, it
was discovered that it does not necessarily have to be true in the first place. If you consider what
is now called “Euclidean geometry”, i.e. geometry on a flat plane, then the axiom holds. But if
you consider geometry on a sphere, say, it no longer holds even though the rest of the axioms of
geometry still make sense.

Picture two ships, say, both starting somewhere on the equator, some distance apart, and heading
North. Clearly, the two ships have parallel courses. Yet, at the North pole, their trajectories will
meet. The same holds for any two starting points and headings. In fact, on the surface of a
sphere, given a line and a point (not on the line), any second line with the point on it will meet
the first line somewhere. There are no “truly” parallel lines, altogether.

The existence of consistent geometries with and without the parallel axiom shows that this axiom
is indeed independent of the other axioms, and thus cannot be proven (or disproven) within
the system. Gödel’s work showed that there is in fact an infinite number of such independent
theorems or statements. In other words: we can never find a finite set of axioms such that every
true statement in our system can be proven.

Thus, whether a statement is true or not is an extrinsic property, something that depends on
how you apply the logical system or theory (e.g., do you apply the theoremy of geometry to a
flat plane or the surface of a sphere). But whether a statement is provable or not is an intrinsic
property. Accordingly, the Entscheidungsproblem does not ask for an algorithm that decides
whether a statement is true, but whether it is provable.

16 CHAPTER 1. INTRODUCTION

2 Register Machines

Register machines provide us with an accessible and simple model of what we mean by
a “computer program”, without being bogged down by questions of the exact implemen-
tation. With its registers of infinite size, it is a purely theoretical construct, but exactly
what we need to then think about the limitations of computability (as opposed to limi-
tations imposed by concrete hardware implementations).

2.1 Register Machines, Informally

A register machine operates on natural numbers N = {0, 1, 2, . . .} stored in (idealised) registers
using the following “elementary operations”:

• addition of 1 to the contents of a register,

• test of whether the contents of a register is 0,

• subtraction of 1 from the contents of a register if it is non-zero,

• jumps (“goto”),

• conditionals (“if then else”)

17

18 CHAPTER 2. REGISTER MACHINES

Definition 1: Register machine

A register machine is specified by:

• finitely many registers R0, R1, . . . Rn (each capable of storing a natural number);

• a program consisting of a finite list of instructions of the form label: body, where for
i = 0, 1, 2, . . . the (i + 1)th instruction has label Li. The instruction body takes one
of three forms:

R+ → L′ add 1 to contents of register R and jump to instruction labelled L′

R− → L′, L′′ if contents of R is larger than 0, then subtract 1 from it and jump
to L′, else jump to L′′

HALT stop executing instructions

Example 1: We consider a small register machine with three registers and a program consisting
of five instructions. On the right hand side you find a sample “trace” from running the machine.
The program was started with R0 containing 0, R1 containing 1, R2 containing 2, and ended
with R0 containing 3 and the other registers being zero. At each point in time, the machine is in
a specific configuration, represented by the numbers in a line of the trace.

Register: R0, R1, R2

Program:

L0 : R−
1 → L1, L2

L1 : R+
0 → L0

L2 : R−
2 → L3, L4

L3 : R+
0 → L2

L4 : HALT

ℓ R0 R1 R2

0 0 1 2
1 0 0 2
0 1 0 2
2 1 0 2
3 1 0 1
2 2 0 1
3 2 0 0
2 3 0 0
4 3 0 0

Register machine configuration A register machine configuration is a tuple:

c = (ℓ, r0, . . . , rn)

where Lℓ is the current label and ri is the current content of register Ri. We will write “Ri = x
[in configuration c]” to mean that c = (ℓ, r0, . . . , rn) with ri = x. An initial configuration is given
by c0 = (0, r0, . . . , rn) where ri is the initial content of register Ri.

2.2. GRAPHICAL REPRESENTATION 19

Definition 2: Register machine computation

A computation of a register machine is a (finite or infinite) sequence of configurations

c0, c1, c2, . . .

where

• c0 is an initial configuration,

• each c = (ℓ, r0, . . . , rn) in the sequence determines the next configuration in the
sequence (if any) by carrying out the program instruction labelled Lℓ with registers
containing r0, . . . , rn.

Halting For a finite computation c0, c1, . . . , cm, the last configuration cm = (ℓ, r0, . . .) must be
a halting configuration, i.e. ℓ must satisfy:

either: the ℓth instruction in the program has the body HALT (a “proper halt”);

or: ℓ is greater than the number of instructions in the program, so that there is no in-
struction labelled Lℓ (an “erroneous halt”).

N.B. a program can always be modified (without affecting its computations) to turn all erroneous
halts into proper halts by adding extra HALT instructions to the list with appropriate labels.

Note that computations may never halt. For example, the following register machine with one
register R0 has only infinite computation sequences of the form (0, r), (0, r + 1), (0, r + 2),

L0 : R+
0 → L0

L1 : HALT

2.2 Graphical Representation

A register machine can be represented by a graph with one node (vertex) for each instruction.
The arcs (edges) represent jumps between instructions and thereby replace the labels. Because
the sequential ordering of instructions is lost, we need to indicate the initial instruction with
START.

program code graphical representation

R+ → L R+ [L]

R− → L,L′
R−

[L]

[L′]

HALT HALT

L0
START [L0]

20 CHAPTER 2. REGISTER MACHINES

Example 2: Program with R0, R1, R2:

L0 : R−
1 → L1, L2

L1 : R+
0 → L0

L2 : R−
2 → L3, L4

L3 : R+
0 → L2

L4 : HALT

START

R−
1 R+

0

R−
2 R+

0

HALT

Claim: Starting from initial configuration (0, 0, x, y), this machine’s computation halts with con-
figuration (4, x+ y, 0, 0).

Example 3: We cannot read the contents of a register without emptying it. Copying a register
to another thus requires a short program. In order to copy the contents of S to D (D := S, where
S stands for source and D for destination), we first empty register D, then make two copies of
S’s contents, one in register D and another one in a previously unused temporary register T . We
finally move the contents of T back to S.

Program with registers D,S, T :

L0 : D− → L0, L1

L1 : S− → L2, L4

L2 : D+ → L3

L3 : T+ → L1

L4 : T− → L5, L6

L5 : S+ → L4

L6 : HALT

START

D− S−

D+T+

T−

S+

HALT

2.3 Partial Functions

Register machine computation is deterministic: in any non-halting configuration, the next config-
uration is uniquely determined by the program. So the relation between initial and final register
contents defined by a register machine program is a partial function.

Definition 3: Partial function

A partial function from a set X to a set Y is specified by any subset f ⊆ X × Y satisfying

(x, y) ∈ f ∧ (x, y′) ∈ f → y = y′

for all x ∈ X and y, y′ ∈ Y .

2.3. PARTIAL FUNCTIONS 21

The cartesian product X × Y is the set of all ordered pairs X × Y = {(x, y)|x ∈ X ∧ y ∈ Y }.

The definition of a partial function is to say that for all x ∈ X there is at most one y ∈ Y with
(x, y) ∈ f . For a (total) function, in contrast, each x ∈ X has exactly one y ∈ Y with (x, y) ∈ f .

Notation:

• f(x) = y means (x, y) ∈ f ,

• f(x) ↓ means ∃y ∈ Y (f(x) = y) (i.e. f(x) is defined),

• f(x) ↑ means ¬∃y ∈ Y (f(x) = y) (i.e. f(x) is undefined),

• X ⇀ Y is the set of all partial functions from X to Y ,

• X → Y is the set of all (total) functions from X to Y .

Definition 4: Total function

A partial function from a set X to a set Y is total if it satisfies

f(x) ↓

for all x ∈ X.

2.3.1 Computable Functions

In essence, a partial function is computable if you can design a register machine that computes
the partial function. We thereby require that the register machine fully implements the partial
function: if the partial function is undefined for some input x, the register machine will not halt
(and produce a meaningful result) for that input x, either.

Definition 5: Computable

f ∈ Nn ⇀ N is (register machine) computable if there is a register machine M with at
least n+ 1 registers R0, R1, . . . , Rn (and maybe more) such that for all (x1, . . . , xn) ∈ Nn

and all y ∈ N, the computation of M starting with R0 = 0, R1 = x1, . . . , Rn = xn and all
other registers set to 0, halts with R0 = y if and only if f(x1, . . . , xn) = y.

Note the (somewhat arbitrary) I/O convention: in the initial configuration registers R1, . . . , Rn

store the function’s arguments (with all others zeroed); and in the halting configuration register
R0 stores its value (if any).

22 CHAPTER 2. REGISTER MACHINES

Example 4: Registers: R0, R1, R2

Program:

L0 : R−
1 → L1, L2

L1 : R+
0 → L0

L2 : R−
2 → L3, L4

L3 : R+
0 → L2

L4 : HALT

START

R−
1 R+

0

R−
2 R+

0

HALT

Claim: starting from initial configuration (0, 0, x, y), this machine’s computation halts with con-
figuration (4, x+ y, 0, 0). So f(x, y)

∆
= x+ y is computable.

Examples of computable functions The multiplication f(x, y)
∆
= x · y is computable. If the

following machine is started with (R0, R1, R2, R3) = (0, x, y, 0), it halts with (R0, R1, R2, R3) =
(xy, 0, y, 0).

START

R−
1 R−

2 R+
0

R+
3

HALT R−
3 R+

2

Likewise, the following functions are all computable (the proof is left as an exercise):

Projection
p(x, y)

∆
= x

Constant
c(x)

∆
= n

Truncated subtraction

x .− y
∆
=

{
x− y if y ≤ x
0 if y > x

Integer division

x div y
∆
=

{
max{z ∈ N|zy ≤ x} if y > 0
0 if y = 0

Integer remainder
xmod y

∆
= x .− y(x div y)

Exponentiation with base 2

e(x)
∆
= 2x

Logarithm with base 2

log2(x)
∆
=

{
max{y ∈ N|2y ≤ x} if x > 0
0 if x = 0

3 Coding Programs as Numbers

A key insight when discussing computability is the idea that we can express programs (i.e.
the machines) as data that can then be manipulated by the very machines themselves:
we can encode programs with numbers. This allows a program to analyse itself.

Turing and Church’s solutions of the Entscheidungsproblem uses the idea that (formal descrip-
tions of) algorithms can be the data on which algorithms act. To realise this idea with register
machines we have to be able to code register machine programs as numbers (in general, such
codings are often called Gödel numberings). To do that, first we have to code pairs of numbers
and lists of numbers as numbers. There are many ways to do that. We fix upon one.

You are probably already familiar with the idea that a computer program is essentially a se-
quence of “bytecode instructions”, i.e. numbers representing various instructions. The encoding
presented here might then strike you as rather inefficient. However, keep in mind that we are
exploring possibilities and thus want to work with a minimal set of assumptions about the “com-
puter” (in particular without such notions as what a “byte” or “machine word” is).

3.1 Numerical Coding of Pairs

For x, y ∈ N, define

⟨⟨x, y⟩⟩ ∆
= 2x(2y + 1)

⟨x, y⟩ ∆
= 2x(2y + 1)− 1

So in the binary representation of ⟨⟨x, y⟩⟩, x is represented by trailing zeroes whereas in ⟨x, y⟩ by
trailing ones:

bin (⟨⟨x, y⟩⟩) = bin(y)1 0 · · · 0︸ ︷︷ ︸
x×

bin (⟨x, y⟩) = bin(y)0 1 · · · 1︸ ︷︷ ︸
x×

E.g. 27 = 0b11011 = ⟨0, 13⟩ = ⟨2, 3⟩.

• ⟨·, ·⟩ gives a bijection (one-one correspondence) between N× N and N.

23

24 CHAPTER 3. CODING PROGRAMS AS NUMBERS

• ⟨⟨·, ·⟩⟩ gives a bijection between N× N and N>0.

Hence, we use ⟨·, ·⟩ when we want to decode every natural numbers as a possible pair and ⟨⟨·, ·⟩⟩
when we need a special marker (that cannot be a pair) for “null” or “end of data”.

