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Source-to-source transformations

Source-to-source transformations map programs to a subset of the input language

first-order
functions

data types

tail recursion

higher-order
functions

let

mutual
recursion

first-order
functions

data types

tail recursion

higher-order
functions

let

mutual
recursion

transform

Source-to-source transformations can show that some constructs are inessential
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Transforming intepreter 0

Interpreter 0 uses OCaml’s stack and higher-order functions to implement Slang:

l e t rec i n t e r p r e t ( e , env , s t o r e ) =
match e with
. . .
| Lambda(x , e ) → FUN ( fun (v , s ) →

i n t e r p r e t ( e , update ( env , (x , v ) ) , s ) ) , s t o r e
| App( e1 , e2 ) →

l e t ( v2 , s to re1 ) = i n t e r p r e t ( e2 , env , s t o r e ) in
l e t ( v1 , s to re2 ) = i n t e r p r e t ( e1 , env , s to re1 ) in

. . .

Our aim: transform the interpreter so it doesn’t use these features
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Illustrating on fib

Fibonacci function

Fibonacci machinecps d17n indexed recursion

Illustrate ideas on fib function
Aim: apply ideas to interpreter 0
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Continuation-passing style: motivation

Programs in continuation-passing style have some useful properties:

Evaluation order is explicit Every call is a tail call

Every intermediate result is named Every continuation is reified

f (g x) ⇝ g x (fun y → f y k)



Source to
source

CPS

D17n

CPS +
D17n

Mutual
recursion

CPS conversion of fib

l e t r e c f i b m =
i f m = 0 then 1
e l s e i f m = 1 then 1
e l s e f i b (m−1) + f i b (m−2)

l e t r e c f i b m =
i f m = 0 then 1
e l s e i f m = 1 then 1
e l s e l e t a = f i b (m−1) i n

l e t b = f i b (m−2) i n
a+b

l e t r e c f i b_cps m k =
i f m = 0 then k 1
e l s e i f m = 1 then k 1
e l s e f i b_cps (m−1) ( fun a →

f i b_cps (m−2) ( fun b →
k ( a+b ) ) )

let-bind function calls

CPS
convert
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CPS conversion of fib: details

l e t r e c f i b m =
i f m = 0 then 1
e l s e i f m = 1 then 1
e l s e l e t a = f i b (m−1) i n

l e t b = f i b (m−2) i n
a+b

l e t r e c f i b_cps m k =
i f m = 0 then k 1
e l s e i f m = 1 then k 1
e l s e f i b_cps (m−1) ( fun a →

f i b_cps (m−2) ( fun b →
k ( a+b ) ) )

CPS
convert

1. Add a continuation parameter k to each function
2. Apply k to values returned by the function
3. Replace each application let binding with a continuation argument
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Use the identity continuation

fib_cps has the type int → (int → int) → int.
To recover a function of type int →int, pass the identity continuation fun x →x:

l e t r e c f i b_cps m k =
i f m = 0 then k 1
e l s e i f m = 1 then k 1
e l s e f i b_cps (m−1) ( fun a →

f i b_cps (m−2) ( fun b →
k ( a+b ) ) )

l e t f ib_1 x = f