3.2 Numerical Coding of Lists

Let listN be the set of all finite lists of natural numbers. We use ML notation for lists:

• empty list: [] ∈ listN

• list-cons: x :: ℓ ∈ listN (given x ∈ N and ℓ ∈ listN)

• [x1, x2, . . . , xn]
∆
= x1 :: (x2 :: (· · ·xn :: []) · · ·)

For ℓ ∈ listN, define ⌜ℓ⌝ by induction on the length of the list ℓ:

⌜[]⌝
∆
= 0 ⌜x :: ℓ⌝

∆
= ⟨⟨x, ⌜ℓ⌝⟩⟩ = 2x (2 · ⌜ℓ⌝+ 1)

The binary representation of a list thus looks like:

bin(⌜[x1, x2, . . . , xn]⌝) = 0b1| 0 · · · 0︸ ︷︷ ︸
xn

1 0 · · · 0︸ ︷︷ ︸
xn−1

· · · 1 0 · · · 0︸ ︷︷ ︸
x1

Hence ℓ 7→ ⌜ℓ⌝ gives a bijection from listN to N.

Note that we need 0 as a marker for the empty list and therefore use ⟨⟨·, ·⟩⟩ rather than ⟨·, ·⟩ to
cons the list elements.

Example 5:

• ⌜[3]⌝ = ⌜3 :: []⌝ = ⟨⟨3, 0⟩⟩ = 23(2 · 0 + 1) = 8 = 0b1000

• ⌜[1, 3]⌝ = ⟨⟨1, ⌜[3]⌝⟩⟩ = ⟨⟨1, 8⟩⟩ = 34 = 0b100010

• ⌜[2, 1, 3]⌝ = ⟨⟨2, ⌜[1, 3]⌝⟩⟩ = ⟨⟨2, 34⟩⟩ = 276 = 0b100010100

Example 6: The binary encoding 0b100001001000000100010000010011001000 corresponds to
the list [3, 2, 0, 2, 5, 3, 6, 2, 4] (observe that the encoding is from right to left).

3.3. NUMERICAL CODING OF PROGRAMS 25

3.3 Numerical Coding of Programs

If P is the register machine program 
L0 : body0
L1 : body1

...
Ln : bodyn


then its numerical code is

⌜P⌝
∆
= ⌜[⌜body0⌝, . . . , ⌜bodyn⌝]⌝

where the numerical code ⌜body⌝ of an instruction is defined by:

⌜R+
i → Lj⌝

∆
= ⟨⟨2i, j⟩⟩

⌜R−
i → Lj , Lk⌝

∆
= ⟨⟨2i+ 1, ⟨j, k⟩⟩⟩

⌜HALT⌝
∆
= 0

Note again that we use ⟨⟨·, ·⟩⟩ because we need 0 as a special marker for HALT. To encode the
target labels Lj , Lk, on the other hand, we use ⟨j, k⟩ so that each possible number can be decoded
into two labels. Hence, any x ∈ N decodes to a unique instruction body(x). In ML-like code, we
could write a function body() that decodes a number to an instruction as follows:

fun body(0) = HALT

| body(⟨⟨2i, z⟩⟩) = R+
i → Lz

| body(⟨⟨2i+1, z⟩⟩) =
let ⟨j, k⟩ = z

in R−
i → Lj , Lk

So any e ∈ N decodes to a unique program prog(e), called the register machine program with
index e:

prog(e)
∆
=

 L0 : body(x0)
...

Ln : body(x1)


where e = ⌜[x0, . . . , xn]⌝.

Example 7:

• 786432 = 219 + 218 = 0b11 0 . . . 0︸ ︷︷ ︸
18×

= ⌜[18, 0]⌝

• 18 = 0b10010 = ⟨⟨1, 4⟩⟩ = ⟨⟨1, ⟨0, 2⟩⟩⟩ = ⌜R−
0 → L0, L2⌝

• 0 = ⌜HALT⌝

26 CHAPTER 3. CODING PROGRAMS AS NUMBERS

So

prog(786432) =

[
L0 : R−

0 → L0, L2

L1 : HALT

]

N.B. In case e = 0 we have 0 = ⌜[]⌝, so prog(0) is the program with an empty list of instruc-
tions, which by convention we regard as a register machine that does nothing (i.e. that halts
immediately).

4 Universal Register Machine

After encoding programs as data, we now show that a computer program can not only
“read” such an encoded program in an abstract sense, but that it is possible to build a
program than can execute/run any such encoded program. In other words: we can build
an interpreter that runs all computer programs, including itself.

After we have shown that every program can be coded as a number n, we need to show that a
register machine is capable of decoding such a program and execute the program’s instruction.
In other words: we can build a complete “interpreter” for register machine programs as a register
machine program itself.

In fact, this is quite common practise. We use virtual machines to emulate a certain type of
computer through a program that runs on a different computer. It is even possible to run a
virtual machine that emulates a PC inside your browser, and then, of course, to run yet another
browser or virtual machine inside that emulated machine.

A machine that is powerful enough to run programs that emulate any other (computing) machine
is called Turing complete. By proving that a (universal) register machine can emulate any other
register machine, we make a first step towards establishing that it is indeed Turing complete and
hence that we are not “missing” something.

4.1 High-level specification

The universal register machine U carries out the following computation, starting with R0 = 0,
R1 = e (i.e. the code of the program), R2 = a (the encoded list of arguments) and all other
registers zeroed:

1. decode e as a register machine program P ;

2. decode a as a list of register values a1, . . . , an;

3. carry out the computation of the register machine program P starting with R0 = 0, R1 =
a1, . . . , Rn = an (and any other register occurring in P set to 0).

Mnemonics for the registers of U and the role they play in its program:

27

28 CHAPTER 4. UNIVERSAL REGISTER MACHINE

R1 ≡ P code of the register machine to be simulated
R2 ≡ A code of current register contents of a simulated register machine
R3 ≡ PC program counter – number of the current instruction (counting from 0)
R4 ≡ N code of the current instruction body
R5 ≡ C type of the current instruction body

(2i ≡ R+
i , 2i+ 1 ≡ R−

i)
R6 ≡ R current value of the register to be incremented or decremented

by current instruction (if not HALT)
R7 ≡ S auxiliary register
R8 ≡ T auxiliary register
R9 ≡ Z auxiliary register

4.2 Overall Structure of U ’s Program

1. N := P[PC]; GOTO 2

Copy the PC th item of the list (program) in P to register N , which thus contains the current
instruction body.

2. if (N = 0) { R0 := A[0]; HALT } else { decode N; GOTO 3 }

Either halt and return the result in R0 or decode the instruction to N : if N is zero, then
copy the 0th item of the list in A (i.e. register R0) to R0 and halt, else decode N as ⟨⟨y, z⟩⟩,
copy y to C, z to N , and goto 3.

At this point either C = 2i is even and the current instruction is R+
i → Lz, or C = 2i+ 1 is

odd and the current instruction is R−
i → Lj , Lk where u = ⟨j, k⟩.

3. R := A[i]; GOTO 4

Load the contents of the instruction’s register to R: copy the ith item of the list in A to R
and goto 4.

4. exec(C); update(PC); A[i] := R; GOTO 1

Execute the current instruction (which is in C) on R, update the PC to the next label
(which is in N), and restore the register value R to A. Then goto 1.

To implement this, we need register machines for manipulating (codes of) lists of numbers. . .

Copying registers The program

START S ::= R HALT

to copy the contents of R to S can be implemented by:

START S− R− Z− HALT

Z+S+ R+

4.2. OVERALL STRUCTURE OF U ’S PROGRAM 29

Precondition: R = x, S = y, Z = 0
Postcondition: R = x, S = x, Z = 0

Pushing an element to a list (cons) The program

START
push X

to L
HALT

to carry out the assignment (X,L) ::= (0, X :: L) can be implemented by:

START Z+ L− Z− X− HALT

Z+ L+

Precondition: X = x, L = ℓ, Z = 0
Postcondition: X = 0, L = ⟨⟨x, ℓ⟩⟩ = 2x(2ℓ+ 1), Z = 0

Popping an element from a list The program

START
pop L

to X

HALT

EXIT

specified by

if L = 0
then (X ::= 0, goto EXIT)
else let ⟨⟨x, ℓ⟩⟩ = L

in (X ::= x; L ::= ℓ; goto HALT);

can be implemented by:

START

X− L− L+ L− Z− Z−

HALT

EXIT Z+ L+

X+

30 CHAPTER 4. UNIVERSAL REGISTER MACHINE

4.3 The Program for U

START

push 0

to A
T ::= P

pop T

to N

pop A

to R0

HALT

PC− pop N

to C

pop A

to R
C−R+PC ::= N

push R

to A

pop S

to R

push R

to S
C−N+

pop N

to PC
R−

Programs, Machines, and Turing Completeness

A program describes the behaviour of a machine. Hence, a machine is a tuple (C,P) of compo-
nents C and a program P. In the case of a register machine, the components are the registers,
i.e. C = (R0, R1, . . . , Rn).

Processors run a sophisticated program very much like the universal machine desribed above.
The processor needs to fetch the next instruction code from memory, decode it, and then take
actions according to the meaning (i.e. semantics) of the instruction. The set of instructions is
usually described by the instruction set architecture (ISA). In case of the register machine, this
would encompass the three basic instructions HALT, R+

i → Lj , and R−
i → Lj , Lk.

High-level programming languages allow us to use more sophisticated models for the machine.
However, the machine is not always as explicit as in Pascal with its separate variable declaration
(Program 1). Nonetheless, we consider a “computer program” to be a machine on its own. It is
then the job of a PC to emulate/run this machine. To facilitate this emulation, compilers usually
translate the original program code to an equivalent code based on the processor’s ISA.

Whenever a programming language (or ISA) allows us to write programs that emulate any other
machine (at least in principle and not considering resource constraints), the programming lan-
guage is called Turing complete. Saying that the register machines are Turing complete means
that you could write an emulator for any computer or processor, say, using nothing but the three
basic register machine instructions presented above (the emulator might run incredibly slowly,
but this is of no importance here).

4.3. THE PROGRAM FOR U 31

Program 1 A “program” in Pascal actually describes the machine: after the VAR keyword you find
the machine’s components, and following the BEGIN the actual program code.

PROGRAM GCD;
VAR

A, B, T: INTEGER;
BEGIN

READ(A); READ(B);
WHILE B <> 0 DO
BEGIN

T := A mod B;
A := B;
B := T;

END;
WRITELN(A);

END.

As a first step towards Turing completeness, we have proven in this chapter that we can build
register machines that can emulate any other register machine – even including themselves (this
is important!). Hence, we could have a universal register machine execute another universal
register machine that executes yet another universal register machine, and so on.

Finally, compare this to compilers, which are often written in the programming language they
compile (i.e. a Pascal compiler would be written in Pascal itself). This shows that the program-
ming language in question is powerful enough to write programs that “understand” and execute
or translate any program written in the same language.

32 CHAPTER 4. UNIVERSAL REGISTER MACHINE

5 The Halting Problem

The halting problem plays a key role as it points out some limitations of computabil-
ity. While the previous chapter(s) showed that we can build a program that runs any
program, we now show that we cannot build a program that successfully analyses all
programs. Sometimes we cannot even answer such a simple question as whether a spe-
cific program ever halts and produces an answer or runs forever.

Definition 6: Halting Problem

A register machine H decides the Halting Problem if for all e, a1, . . . , an ∈ N, starting H
with

R0 = 0 R1 = e R2 = ⌜[a1, . . . , an]⌝

and all other registers zeroed, the computation of H always halts with R0 containing 0
or 1; moreover when the computation halts, R0 = 1 if and only if the register machine
program with index e eventually halts when started with R0 = 0, R1 = a1, . . . , Rm = an
and all other registers zeroed.

Theorem 7:

No register machine H that decided the Halting Problem can exist.

Proof of the theorem Assume we have a register machine H that decides the Halting Problem
and derive a contradiction as follows.

• Let H ′ be obtained from H by replacing START→ by:

START Z ::= R1
push Z

to R2

33

34 CHAPTER 5. THE HALTING PROBLEM

(where Z is a register not mentioned in H ’s program).

• Let C be obtained from H ′ by replacing each HALT (and each erroneous halt) by

R−
0 R+

0

HALT

• Let c ∈ N be the index of C ’s program.

C started with R1 = c eventually halts
if and only if

H ′ started with R1 = c halts with R0 = 0
if and only if

H started with R1 = c,R2 = ⌜[c]⌝ halts with R0 = 0
if and only if

prog(c) started with R1 = c does not halt
if and only if

C started with R1 = c does not halt.

This is a contradiction: C started with R1 = c halts if and only if it does not halt. □

5.1 Computable Functions

Recall that a (partial) function f is computable if there is a register machine that computes f .

Definition 8: Computable

A partial function f ∈ Nn ⇀ N is (register machine) computable if there is a regis-
ter machine M with at least n + 1 registers R0, R1, . . . , Rn (and maybe more) such
that for all (x1, . . . , xn) ∈ Nn and all y ∈ N, the computation of M starting with
R0 = 0, R1 = x1, . . . , Rn = xn and all other registers set to 0, halts with R0 = y if
and only if f(x1, . . . , xn) = y.

Note that the same register machine M could be used to compute a unary function (n = 1), or a
binary function (n = 2), etc. From now on we will concentrate on the unary case.

5.1.1 Enumerating Computable Functions

For each e ∈ N, let φe ∈ N ⇀ N be the unary partial function computed by the register machine
with program prog(e). So for all x, y ∈ N: φe(x) = y holds iff the computation of prog(e) started
with R0 = 0, R1 = x and all other registers zeroed eventually halts with R0 = y.

Thus e 7→ φe defines an onto function from N to the collection of all computable partial function
from N to N.

5.1. COMPUTABLE FUNCTIONS 35

5.1.2 An Uncomputable Function

Let f ∈ N ⇀ N be the partial function with graph {(x, 0)|φx(x) ↑}. Thus:

f(x) =

{
0 if φx(x) ↑
undefined if φx(x) ↓

f is not computable, because if it were, then f = φe for some e ∈ N and hence:

• if φe(e) ↑, then f(e) = 0 (by definition of f), so φe(e) = 0 (since f = φe), hence φe(e) ↓;

• if φe(e) ↓, then f(e) ↓ (since f = φe), so φe(e) ↑ (by definition of f).

This is contradiction. So f cannot be computable.

5.1.3 (Un)decidable Sets of Numbers

Given a subset S ⊆ N, its characteristic function χS ∈ N→ N is given by:

χS(x)
∆
=

{
1 if x ∈ S
0 if x ̸∈ S

Definition 9: Decidable

S ⊆ N is called (register machine) decidable if its characteristic function χS ∈ N→ N is a
register machine computable function. Otherwise it is called undecidable.

So S is decidable iff there is a register machine M with the property: for all x ∈ N, M started
with R0 = 0, R1 = x and all other registers zeroed eventually halts with R0 containing 1 or 0;
and R0 = 1 on halting iff x ∈ S.

Basic strategy: to prove S ⊆ N is undeciable, try to show that decidability of S would imply
decidability of the Halting Problem.

Example 8: Claim: S0
∆
= {e|φe(0) ↓} is undeciable.

Proof (sketch): Suppose M0 is a register machine computing χS0 . From M0’s program (using
the same techniques as for constructing a universal register machine) we can construct a register
machine H to carry out:

let e = R1 and ⌜[a1, . . . , an]⌝ = R2 in
R1 ::= ⌜(R1 ::= a1); · · · ; (Rn ::= an); prog(e)⌝;

R2 ::= 0;
run M0

Then by assumption on M0, H decides the Halting Problem—contradiction. So no such M0

exists, i.e. χS0
is uncomputable, i.e. S0 is undeciable.

36 CHAPTER 5. THE HALTING PROBLEM

Example 9: Claim: S1
∆
= {e|φeis a total function} is undecidable.

Proof (sketch): Suppose M1 is a register machine computing χS1
. From M1’s program we can

construct a register machine M0 to carry out:

let e = R1 in R1 ::= ⌜R1 ::= 0; prog(e)⌝;
run M1

Then by assumption on M1, M0 decides membership of S0 from the previous example (i.e. com-
putes χS0

)—contradiction. So no such M1 exists, i.e. χS1
is uncomputable, i.e. S1 is undecidable.

6 Turing Machines

Turing machines provide us with an abstract model of what a computer program (or
algorithm) is, just like register machines. Turing machines are slightly more abstract
than register machines, but not more powerful.

6.1 Turing Machines

At the time Hilbert posed the Entscheidungsproblem, there was no precise definition of “algo-
rithm”, just examples. Common features of these examples were:

• a finite description of the procedure in terms of elementary operations (e.g., multiply two
decimal digits by looking up their product in a table);

• determinism: the next step is uniquely determined, if there is one;

• the procedure may not terminate on some input data, but we can recognise when it does
terminate and what the result is.

Register machine computation abstracts away from any particular, concrete representation of
numbers (e.g., as bit strings) and the associated elementary operations of increment, decrement,
and zero-test. Turing’s original model of computation (now called a Turing machine) is more
concrete: even numbers have to be represented in terms of a fixed finite alphabet of symbols
and increment, decrement, and zero-test have to be programmed in terms of more elementary
symbol-manipulating operations.

Informally, a Turing machine is a finite state machine with a tape that is unbound “to the right”.
The tape is linear and divided into cells, each of which contains a symbol of a finite alphabet
of tape symbols, including a special blank symbol. Only finitely many cells contain non-blank
symbols. A tape head can read or write the symbol in one specific cell, be moved one step to the
left (unless the end of the tape is reached), or to the right.

37

38 CHAPTER 6. TURING MACHINES

• The Turing machine starts with the tape head pointing to the special left endmarker ▷.

• The Turing machine computes in discrete steps, each of which depends only on its current
state q and the symbol being scanned by the tape head.

• There are five possible actions a Turing machine can take during any one step: overwrite
the current tape cell with a symbol, move left or right one cell, stay stationary, and change
state.

Definition 10: Turing Machine

A Turing machine is specified by a tuple (Q,Σ, s, δ) with:

• Q, a finite set of machine states,

• Σ, a finite set of tape symbols (disjoint from Q) containing distinguished symbols ▷
(left endmaker) and (blank),

• s ∈ Q, an initial state,

• δ ∈ (Q × Σ) → (Q ∪ {acc, rej}) × Σ × {L,R, S}, a transition function satisfying:
for all q ∈ Q, there exists q′ ∈ Q ∪ {acc, rej} with δ(q, ▷) = (q′, ▷, R) (i.e. the left
endmarker is never overwritten and the machine always moves to the right when
scanning it).

Example 10: M = (Q,Σ, s, δ) with the states Q = {s, q, q′}, the symbols Σ = {▷, , 0, 1} and
the transition function:

δ ▷ 0 1
s (s, ▷,R) (q, , R) (rej, 0, S) (rej, 1, S)
q (rej, ▷, R) (q′, 0, L) (q, 1, R) (q, 1, R)
q′ (rej, ▷, R) (acc, , S) (rej, 0, S) (q′, 1, L)

Definition 11: Configuration

A Turing machine configuration is a triple (q, w, u) where:

• q ∈ Q ∪ {acc, rej} is the current state,

• w is a non-empty string (w = va) of tape symbols under and to the left of the tape
head, whose last element a is the contents of the cell under the head,

• u is a (possibly empty) string of tape symbols to the right of the tape head (up to
some point beyond which alle symbols are blanks).

A Turing machine starts in the initial configuration (s, ▷, u).

6.2. TURING MACHINE COMPUTATION 39

6.2 Turing Machine Computation

Given a Turing machine M = (Q,Σ, s, δ), we write

(q, w, u)→M (q′, w′, u′)

to mean that q ̸= acc, rej, w = va (for some v, a) and exactly one of the following holds for
δ(q, a):

• δ(q, a) = (q′, a′, L), w′ = v, u′ = a′u,

• δ(q, a) = (q′, a′, S), w′ = va′, u′ = u,

• δ(q, a) = (q′, a′, R), u = a′′u′′, w′ = va′a′′, u′ = u′′ and u is non-empty,

• δ(q, a) = (q′, a′, R), u = ε, w′ = va′ , u′ = ε.

Definition 12: Computation

A computation of a Turing machine M is a (finite or infinite) sequence of configurations
c0, c1, c2, . . . where:

• c0 = (s, ▷, u) is an initial configuration,

• ci →M ci+1 holds for each i = 0, 1, . . .

The computation does not halt if the sequence is infinite. It halts if the sequence is finite and its
last element is of the form (acc, w, u) or (rej, w, u) for some w and u.

Example 11: We consider the Turing machine M = (Q,Σ, s, δ) with the states Q = {s, q, q′} (s
is the initial state), the symbols Σ = {▷, , 0, 1}, and the transition function:

δ ∈ (Q× Σ)→ (Q ∪ {acc, rej})× Σ× {L,R, S}

δ ▷ 0 1
s (s, ▷,R) (q, , R) (rej, 0, S) (rej, 1, S)
q (rej, ▷, R) (q′, 0, L) (q, 1, R) (q, 1, R)
q′ (rej, ▷, R) (acc, , S) (rej, 0, S) (q′, 1, L)

We claim that the computation of M starting from configuration (s, ▷, 1n0) halts in configuration
(acc, ▷ , 1n+10).

40 CHAPTER 6. TURING MACHINES

Indeed:

(s, ▷, 1n0) →M (s, ▷ , 1n0)

→M (q, ▷ 1, 1n−10)

...

→M (q, ▷ 1n, 0)

→M (q, ▷ 1n0, ε)

→M (q, ▷ 1n+1 , ε)

→M (q′, ▷ 1n+1, 0)

...

→M (q′, ▷ , 1n+10)

→M (acc, ▷ , 1n+10)

Theorem 13:

The computation of a Turing machine M can be implemented by a register machine.

Proof (sketch):

Step 1: fix a numerical encoding of M ’s states, tape symbols, tape contents and configurations;

Step 2: implement M ’s transition function (finite table) using Register Machine instructions on
codes;

Step 3: implement a Register Machine program to repeatedly carry out the→M operation.

Step 1. Identify states and tape symbols with particular numbers:

acc = 0

rej = 1

Q = {2, 3, . . . , n}
= 0

▷ = 1

σ = {2, 3, . . . ,m}

6.2. TURING MACHINE COMPUTATION 41

Encode configurations c = (q, w, u) by:

⌜c⌝ = ⌜[q, ⌜[an, . . . , a1]⌝, ⌜[b1, . . . , bm]⌝]⌝

where w = a1 · · · an (n > 0) and u = b1 · · · bm (m ≥ 0) say.

Step 2. Using the registers Q for the current state, A for the current tape symbol and D
for the current direction of the tape head (with L = 0, R = 1 and S = 2, say) one can
turn the finite table of (argument, result)-pairs specifying δ into a register machine program
→ (Q,A,D) ::= δ(Q,A) → so that starting the program with Q = q, A = a,D = d (and all other
registers zeroed), it halts with Q = q′, A = a′, D = d′, where (q′, a′, d′) = δ(q, a).

Step 3. The register machine shown below will carry out M ’s computation. It uses the registers
C for the code of the current configuration, W for the code of tape symbols at and to the left of
the tape head (reading right-to-left) and U for the code of tape symbols right of the tape head
(reading left-to-right). Starting with C containing the code of an initial configuration (and all
other registers zeroed), the register machine program halts if and only if M halts; and in that
case C holds the code of the final configuration.

START

⌜[Q,W,U]⌝ ::= C Q < 2?

yes

HALT

no
pop W

to A
(Q,A,D) ::= δ(Q,A)

C ::= ⌜[Q,W,U]⌝
push A

to U
D−

push B

to W

pop U

to B
D− push A

to W

□

42 CHAPTER 6. TURING MACHINES

6.3 Computable Functions

We have seen that a Turing machine’s computation can be implemented by a register machine.
The converse holds, too: the computation of a register machine can be implemented by a Turing
machine. To make sense of this, we first have to fix a tape representation of register machine
conigurations and hence of numbers and lists of numbers.

Definition 14:

A tape over Σ = {▷, , 0, 1} codes a list of numbers if precisely two cells contains 0 and the
only cells containing 1 occur between these.

Such tapes look like:
▷ · · · 0 1 · · · 1︸ ︷︷ ︸

n1

1 · · · 1︸ ︷︷ ︸
n2

· · · 1 · · · 1︸ ︷︷ ︸
nk

0 · · ·

which corresponds to the list [n1, n2, . . . , nk].

Definition 15: Turing computable function

A function f ∈ Nn ⇀ N is Turing computable if and only if there is a Turing machine M
with the following property:
Starting M from its initial state with tape head on the left endmarker of a tape coding
[0, x1, . . . , xn], M halts if and only if f(x1, . . . , xn) ↓, and in that case the final tape codes
a list (of length ≥ 1) whose first element is y where f(x1, . . . , xn) = y.

Theorem 16:

A partial function is Turing computable if and only if it is register machine computable.

Proof (sketch): We have seen how to implement any Turing machine by a register machine.
Hence ‘f is Turing computable’ implies ‘f is register machine computable’.

For the converse, one has to implement the computation of a register machine in terms of a
Turing machine operating on a tape coding register machine configurations. To do this, one has
to show how to carry out the action of each type of register machine instruction on the tape.
It should be reasonably clear that this is possible in principle, even if the details (omitted) are
tedious.

7 Notions of Computability

One important question that remains open is whether our models actually truly capture
the notion of “computability” or “algorithm”. There is, however, one important piece of
evidence: all the different models that have been proposed so far are equivalent.

Church and Turing both developed formalisms for ‘computability’ around the same time (1936):
Church presented his λ-calculus (chapter 9) and Turing his Turing machines. Turing showed that
the two very different approaches determine the same class of computable functions, which led
to the Church-Turing Thesis:

Theorem 17: Church-Turing Thesis

Every algorithm [in an intuitive sense] can be realised as a Turing machine.

Further evidence for the thesis has been given by other formalisms that capture ‘computability’
since: Gödel and Kleene’s partial recursive functions (1936); canonical systems for generating
the theorems of a formal system, by Post (1943) and Markov (1951); the register machines of
Lambek (1961) and Minsky (1961); as well as variations on all of these (e.g., multiple tapes,
non-determinism, parallel execution, etc.). All have turned out to determine the same collection
of computable functions.

In the rest of the course we will look at the partial recursive functions of Gödel and Kleene (1936),
which gave rise to a branch of mathematics called recursion theory and Church’s λ-calculus
(1936), which in turn gave rise a branch of computer science called functional programming.

7.1 Computable Partial Functions

Our aim is to arrive at a more abstract, machine-independent description of the collection of
computable partial functions than provided by register and Turing machines. Computable partial
functions form the smallest collection of partial functions containing some basic functions and

43

44 CHAPTER 7. NOTIONS OF COMPUTABILITY

that is closed under some fundamental operations for forming new functions from old: com-
position, primitive recursion and minimisation. This characterisation is due to Kleene (1936),
building on work of Gödel and Hebrand.

We build on three basic functions, which are all register machine computable.

Projection projni ∈ Nn → N:

proj ni (x1, . . . , xn)
∆
= xi

The projection is computed by:

START R0 ::= Ri HALT

Constant (with value 0) zeron ∈ Nn → N:

zero n(x1, . . . , xn)
∆
= 0

The constant zero is computed by:

START HALT

Successor succ ∈ N→ N:
succ(x)

∆
= x+ 1

The successor is computed by:

START R+
1 R0 ::= R1 HALT

Composition. The composition of f ∈ Nn ⇀ N with g1, . . . , gn ∈ Nm ⇀ N is the partial function
f ◦ [g1, . . . , gn] ∈ Nm ⇀ N satisfying for all x1, . . . , xm ∈ N:

f ◦ [g1, . . . , gn](x1, . . . , xm) ≡ f
(
g1(x1, . . . , xm), . . . gn(x1, . . . , xm)

)
where ≡ is the ‘Kleene equivalence’ of possibly undefined expressions: LHS ≡ RHS means that
either both LHS and RHS are undefined, or they are both defined and are equal.

So f ◦ [g1, . . . , gn](x1, . . . , xm) = z iff there exists y1, . . . , yn with gi(x1, . . . , xm) = yi for all
i = 1 . . . n and f(y1, . . . , yn) = z.

In case of n = 1, we simply write f ◦ g1 for f ◦ [g1].

Theorem 18:

f ◦ [g1, . . . , gn] is computable if f and g1, . . . , gn are.

7.1. COMPUTABLE PARTIAL FUNCTIONS 45

Proof: Given register machine programs F and Gi computing f(y1, . . . , yn) and gi(x1, . . . , xm),
respectively, in R0 starting with R1, . . . , Rk set to y1, . . . , yn or x1, . . . , xm, then the register
machine program computing f ◦ [g1, . . . , gn](x1, . . . , xm) in R0 starting with R1, . . . , Rm set to
x1, . . . , xm is specified by:

START

(X1, . . . , Xm) ::= (R1, . . . , Rm) G1 Y1 ::= R0 (R0, . . . , RN) ::= (0, . . . , 0)

(R1, . . . , Rm) ::= (X1, . . . , Xm) G2 Y2 ::= R0 (R0, . . . , RN) ::= (0, . . . , 0)

.

(R1, . . . , Rm) ::= (X1, . . . , Xm) Gn Yn ::= R0 (R0, . . . , RN) ::= (0, . . . , 0)

(R1, . . . , Rn) ::= (Y1, . . . , Yn) F HALT

Note: we assume the programs F,G1, . . . , Gn only mention registers up to RN (where N ≥
max{n,m}) and that X1, . . . , Xm, Y1, . . . , Yn are some registers Ri with i > N . This assumption
is prompted by the lack of local names for registers in the register machine model of computation.

□

46 CHAPTER 7. NOTIONS OF COMPUTABILITY

8 Partial Recursive Functions

Primitive recursive functions are missing one key ingredient to express universal algo-
rithms: the idea of unbound repetition. Many programming languages express this
through a “while”-loop, which we formalise here using an idea called minimisation.
By generalising recursive functions in this way, we have to accept that they might not
“terminate”, i.e. they become partial recursive functions.

Example 12: Examples of recursive definitions:

• f1(x) is the sum of the integers 0, 1, 2 . . . , x:{
f1(0) ≡ 0
f1(x+ 1) ≡ f1(x) + (x+ 1)

• f2(x) is the xth Fibonacci number: f2(0) ≡ 0
f2(1) ≡ 1
f2(x+ 2) ≡ f2(x) + f2(x+ 1)

• f3(x) is undefined except when x = 0{
f3(0) ≡ 0
f3(x+ 1) ≡ f3(x+ 2) + 1

• f4(x) is McCarthy’s “91 function”, which maps x to 91 if x ≤ 100 and to x− 10 otherwise.

f4(x) ≡ if x > 100 then x− 10 else f4(f4(x+ 11))

47

48 CHAPTER 8. PARTIAL RECURSIVE FUNCTIONS

8.1 Primitive Recursion

Theorem 19:

Given f ∈ Nn ⇀ N and g ∈ Nn+2 ⇀ N, there is a unique h ∈ Nn+1 ⇀ N satisfying{
h(x⃗, 0) ≡ f(x⃗)
h(x⃗, x+ 1) ≡ g(x⃗, x, h(x⃗, x))

(8.1)

for all x⃗ ∈ Nn and x ∈ N.

We write ρn(f, g) for h and call it the partial function defined by primitive recusrion from f and
g. The recursion here is done on the parameter x. However, we allow the function h to have
additional parameters not relevant for the recursion itself, which we collectively denote as x⃗. If
we do not need any additional parameters, f basically turns into a natural number: f() = n.

Proof (sketch): Existence: the set h defines a partial function satisfying 8.1:

h
∆
=

{
(x⃗, x, y) ∈ Nn+2

∣∣∣∣∣∃y0, y1, . . . , yx.f(x⃗) = y0 ∧

(
x−1∧
i=0

g(x⃗, i, yi) = yi+1

)
∧ yx = y

}

Uniqueness: if h and h′ both satisfy 8.1, then one can prove by induction on x that ∀x⃗.h(x⃗, x) ≡
h′(x⃗, x). □

Example 13: In the examples above, only f1(x) as the sum of the integers is in a primitive
recursive form. In fact, in the notation of the theorem we have:{

h(x⃗, 0) ≡ 0
h(x⃗, x+ 1) ≡ h(x⃗, x) + (x+ 1)

In this case, x⃗ ∈ N0, so x⃗ is a vector of length zero. The basis function f(x⃗) is then actually just
a natural number, i.e. f() = 0. The function g(x⃗, x, h′) is g(x, h′) = h′ + (x+ 1), where we insert
h(x⃗, x) for h′.

Hence, we have f1(x) = ρ0
(
0, ((x, h) 7→ h+ x+ 1)

)
.

Example 14: Addition The addition add ∈ N2 → N satisfies{
add(x1, 0) ≡ x1

add(x1, x+ 1) ≡ add(x1, x) + 1

So, add = ρ1(f, g) where f(x1)
∆
= x1 and g(x1, x2, h)

∆
= h+ 1.

Note that f = proj11 and g = succ ◦ proj33; so add can be built up from basic functions using
composition and primitive recursion: add = ρ1(proj11, succ ◦proj33).

8.1. PRIMITIVE RECURSION 49

Example 15: Predecessor The predecessor pred ∈ N→ N satisfies{
pred(0) ≡ 0
pred(x+ 1) ≡ x

So, pred = ρ0(f, g) where f()
∆
= 0 and g(x, h)

∆
= x.

Thus pred can be built up from basic functions using primitive recursion: pred = ρ0(zero0,proj21).

Example 16: Multiplication The multiplication mult ∈ N2 → N satisfies:{
mult(x1, 0) ≡ 0
mult(x1, x+ 1) ≡ mult(x1, x) + x1

and thus mult = ρ1(zero1, add ◦(proj33,proj31)).

So mult can be built up from basic functions using composition and primitive recursion (since
add can be).

Note that a function does not necessarily need to use ρn(f, g) in order to be primitive recursive.
For example, f(x) = x + 1 is primitive recursive, as we have f(x) = succ ◦ proj11, without the
need for actual recursion.

Definition 20: Primitive Recursive

A (partial) function f is primitive recursive (f ∈ PRIM) if it can be built up in finitely
many steps from the basic functions by use of the operations of composition and primitive
recursion.

In other words, the set PRIM of primitive recursive functions is the smallest set (with respect
to subset inclusion) of partial functions containing the basic functions and closed under the
operations of composition and primitive recursion.

Every primitive recursive function f ∈ PRIM is a total function, because:

• all the basic functions are total,

• if f, g1, . . . , gn are total, then so is f ◦ (g1, . . . , gn),

• if f and g are total, then so is ρn(f, g).

Theorem 21:

Every f ∈ PRIM is computable.

50 CHAPTER 8. PARTIAL RECURSIVE FUNCTIONS

Proof. We already proved that basic functions are computable and that composition preserves
computability. So we just have to show:

ρn(f, g) ∈ Nn+1 ⇀ N is computable if f ∈ Nn ⇀ N and g ∈ Nn+2 ⇀ N are.

Suppose f and g are computed by register machine programs F and G (with our usual I/O
conventions). Then the register machine specified below computes ρn(f, g) (we assume that
X1, X2, . . . , Xn+1, C are some registers not mentioned in F and G, and that the latter only use
registers R0, . . . , RN , where N ≥ n+ 2).

START (X1, . . . , Xn+1, Rn+1) ::= (R1, . . . , Rn+1, 0

F

C = Xn+1? yes HALT

no

(R1, . . . , Rn+2) ::= X1, . . . , Xn, C,R0

(R0, Rn+3, . . . , RN) ::= 0, 0, . . . , 0

C+

G

□

8.2 Minimisation

Our aim is a more abstract, machine-independent description of the collection of computable
partial functions than provided by register and Turing machines. The computable partial func-
tions form the smallest collection of partial functions containing some basic functions and are
closed under some fundamental operations for forming new functions from old — composition,
primitive recursion and minimisation.

The primitive recursive functions so far are not yet able to capture the collection of all computable
partial functions. By complementing composition and primitive recursion with minimisation, we
finally obtain the full collection of computable partial functions. So, what is minimisation and
why do we need it?

In essence, minimisations captures the idea of a “while-loop”. At first glance, it looks as if we can
already express loops by the means of primitive recursion ρn(f, g) above (which, incidentally,
allows us to also define an “if”-like conditional). However, this primitive recursion is a bound

8.3. PARTIAL RECURSIVE FUNCTIONS 51

loop: one of the arguments specifies the maximum number of iterations it can go through. With
minimisation, we remove this bound. Note that this comes at the cost of also introducing the
possibility of functions “not terminating”, i.e. while primitive recursive functions are all total,
functions using minimisation might be partial and thus undefined for some arguments.

Definition 22:

Minimisation Let f ∈ Nn+1 ⇀ N be a partial function. We then define the minimisation
µnf ∈ Nn ⇀ N as the least x such that f(x⃗, x) = 0 and for each i < x, f(x⃗, i) is defined
and larger than zero. We write µnf(x⃗) for this value x.
If no such x exists (either because f(x⃗, x) is never zero or because f(x⃗, x′) is undefined
for an x′ smaller than x), then µnf(x⃗) is undefined.

In other words, the graph of x = µnf(x⃗) presents itself as:

µnf =

{
(x⃗, x) ∈ Nn+1

∣∣∣∣∣∃y0, . . . , yx.
(

x∧
i=0

f(x⃗, i) = yi

)
∧

(
x−1∧
i=0

yi > 0

)
∧ (yx = 0)

}

We could also express µn(f) as programs in ML and Python, respectively:

fun mu(f, args) =
let fun m(x) =

if f(args, x) = 0
then x
else m(x + 1)

in m(0);

def mu(f, *args):
x = 0
while f(*args, x):

x += 1
return x

Example 17: The integer part of the divison x1/x2 is the least x3 such that x1 < x2(x3 +1) (in
case of x2 = 0, it is undefined). Hence x3 = µ2f(x1, x2), where f ∈ N3 → N is:

f(x1, x2, x3) =

{
1 if x1 ≥ x2(x3 + 1)
0 if x1 < x2(x3 + 1)

In fact, if we make the “integer part of x1/x2” function total by defining it to be 0 when x2 = 0,
it can be shown to be in PRIM.

8.3 Partial Recursive Functions

With minimisation we can now define the set PR of all “recursive (partial) functions”. As noted
above, a side effect of introducing minimisation is that these functions are no longer guaranteed
to be total, but can be partial. The set PR is therefore called the set of partial recursive functions.

52 CHAPTER 8. PARTIAL RECURSIVE FUNCTIONS

Definition 23: Partial Recursive

A partial function f is partial recursive (f ∈ PR) if it can be built up in finitely many steps
from the basic functions by use of the operations of composition, primitive recursion, and
minimisation.

In other words, the set PR of partial recursive functions is the smallest set (with respect to subset
inclusion) of partial functions containing the basic functions and closed under the operations of
composition, primitive recursion, and minimisation.

Theorem 24:

Every partial recursive function f ∈ PR is computable.

Proof. We just have to show that µnf ∈ Nn ⇀ N is computable if f ∈ Nn+1 ⇀ N is.

Suppose f is computed by a register machine program F (with our usual I/O conventions). Then
the register machine specified below computes µnf (we assume X1, . . . , Xn, C are some registers
not mentioned in F , and that F only uses registers R0, . . . , RN , where N ≥ n+ 1).

START

(X1, . . . , Xn) ::= ((R1, . . . , Rn)

(R1, . . . , Rn+1) ::= (X1, . . . , Xn, C)

(R0, Rn+2, . . . , RN) ::= (0, 0, . . . , 0)

F

R−
0

C+

R0 ::= C HALT

□

Theorem 25:

Not only is every f ∈ PR computable, but conversely, every computable partial function is
partial recursive.

8.4. ACKERMANN’S FUNCTION 53

Proof (sketch). Let f ∈ Nn ⇀ N be computed by the register machine M with N ≥ n registers,
say. Recall how we coded instantaneous configurations c = (ℓ, r0, . . . , rN) of M as numbers
⌜[ℓ, r0, . . . , rN]⌝. It is possible to construct primitive recursive functions lab, val0,nextM ∈ N→ N
satisfying:

lab(⌜[ℓ, r0, . . . , rN]⌝) = ℓ

val0(⌜[ℓ, r0, . . . , rN]⌝) = r0

nextM (⌜[ℓ, r0, . . . , rN]⌝) = code of M ’s next configuration

Showing that nextM ∈ PRIM is tricky; we omit this proof.

Writing x⃗ for x1, . . . , xn, let configM (x⃗, t) be the code of M ’s configuration after t steps, starting
with initial register values R0 = 0, R1 = x1, . . . , Rn = xn, Rn+1 = 0, . . . , RN = 0. It’s in PRIM
because: {

configM (x⃗, 0) = ⌜[0, 0, x⃗, 0⃗]⌝
configM (x⃗, t+ 1) = nextM (configM (x⃗, t))

Without loss of generality, we can assume that M has a single HALT as last instruction, the ith,
say (and no erroneous halts). Let haltM (x⃗) be the number of steps M takes to halt when started
with initial register values x⃗ (undefined if M does not halt). It satisfies

haltM (x⃗) ≡ least t such that i− lab(configM (x⃗, t)) = 0

and hence is in PR (because lab, configM , i − (·) ∈ PRIM). So, f ∈ PR, because f(x⃗) ≡
val0

(
configM (x⃗, haltM (x⃗))

)
. □

The members of PR that are total are called (total) recursive functions.

8.4 Ackermann’s Function

Ackermann’s function is a famous example of a (total) recursive function that is not primitive
recursive. The basic idea behind Ackermann’s function is to construct ever more powerful op-
erators, starting from addition, multiplication, exponentiation, and extrapolating this sequence
further.

A long time ago, you will probably have learned that multiplication is a convenient way to express
repeated addition like so:

x+ x+ x+ · · ·+ x︸ ︷︷ ︸
n times

= x · n

Likewise, we can define exponentiation as a convenient way to express repeated multiplication:

x · x · x · · ·x︸ ︷︷ ︸
n times

= xn

The next step in our extrapolation becomes slightly more difficult to properly imagine:

xx···x︸ ︷︷ ︸
n times

54 CHAPTER 8. PARTIAL RECURSIVE FUNCTIONS

We use this idea to construct a family of functions. In contrast to the addition and multiplication
above, however, we stick to a single argument. Addition thus becomes just an increment by 2
(why we use 2 should become clear in just a moment):

f0(x) = x+ 2

Likewise, we can take the “simplest” case of multiplication and exponentiation, respectively, as:

f1(x) = 2 · x f2(x) = 2x

That multiplication is repeated addition and exponentiation is repeated multiplication can easily
be expressed through recursion:

f1(x+ 1) = 2 · (x+ 1) = 2 · x+ 2 = f0(f1(x)) f2(x+ 1) = 2x+1 = 2 · (2x) = f1(f2(x))

It is natural to then also define f3(x + 1) = f2(f3(x)), etc. In fact, this general pattern of
relationships fn+1(x+ 1) = fn(fn+1(x)) is the core around which Ackermann’s function is built.
Instead of fn(x), Ackermann’s funcion is usually written in the form f(n, x). And if we use
increment by one as our base case, we get the following:

f(0, x) = x+ 1 f(n+ 1, x+ 1) = f(n, f(n+ 1, x))

The only missing part is a proper definition of fn(0) = f(n, 0) for all n > 0.

Definition 26: Ackermann’s function

There is a (unique) function ack ∈ N2 → N satisfying:

ack(0, x2) = x2 + 1

ack(x1 + 1, 0) = ack(x1, 1)

ack(x1 + 1, x2 + 1) = ack(x1, ack(x1 + 1, x2))

The function ack is computable and hence recursive. However, ack grows faster than any primi-
tive recursive function f ∈ N2 → N:

∃Nf .∀x1, x2 > Nf .f(x1, x2) < ack(x1, x2)

Hence, ack is not primitive recursive, although it is a total recursive function.

And considering that even ack(3, x) is already a form of repeated exponentiation, the fast growth
of ack(n, x) should not be that surprising.

9 Lambda-Calculus

Compared to Turing and register machines, λ calculus provides a radically different way
to think about computation. A program is here not a sequence of instructions, but rather
a (complex) expression to be simplified. Computation is thus the process of simplifying
an expression.

9.1 Notions of Computability

Church and Turing concurrently developed rigorous definitions of what an “algorithm” is, and
both published their work in 1936: while Turing used Turing-machines, Church used λ-calculus
(Lambda-calculus). Turing showed that the two very different approaches determine the same
class of computable functions, giving rise to the Church-Turing thesis:

Theorem 27: Church-Turing Thesis

Every algorithm (in an intuitive sense) can be realised as a Turing machine.

Turing’s approach to computation is essentially based on an “abacus” (an ancient tool that en-
codes numbers through beads on wires, Figure 9.1). The computer (originally a human) follows
a set of instructions, manipulating the beads on her abacus until she arrives at the desired result.
Since the abacus might not be large enough to capture all computations, we allow the computer
to also have an unlimited number of notepads to temporarily store some information (the tape).

Figure 9.1: An ’abacus’ is an ancient calculating tool.

55

56 CHAPTER 9. LAMBDA-CALCULUS

Church, in contrast, followed more a model of abstract mathematics as manipulating symbols
as in simplifying formulas and equations. According to the rules of algebra we know that we
can replace x + y by y + x, or a + a by 2a, etc. In this perspective, calculating is just a game
of replacing symbols with others, following specific patterns and rules. There is no abacus or
machine involved, other than the computer (again, the human) performing the substitutions.

In modern terms, we could say that Turing developed a model of imperative programming while
Church developed a model of functional programming. Both models have, of course, their place
and provide important insights into matters of computation. This chapter will look at Church’s
approach with Lambda-calculus.

9.2 Introduction

Lambda-calculus is all about the principle of substitution. Given a term or formula, you look for
certain patterns and replace a term with a simpler, but equivalent term (strictly speaking, it does
not need to be simpler, although that is the overall aim).

Simplifying terms and formulas. The notion of doing mathematics by replacing things is al-
ready taught to us at a very early age: do you remember when you had to learn the multiplication
table by heart? Instead of actually recalculate 7× 8 every time it comes up, you just learned that
you can replace it by 56. The multiplication of larger numbers is then expressed through algo-
rithms that usually make use of this replacement scheme for small numbers. In other words, all
multiplication can be done with a small lookup table, some algorithm, and the idea of replacing
things.

The character of replacement might become clearer when applying it to simplify a logical for-
mula, rather than an arithmetic or algebraic expression.

Example 18: Based on a few logical identities such as A ∨ B ⇔ B ∨ A, we can often simplify
a boolean expression by means of simple substitutions. On the right we have written down the
substitution patterns we are applying to the terms on the left in order to derive the next line.

(¬q → p) ∧ (q → p) ∥ (A→ B)⇔ (¬A ∨B),¬¬C ⇔ C

(q ∨ p) ∧ (¬q ∨ p) ∥ (A ∨B)⇔ (B ∨A)

(p ∨ q) ∧ (p ∨ ¬q) ∥ (A ∨B) ∧ (A ∨ C)⇔ A ∨ (B ∧ C)

p ∨ (q ∧ ¬q) ∥ (A ∧ ¬A)⇔ ⊥, A ∨ ⊥ ⇔ A

p

In the context of computation, we consider each application of a rule as one computational step.
That is, in the example above we arrive at the second line when starting from the first line in three
computational steps (two for replacing the implication by disjunction and one for eliminating the
double negation).

Thanks to identities like A→ B ⇔ ¬A∨B or A∧B ⇔ ¬(¬A∨¬B), we know that we can express
all logical formulas with just a minimum set of symbols: variables (like p, q, etc), parentheses,

9.2. INTRODUCTION 57

¬, and ∨, for example. As a follow-up question, we can then ask ourselves, what is the least
number of substitution (or transformation) rules that we need?

Church discovered that we can express all computations with an astoundingly small number of
symbols and rules, giving rise to his Lambda-calculus.

Two kinds of transformations. There are two different kinds of transformations on terms:
those with “computational power” and those without.

In the simplest case we can just change the name of variables. For instance, f(x) = x2 and
f(a) = a2 both denote the exact same function. Changing the name of the parameter from x to a
has no computational effect whatsoever. Such a renaming or transformation without any “real”
effect is an α-transformation.

The more interesting kinds of transformations are those that truly reduce, simplify, or otherwise
alter the structure of a term. When replacing 7 × 8 by 56, or p ∨ p by p, we actually perform a
computational step. These are β-transformations.

In the context of Lambda-calculus we are mostly interested in α-equivalence and β-reduction.
Two terms are α-equivalent if they have the exact same structure and merely differ in the choice
of variable names. There is absolutely no difference in stating (x + y)2 = x2 + 2xy + y2 vs.
(a + b)2 = a2 + 2ab + b2. For all intents and purposes, we will consider α-equivalent terms as
just fully equivalent. A β-reduction, on the other hand, means a structural change, something
like a simplification of a term. Two terms that are β-equivalent can be reduced to the same term.
They ‘mean’ the same thing, but in different forms. Hence, 3 × 7 and 10 + 11 are β-equivalent,
because both terms can be reduced to 21 (the so called β-normal form). Naturally, 3 × 7 is also
β-equivalent to 21, of course. And all terms that are α-equivalent are also β-equivalent.

Functions and algorithms. Church’s terms in λ-calculus are seemingly modelled after func-
tions and function-application. The syntax of λ-terms is indeed often used to actually write
a ‘nameless’ function where f(x) = x2 could be written as f = λx.x2 (with the overall syntax
λparameter.formula). This is particularly neat when writing something like (λx.x2−1)(5), which
evaluates to 24.

However, Church’s λ-terms are not actually meant to express functions, but rather algorithms!
For instance, recall that f1(x) = x2 − 1 and f2(x) = (x − 1)(x + 1) are the same function (as
mathematical objects), while they express different algorithms for this function. Similarly, the
following two programs implement the same function p(x, y) = xy, although there are clear
algorithmic differences between the two implementations.

fun power x y =
if y = 0
then 1
else if y mod 2 = 0

then power (x*x) (y div 2)
else x * power (x*x) (y div 2)

fun power x y =
let
val i = ref y and z = ref 1

in
while !i > 0 do
(i := !i - 1; z := !z * x);

!z
end;

58 CHAPTER 9. LAMBDA-CALCULUS

In the chapters so far we have discussed the possibilities of implementing (computable) partial
functions as register machines. In this chapter, we now consider the implementation of these
partial functions as λ-terms.

9.3 λ-Terms

λ-terms are built up from a given, countable collection of variables x, y, z, . . . by two operations
for forming λ-terms:

• λ-abstraction: (λx.M) (where x is a variable and M is a λ-term),

• application: (M M ′) (where M and M ′ are λ-terms).

Instead of λx.λy.M , we often simply write λx y.M as a shorthand notation. Another notation
that you might encounter is “let x = N in M”, which stands for (λx.M)N .

Example 19: A random example of a λ-term is
(
λy.(x y)

)
x′. The entire term is an application,

where we have the λ-abstraction λy.(x y) and apply it to the variable x′. If we perform a reduc-
tion, we replace all occurences of the parameter y in the body (x y) of the λ-abstraction by the
term x′. Hence: (

λy. (x y)︸︷︷︸
body︸ ︷︷ ︸

abstraction

)
x′ −→ xx′

Example 20: The λ-term λx.x stands for the identity and is usually abbreviated as I. For any
λ-term t, the term I t = (λx.x)t reduces to t.

The λ-term λx y.x returns only the first of two given terms, while λx y.y returns the second of
two given terms. It might look like λxy.y x swaps two terms, but keep in mind that y x actually
stands for the application of y to x.

Example 21: In order to use λ-calculus, we need to find ways to encode data as λ-terms. As a
first example, we encode pairs (x, y) as λ-terms.

It might seem straight-forward to just write the pair (x, y) as λ-term (x y). However, this actually
denotes an application and the computer performing the reduction is free to reduce this pair (by
applying x to y). To avoid this, we therefore rather encode the pair as λf.f x y.

With the pair encoded as λf.f x y, we can now plug in a term like λx y.x or λx y.y to retrieve
the first or second term in our pair, i.e. (λf.f AB)(λx y.x) reduces to A. The following is a
more complicated version of the same and also reduces to A. Can you do the necessary steps of
reduction? (

λp.(I p) (λs.λt.s)
)
(λf.f AB)

9.3. λ-TERMS 59

Bound and free variables. In λx.M we call x the bound variable and M the body of the λ-
abstraction. An occurence of x in a λ-term M is called:

– binding if it is in between λ and the dot, e.g., (λx.yx)x;

– bound if it is in the body of a binding occurence of x, e.g., (λx.yx)x;

– free if it is neither binding nor bound, e.g., (λx.yx)x.

For a λ-term M we can define the sets of free and bound variables FV (M) and BV (M), respec-
tively:

FV (x) = {x}
FV (λx.M) = FV (M) \ {x}
FV (M N) = FV (M) ∪ FV (N)

BV (x) = ∅
BV (λx.M) = BV (M) ∪ {x}
BV (M N) = BV (M) ∪BV (N)

We write x#M to mean that x does not occur in the term M .

If FV (M) = ∅, M is called a closed term or combinator. For instance, the identity I = λx.x is a
combinator, as is K = λx y.x (why is K a combinator? Isn’t the y a free variable here?).

Terms and functions*. The identity term I = λx.x can be applied to any λ-term, including
itself, i.e. I I is a perfectly legal term that obviously reduces to I. This example demonstrates
once again that λ-terms are not functions (at least not in the mathematical sense).

Modern mathematics understands functions as mapping from a set A to a set B. A function f is
thus a subset of A×B. Applying a function f to itself (i.e. f(f)) would require that f be also an
element of A. This quickly leads to very strange behaviour.

However, you can think of a term such as I as representing a function (together with reduction)
from λ-terms to λ-terms (to be more precise, it is actually operating on equivalence classes of
λ-terms). But note that you need reduction for this to make sense.

Consider, for instance, 3× 3 matrices, which we can understand as transformations of 3-dimen-
sional space (you will probably have encountered them in computer graphics). Obviously you
can multiply such matrices and any matrix together with the multiplication operation gives rise to
a function that transforms all matrices (including itself). However, the underlying matrix itself
is neither an operation or function, only the combination with an operator makes it an actual
function. For λ-terms, it is quite analogous in that a λ-term itself is never a function, but together
with reduction, it may be thought of as a function.

60 CHAPTER 9. LAMBDA-CALCULUS

9.4 α-Equivalence

The variable x in the abstraction λx.M acts as a placeholder to be replaced by a λ-term. The
name of such a bound variable is immaterial: if M ′ = M [x′/x] is the result of taking M and
changing all occurrences of x to some variable x′#M , then λx.M and λx′.M ′ both represent the
same algorithm (just like f(x) = x2 and f(z) = z2 represent the exact same function).

For example, λx.x and λy.y both represent the identity combinator.

Such ‘structurally’ equivalent λ-terms that only differ in the names of bound variables are called
α-equivalent. Changing the name of a bound variable is also known as α-conversion and is the
simplest form of a substitution. Note that any α-conversion must make sure that distinct variable
names remain distinct: λx.x y and λy.y y. are not α-equivalent!

α-Equivalence M =α M ′ is the binary relation inductively generated by the rules:

x =α x

z#(M N) M [z/x] =α N [z/y]

λx.M =α λy.N

M =α M ′ N =α N ′

M N =α M ′ N ′

where M [z/x] is M with all occurences of x replaced by z. Some authors write this also as
M [x 7→ z] or [z/x]M .

Example 22: Note that x is bound twice in this example, thus introducing completely different
variables with the same name. When doing α-conversion, take care not to replace variables that
only look alike!

λx y.x (λx.x y) =α λz y.z (λx.x y) =α λz t.z (λx.x t)

Example 23:

λx.(λxx′.x)x′ =α λy.(λxx′.x)x′

because (λzx′.z)x′ =α (λxx′.x)x′

because (λzx′.z =α λxx′.x and x′ =α x′

because λx′.u =α λx′.u and x′ =α x′

because u =α u and x′ =α x′

Fact: =α is an equivalence relation (reflexive, symmetric, and transitive).

We do not care about the particular names of bound variables, just about the distinctions be-
tween them. So α-equivalence classes of λ-terms are more important than λ-terms themselves.
Textbooks (and these notes) suppress any notation for α-equivalence classes and refer to an
equivalence class via a representative λ-term (look for phrases like ‘we identify terms up to α-
equivalence’ or ‘we work up to α-equivalence’). For implementations and computer-assisted rea-
soning, there are various devices for picking canonical representatives of α-equivalence classes
(e.g. de Bruijn indexes, graphical representations, etc.).

9.5. β-REDUCTION 61

9.5 β-Reduction

9.5.1 Substitution

If we replace variables not only by other variables, but by any λ-term M , we arrive at the general
concept of substitution, as determined by the followig rules:

x[M/x] = M

y[M/x] = y if y ̸= x

(λy.N)[M/x] = λy.(N [M/x])

(N1 N2)[M/x] = N1[M/x]N2[M/x]

The side-condition y#(M x) (y does not occur in M and y ̸= x) makes substitution ‘capture-
avoiding’, i.e. making sure that two distinct variables do not suddenly coincide and become one
(see above).

Example 24: In this example, we replace the variable y by the term M = λz.z z:

(λx.y x)[(λz.z z)/y] =
(
λx.(λz.z z)x

)

Example 25: If x ̸= y ̸= z ̸= x, then:

(λy.x)[y/x] =α (λz.x)[y/x] = λz.y

Note the =α: the α is a hint that we might have had to rename some of the variables so as to
avoid capture. Indeed, we cannot replace x by y in λy.x because the ‘new’ y would be captured
by the binding y. In order to avoid that, we first perform an α-conversion.

The substitution N 7→ N [M/x] induces in fact a totally defined function from the set of α-
equivalence classes of λ-terms to itself.

9.5.2 Reduction

Just as you can apply a function to an argument, you can apply a λ-abstraction to another λ-
term. The notation (λx.M) a is thus intended to mean that all variables x in the term M shall be
replaced by a, i.e. (λx.M) a = M [a/x]. This substitution is at the heart of β-reduction.

The natural notion of computation for λ-terms is thus given by stepping from a β-redex (λx.M)N
to the corresponding β-reduct M [N/x] (‘redex’ is short for ‘reducible expression’). This is some-
times also called contraction of (λx.M)N to M [N/x].

62 CHAPTER 9. LAMBDA-CALCULUS

One-step β-reduction, M → M ′. The one-step β-reduction performs a single contraction, i.e.
it replaces one λ-subterm with the pattern (λx.M)N by M [N/x], leading to the following rules:

(λx.M)N →M [N/x]

M →M ′

λx.M → λx.M ′
M →M ′

M N →M ′ N

M →M ′

N M → N M ′
N =α M M →M ′ M ′ =α N ′

N → N ′

Some authors write→β , but we omit the β as long as it is clear from context.

Example 26: A typical λ-term contains more than one β-redex that can be reduced.

(λx.xy)((λy.λz.z)u)

((λy.λz.z)u)y

(λx.xy)(λz.z)

Example 27: Example of the ‘up to α-equivalence’ aspect of reduction:

(λx.λy.x)y =α (λx.λz.x)y → λz.y

The α-conversion is important here, as a reduction to λy.y. would clearly be wrong (why?).

Many-step β-reduction, M ↠ M ′. It is convenient to combine several single steps of β-
reduction and perform them as ‘one’. This leads to the many-step or ‘big step’ reduction:

M =α M ′

M ↠ M ′
M →M ′

M ↠ M ′
M ↠ M ′ M ′ →M ′′

M ↠ M ′′

As before, some authors write ↠β . Another notation you might encounter is ▷β .

Example 28:
(λx.xy)

(
(λyz.z)u

)
↠ y (λx.λy.x)y ↠ λz.y

9.5.3 β-Conversion M =β N

Informally M =β N holds if N can be obtained from M by performing zero or more steps of
α-equivalence, β-reduction, or β-expansion (the inverse of a β-reduction).

9.5. β-REDUCTION 63

Example 29: u
(
(λxy.vx)y

)
=β (λx.ux)(λx.vy) because (λx.ux)(λx.vy)→ u(λx.vy) and so we

have:

u
(
(λxy.vx)y

)
=α u

(
(λxy′.vx)y

)
→ u(λy′.vy)

=α u(λx.vy)

← (λx.ux)(λx.vy)

β-conversion M =β N is the binary relation inductively generated by the rules:

M =α M ′

M =β M ′
M →M ′

M =β M ′
M =β M ′

M ′ =β M

M =β M ′ M ′ =β M ′′

M =β M ′′

M =β M ′

λx.M =β λx.M ′
M =β M ′ N =β N ′

M N =β M ′ N ′

Theorem 28: Church-Rosser Theorem

↠ is confluent, that is, if M ↠ M1 and M ↠ M2, then there exists M ′ such that M1 ↠ M ′

and M2 ↠ M ′.

M

M1

M2

M ′

Example 26’: We briefly return to example 26, where it is easy to see that reducing either
β-redex in the left-most λ-term eventually leads to the same reduced λ-term.

(λx.xy)((λy.λz.z)u)

((λy.λz.z)u)y

(λx.xy)(λz.z)

(λz.z)y y

Theorem 29: Corollary

M1 =β M2 iff there is an M such that M1 ↠ M ↞ M2. In other words: M1 and M2 are
β-equivalent if both can be reduces to a common term M ′.

64 CHAPTER 9. LAMBDA-CALCULUS

Proof. =β satisfies the rules generating ↠; so M ↠ M ′ implies M =β M ′. Thus if M1 ↠ M
and M2 ↠ M , then M1 =β M =β M2 and so M1 =β M2.

Conversely, the relation {(M1,M2) | ∃.M1 ↠ M ∧M2 ↠ M} satisfies the rules generating =β:
the only difficult case is closure of the relation under transitivity and for this we use the Church-
Rosser theorem. Hence M1 =β M2 implies that there is an M such that M1 ↠ M and M2 ↠ M .

□

9.6 β-Normal Forms

Definition 30: β-Normal Form

A λ-term is in β-normal form (β-nf) if it contains no β-redexes (no sub-terms of the form
(λx.M)M ′). M has β-normal form N if M =β N with N a β-normal form.

Note that if N is a β-normal form and N ↠ N ′, then it must be that N =α N ′ Hence, if
N1 =β N2 with N1 and N2 both β-normal forms, then N1 =α N2. Because if N1 =β N2, then by
Church-Rosser N1 ↠ M ′ ↞ N2 for some M ′, so N1 =α M ′ =α N2.

So, the β-normal form of M is unique up to α-equivalence if it exists.

Non-termination. Some λ-terms have no β-normal form. Every attempt to reduce such a λ-
term introduces another β-redex, leading to an infinite sequence. With λ-terms as representa-
tions of algorithms, this means that the algorithm never terminates.

Example 30: Ω = (λx.xx)(λx.xx) has no β-normal form, as it satisfies:

• Ω→ (xx)[(λx.xx)/x] = Ω, i.e. Ω→ Ω;

• Ω ↠ M thus implies Ω =α M .

So there is no β-normal form N such that Ω =β N .

The picture is not always that clear: in fact, a term can possess both a β-normal form and infinite
chains of reductions from it. In other words: depending on which β-redex you reduce first, you
either arrive at a β-normal form, or you are caught in an ‘infinite loop’.

9.7. APPLICATIONS* 65

Example 31: (λx.y)Ω reduces to the β-normal form y. But if we reduce Ω first (rather than
the λ abstraction on the left), we get:

(λx.y)Ω→ (λx.y)Ω→ (λx.y)Ω→ . . .

In order to address this ambiguity, we introduce normal-order reduction. Normal-order reduction
is a deterministic strategy for reducing λ-terms: reduce the ‘left-most, outer-most’ redex first.

A redex is in head position in a λ-term M if M takes the form

λx1 . . . λxn.(λx.M
′)M1 M2 . . .Mm (n ≥ 0,m ≥ 1)

where the redex is the underlined subterm. A λ-term is said to be in head normal form if
it contains no redex in head position, in other words takes the form:

λx1 . . . λxn.xM1 M2 . . .Mm (mn ≥ 0)

Normal order reduction first continually reduces redexes in head position; if that process
terminates then one has reached a head normal form and one continues applying head
reduction in the subterms M1,M2, . . . from left to right.

Fact: normal-order reduction of M always reaches the β-normal form of M if it possesses
one.

9.7 Applications*

Lambda calculus rarely appears in its pure form. However, various elements and ideas can be
found in a wealth of other areas, fields, and applications.

For instance, in constrast to functions in mathematics, λ-abstractions do not require a ‘name’ (in
f(x) = x + 1, the f would be the name of the function), which gave rise to lambda functions in
various programming languages as unnamed (anonymous) functions. In Python, this is written,
e.g., as lambda x: x+1 for x 7→ x + 1. But keep in mind that such lambda functions are not the
same thing as the λ-abstractions presented in this chapter.

In formal settings, lambda calculus is often enhanced or mixed with other calculi or notations.
You might therefore well encounter something like λx.x2 − 1, although the expression x2 − 1 is
clearly not a λ-term in the strict sense. In this regard, λx.x2−1 serves about the same notational
purpose as x 7→ x2 − 1.

9.7.1 Compiler Transformations

In practice, most computing machines operate as finite state machines (or simplified Turing or
register machines if you will). Nonetheless, the ideas of α-conversion and β-reduction play
essential roles in compilers and their various steps of optimisations.

66 CHAPTER 9. LAMBDA-CALCULUS

Constant folding is an optimisation technique, where symbols with a fixed and known value are
replaced by their respective value. This may eliminate the need for the constant symbols, and
open up further optimisations. Consider the following code excerpt:

int N = 3;
...
for (int i = 0; i < N; i++) { foo(); }

If the compiler knows that N always has a value of 3, it may replace it in the for loop below.
This, in turn reveals that the loop’s body will be iterated exactly three times, without making
use of the loop variable i. The compiler could thus completely unroll the loop, getting rid of
conditional branching:

...
foo(); foo(); foo();

Note that these transformations are done statically as transformations of the program code, i.e.
without executing any part of the program. And you could imagine that an outstanding compiler
might even be able to reduce a simple program to a point where the output can be derived
without ever ‘running’ the program.

α-conversion, on the other hand, is often found in obfuscation, but also in compilers that min-
imise JavaScript files by shortening all names to a bare minimum.

9.7.2 Macros

In many systems, macros capture the essence of β-reduction quite neatly. In contrast to function-
s/subroutines/procedures in a programming language, a macro is not executed at run time, but
rather expanded (i.e. substituted) during compile time to create the code for later execution.

Knuth’s TEX. The typesetting system TEX by Donald Knuth (and its better known variant LATEX)
looks superficially similar to markup languages like HTML or Markdown. The text is interspersed
with instructions on how to format the text, e.g.:

Text in \textit{italics} and \textbf{boldface}.
However, TEX offers a full macro system that is rather close to λ-calculus as discussed here.

You might define a macro ‘double’ as follows, where #1 plays the role of the binding variable:
\def\double#1{#1#1}

As a λ-term, we might write this as double
∆
= λx.x x. If you then use it inside your text as in,

e.g.: ‘\double{Wonderful! }’, you get ‘Wonderful! Wonderful! ’.

The purely substitutional aspect can lead to surprises for people expecting a behaviour more in
line with functions. Consider the following macro that takes two arguments and swaps their
order:

\def\flip#1#2{#2#1}
What output do you then expect from the following text?

\flip{Hey!}\double{Ho!}
As the system operates purely on substitution, it does not ‘evaluate’ the \doublemacro to get the
second argument for \flip. Rather, the two arguments for \flip are {Hey!} and \double.
The eventual output thus is: ‘Hey!Hey!Ho!’.

9.7. APPLICATIONS* 67

In constrast to compilers as discussed above, the objective of TEX is not to create a runnable
program, but almost exclusively to ‘expand’ the macros in the text. In other words, TEX is a
system that relies heavily on β-reduction.

68 CHAPTER 9. LAMBDA-CALCULUS

10 Lambda-Definable Functions

Comprising only abstractions and applications, λ-terms seem deceptively simple. In this
chapter we will demonstrate that λ-terms suffice to express all natural numbers as well
as every computable function.

10.1 Encoding Data in λ-Calculus

Computation in λ-calculus is given by β-reduction. To relate this to register/Turing machine
computation, or to partial recursive functios, we first have to see how to encode numbers, pairs,
lists, etc. as λ-terms. We will use the original encoding of numbers due to Church (although
others exist).

Definition 31: Church’s Numerals

0
∆
= λfx.x

1
∆
= λfx.fx

2
∆
= λfx.f(fx)

· · ·
n

∆
= λfx. f(· · · (f︸ ︷︷ ︸

n×

x) · · ·)

Notation:
M0 N

∆
= N M1 N

∆
= M N Mn+1 N

∆
= M (Mn N)

so we can write n as λfx.fnx and we have nM N =β Mn N . Note that Mn alone has no
meaning in this context. In particular M M M = M2 M ̸= M3.

In addition to numbers, we also want to encode boolean values, test-for-zero and pairs (tuples).

69

70 CHAPTER 10. LAMBDA-DEFINABLE FUNCTIONS

Representing booleans. Like Church numerals, the boolean values for true and false are λ-
abstractions that may be applied to a λ-term. Note, in particular, that False is actually α-
equivalent to 0.

True
∆
= λx y.x

False
∆
= λx y.y

If
∆
= λf x y.f x y

These definitions behave as expected under β-reduction and satisfy:

If TrueM N =β TrueM N =β M If FalseM N =β FalseM N =β N

Representing test-for-zero. Testing whether a value is zero (i.e. 0 = λf x.x) is based on the
idea that 0xy = y, while for n ̸= 0 we have: nxy = xny.

Eq0
∆
= λx.x (λy.False) True

For 0 we simply get:
Eq0 0 =β 0(λy.False)True =β True

For any number n ∈ N, on the other hand, Eq0 satisfies:

Eq0 n+ 1 =β n+ 1(λy.False)True

=β (λy.False)n+1True

=β (λy.False)
(
(λy.False)n True

)
=β False

Representing ordered pairs. As already mentioned earlier, we cannot write a pair simply as
(AB) because this would mean A applied to B. By writing the pair as an abstraction PairAB =
λf.f AB, we prevent any such interpretation as this is equivalent to λf.(f A)B, i.e. we would
have to reduce f A first (rather than AB), which we can only do once we have a specific λ-term
for f .

Pair
∆
= λx y f.f x y

Fst
∆
= λf.f True

Snd
∆
= λf.f False

For the definition of Fst and Snd, we make use of the booleans as λ-terms that choose the first
or the second of two terms, respectively. This then satisfies:

Fst (PairM N) =β Fst (λf.f M N)

=β (λf.f M N) True

=β TrueM N

=β M

The case for Snd is analogous, of course:

Snd (PairM N) =β · · · =β FalseM N =β N

10.2. λ-DEFINABLE FUNCTIONS 71

10.2 λ-Definable Functions

Definition 32: λ-Definable Functions

f ∈ Nn ⇀ N is λ-definable if there is a closed λ-term F that represents it: for all
(x1, . . . , xn) ∈ Nn and y ∈ N:

• if f(x1, . . . , xn) = y, then F x1 · · ·xn =β y;

• if f(x1, . . . , xn) ↑, then F x1 · · ·xn has no β-normal form.

The second condition (requiring that F x1 · · ·xn has no β-normal form if f(x1, . . . , xn is not
defined) can make it quite tricky to find a λ-term representing a non-total function. See the
paragraph on composition below for an example of how to deal with this.

Example 32: The addition is λ-definable because it is represented by P
∆
= λx1x2.λx.x1f(x2fx):

P mn =β λf x.mf (n f x)

=β λf x.mf (fn x)

=β λf x.fm (fn x)

=β λf x.fm+n x

=β m+ n

Theorem 33:

A partial function is computable if and only if it is λ-definable.

We already know that register machine computable, Turing computable and partial recursive are
equivalent. Using this, we can break the proof of the theorem into two parts:

• every partial recursive function is λ-definable;

• λ-definable functions are register machine computable.

However, we will focus on the first part only here, as the second part is rather boring and tedious.

We start by concentrating on total functions. First, let us see why the elements of PRIM (primi-
tive recursive functions) are λ-definable.

72 CHAPTER 10. LAMBDA-DEFINABLE FUNCTIONS

10.2.1 Representing Basic Functions

The three basic function types projni , zero
n, succ can be represented quite naturally in λ-calculus:

• Projection functions, projni ∈ Nn → N with projni (x1, . . . , xn)
∆
= xi are represented by:

λx1 . . . xn.xi

• Constant functions with value 0, zeron ∈ Nn → N with zeron(x1, . . . , xn)
∆
= 0 are repre-

sented by:
λx1 . . . xn.0

• Successor function, succ ∈ N→ N with succ(x)
∆
= x+ 1 is represented by:

Succ
∆
= λx1 f x.f(x1 f x)

since

Succn =β λf x.f (n f x)

=β λf x.f (fnx)

= λf x.fn+1x

= n+ 1

10.2.2 Representing Composition

If the total functions f ∈ Nn → N and g1, . . . , gn ∈ Nm → N are represented by F and G1, . . . , Gn,
respectively, then their composition f ◦ (g1, . . . , gn) ∈ Nm → N is represented simply by:

λx1 . . . xm.F
(
G1 x1 . . . xm

)
. . .
(
Gn x1 . . . xm

)
because

F
(
G1 a1 . . . am

)
. . .
(
Gn a1 . . . am

)
=β F g1(a1, . . . , am) . . . gn(a1, . . . , am)

=β f
(
g1(a1, . . . , am), . . . , gn(a1, . . . , am)

)
= f ◦ (g1, . . . , gn)(a1, . . . , am)

This does not necessarily work for partial functions. For instance, the totally undefined function
u ∈ Nn ⇀ N is represented by U

∆
= λx1.Ω and zero1 : N → N is represented by Z

∆
= λx1.0. But

zero1 ◦u is not represented by λx1.Z (Ux1), because zero1 ◦u(n) is undefined whereas:

(λx1.Z (Ux1)) n =β ZΩ =β 0.

10.3. PRIMITIVE RECURSION 73

The composition of partial functions must make sure that each Gi is fully reduced even if it does
not contribute to the overall result otherwise. One way of doing this is, e.g.:

(Ga1 . . . am) I I

If (Ga1 . . . am) evaluates to a Church numeral nG, we have:

nG I I =β InG I = I

But if (Ga1 . . . am) has no β-normal form, then neither does (Ga1 . . . am) I I.

10.2.3 Representing Predecessor

We want a λ-term Pred that satisfies:

Predn+ 1 =β n Pred 0 =β 0

Our strategy is to take a pair (0, 0) together with mapping f : (a, b) 7→ (a + 1, a). Repeatedly
applying f to the pair yields pairs of the form (n, n−1), where n in the first field is the number of
iterations and the second field naturally contains the predecessor of n. The λ-term that represents
this is as follows:

Pred
∆
= λy f x.Snd

(
y (Gf) (Pairxx)

)
where

G
∆
= λf p.Pair

(
f (Fst p)

)
(Fst p) .

Note the y (Gf)P in the Pred term above: whenever y reduces to a Church numeral ny, this
becomes (Gf)ny P , i.e.:

(Gf)
(
· · · (Gf)

(
(Gf)︸ ︷︷ ︸

n×

(Pairxx)
)
· · ·
)

10.3 Primitive Recursion

Recall primitive recursion:

Theorem 34:

Given f ∈ Nn ⇀ N and g ∈ Nn+2 ⇀ N, there is a unique h ∈ Nn+1 ⇀ N satisfying{
h(x⃗, 0) ≡ f(x⃗)
h(x⃗, y + 1) ≡ g

(
x⃗, y, h(x⃗, y)

)
for all x⃗ ∈ Nn and y ∈ N.

We write ρn(f, g) for h and call it the partial function defined by primitive recursion from f and g.

74 CHAPTER 10. LAMBDA-DEFINABLE FUNCTIONS

If f ∈ Nn → N is represented by a λ-term F and g ∈ Nn+2 → N is represented by a λ-term G,
we want to show λ-definability of the unique h ∈ Nn+1 → N satisfying:{

h(⃗a, 0) ≡ f (⃗a)
h(⃗a, b+ 1) ≡ g

(
a⃗, b, h(⃗a, b)

)
or equivalently:

h(⃗a, b) =

{
f (⃗a) if b = 0
g (⃗a, b− 1, h(⃗a, b− 1)) else

That is, we want to show λ-definability of the unique h ∈ Nn+1 → N satisfying

h = Φf,g(h)

where Φf,g ∈
(
Nn+1 → N

)
→
(
Nn+1 → N

)
is given by:

Φf,g(h)(⃗a, b) =

{
f (⃗a) if b = 0
g (⃗a, b− 1, h(⃗a, b− 1)) else

Our strategy is to first show that Φf,g is λ-definable and then to show that we can solve fixed
point equations X = M X up to β-conversion in the λ-calculus.

10.3.1 Curry’s Fixed Point Combinator Y

You are, of course, already familiar with functional equations. They are particularly useful for
recursive functions such as, e.g.: f(n) = nf(n − 1) or f(n + 2) = f(n) + f(n + 1). Similarly,
you might also have seen differential equations. What all these have in common is that you do
not have an explicit form for the function f , but you know something about its behaviour. The
question then is, whether the given behaviour lets you determine the entire function in question,
or even find a closed explicit form for it.

During the last few centuries, mathematics has addressed this general challenge by changing the
concept of a function so that any mapping from one set to another can be a function—irrespective
of whether there is an explicit closed form or not. However, in λ-calculus we are not operating
with functions, but with λ-terms. So, we face the question: given an equation of λ-terms with a
variable f , can we find a λ-term for f such that the equation holds?

Another way to approach the problem here is as: how do we define a recursive λ-term, i.e. a term
whose definition depends on itself?

The answer to these questions is given by the concept of a fixed point. It turns out that for any
λ-term M there is a λ-term y such that M y =β y. In other words: for each λ-term there is a
λ-term that remains entirely unaffected by applying M . Such a y is called a fixed point.

So, how do we find the fixed point of any given λ-term M? We use a Y combinator: a λ-
term that, when applied to a λ-term M yields a representation of the fixed point. Hence, with
y = YM we get M (YM) =β YM .

There are several such Y combinators. We present here the Y combinator according to Curry:

Y
∆
= λf.

(
λx.f(xx)

)(
λx.f(xx)

)

10.3. PRIMITIVE RECURSION 75

This satisfies:

YM →
(
λx.M(xx)

)(
λx.M(xx)

)
→M

(
(λx.M(xx)

)(
λx.M(xx)

)
hence

YM ↠ M
((

λx.M(xx)
)(
λx.M(xx)

))
↞ M(YM)

So for all λ-terms M we have
YM =β M(YM)

Note that this Y combinator does not really give rise to a ‘usable’ explicit form of the fixed point.
It is not a means to actually ‘solve’ an equation, but merely tells us that there is a solution.

Representing primitive recursion. If f ∈ Nn → N is represented by a λ-term F and g ∈
Nn+2 → N is represented by a λ-term G, we want to show λ-definability of the unique h ∈
Nn+1 → N satisfying:

h = Φf,g(h)

where Φf,g ∈ (Nn+1 → N)→ (Nn+1 → N) is given by:

Φf,g(h)(⃗a, a)
∆
=

{
f (⃗a) if a = 0
g (⃗a, a− 1, h(⃗a, a− 1)) else

We now know that h can be represented by:

Y
(
λz x⃗ x.If(Eq0x)(F x⃗)

(
G x⃗ (Predx)(z x⃗ (Predx))

))

Recall that the class PRIM of primitive recursive functions is the smallest collection of (total)
functions containing the basic functions and closed under the operations of composition and
primitive recursion.

Combining the results about λ-definability so far, we have: every f ∈ PRIM is λ-definable.

Examples of fixed point equations. The idea of a fixed point in λ-calculus is very powerful
and lets us define both data and functions. Let us extend the usual notation of λ-calculus for a
moment and concentrate on the concept of solving recursive equations.

Suppose we have an inc operator that takes a list of integers and replaces each number by its
successor (i.e. adds one to each number), for instance:

inc([2, 3, 5, 7]) = [3, 4, 6, 8]

How do you properly define such an operator? In a functional language you would probably do
something like the following (where we assume that :: stands for the cons-operator):

inc nil = nil
| h :: t = succ(h) :: inc t

76 CHAPTER 10. LAMBDA-DEFINABLE FUNCTIONS

From the perspective of a programmer this (recursive) definition is simple enough and obviously
works. From a more mathematical point of view, however, this is an equation and we are rather
interested in the question: is there a solution, i.e. an actual function inc that fulfills this equation?

For simplicity’s sake we will omit the base case and concentrate on the recursive part, which we
can then simply write as:

inc(h :: t) = succ(h) :: inc(t),

or alternatively (where hd and tl stand for “head” and “tail” of the list, respectively):

inc = λℓ. succ(hd ℓ) :: inc(tl ℓ)

We now have an equation of the form f = F(f). In other words the function inc that we seek is
a fixed point of the functional F with:

F = λf. λℓ. succ(hd ℓ) :: f(tl ℓ)

If we can express this functional F in λ-calculus then the fixed point operator Y gives us a
solution to this equation with f = YF as an expression for our function inc.

Once we have the function inc defined and at our disposal, we can then also define a list of
natural numbers like so:

Ñ = 0 :: inc(Ñ)

In other words, if you increase each number in Ñ by one and “cons” the number zero in front of
it, you get back the exact same list (this is, of course, owed to the fact that Ñ is an infinite list).

As before, we have a recursive equation of the form n = F(n) with:

F = λn. 0 :: inc(n)

The list of natural numbers is then obviously the fixed point of this functional, i.e. Ñ = F(Ñ).
Using the Y combinator we write this as Ñ = YF .

The idea of a recursive equation and its fixed point is a concept that lets you express both
(infinite) data structures as well as functions. While recursive definitions are common enough in
programming, we need to ensure that λ calculus is actually powerful enough to also express such
entities. The Y combinator thus basically tells us that there is always a λ-term to express your
recursive function definition, even though those actual λ-terms tend to be incredibly complex.

10.3.2 Representing Minimization

So for λ-definability of all recursive functions, we just have to consider how to represent minimi-
sation. Recall:

Definition 35:

Given a parial function f ∈ Nn+1 ⇀ N, define µnf ∈ N ⇀ N by: µnf(x⃗) is the least x
such that f(x⃗, x) = 0 and for each i = 0, . . . , x− 1, f(x⃗, i) is defined and larger than zero.
µnf(x⃗) is undefined if there is no such x.

10.4. λ-DEFINABILITY 77

We can express µnf in terms of a fixed point equation:

µnf(x⃗) ≡ g(x⃗, 0)

where g satisfies g = Ψf (g) with Ψf ∈ (Nn+1 ⇀ N)→ (Nn+1 ⇀ N) defined by

Ψf (g)(x⃗, x) ≡
{

x if f(x⃗, x) = 0
g(x⃗, x+ 1) else

Supopse f ∈ Nn+1 → N (totally defined function) satisfies ∀a⃗∃a.
(
f (⃗a, a) = 0

)
, so that µnf ∈

Nn → N is totally defined.

Thus for all a⃗ ∈ Nn, µnf (⃗a) = g(⃗a, 0) with g = Ψf (g) and Ψf (g)(⃗a, a) is given by:

Ψf (g)(⃗a, a) ≡
{

a if f (⃗a, a) = 0
g(⃗a, a+ 1) else

So if f is represented by a λ-term F , then µnf is represented by:

λx⃗.Y
(
λz x⃗ x.If

(
Eq0(F x⃗ x)

)
x
(
z x⃗ (Succx)

))
x⃗ 0

10.4 λ-Definability

Recursive implies λ-definable Fact: every partial recursive f ∈ Nn ⇀ N can be expressed in
a standard form as f = g ◦ (µnh) for some g, h ∈ PRIM (this follows from the proof that com-
putable is equivalent to partial-recursive). Hence every (total) recursive function is λ-definable.

More generally, every partial recursive function is λ-definable, but matching up ↑ with that there
exists no β-normal form makes the representations more complicated than for total functions
(see: Hindley & Seldin, Chapter 4).

Computable = λ-definable

Theorem 36:

A partial function is computable if and only if it is λ-definable.

We already know that computable means partial recursive and hence is λ-definable. So it just
remains to see that λ-definable functions are register machine computable. To show this one can

• Code λ-terms as numbers (ensuring that operations for constructing and deconstructing
terms are given by register machine computable functions on codes);

• Write a register machine interpreter for (normal oder) β-reduction.

The details are straightforward, although tedious.

	Introduction
	Algorithmically undecidable problems
	Hilbert's Entscheidungsproblem
	Decision problems

	From the Halting Problem to the Entscheidungsproblem
	An Applied Example of the Halting Problem*
	Provability and Truth*

	Register Machines
	Register Machines, Informally
	Graphical Representation
	Partial Functions
	Computable Functions

	Coding Programs as Numbers
	Numerical Coding of Pairs
	Numerical Coding of Lists
	Numerical Coding of Programs

	Universal Register Machine
	High-level specification
	Overall Structure of U's Program
	The Program for U

	The Halting Problem
	Computable Functions
	Enumerating Computable Functions
	An Uncomputable Function
	(Un)decidable Sets of Numbers

	Turing Machines
	Turing Machines
	Turing Machine Computation
	Computable Functions

	Notions of Computability
	Computable Partial Functions

	Partial Recursive Functions
	Primitive Recursion
	Minimisation
	Partial Recursive Functions
	Ackermann's Function

	Lambda-Calculus
	Notions of Computability
	Introduction
	-Terms
	-Equivalence
	-Reduction
	Substitution
	Reduction
	-Conversion M=N

	-Normal Forms
	Applications*
	Compiler Transformations
	Macros

	Lambda-Definable Functions
	Encoding Data in -Calculus
	-Definable Functions
	Representing Basic Functions
	Representing Composition
	Representing Predecessor

	Primitive Recursion
	Curry's Fixed Point Combinator Y
	Representing Minimization

	-Definability

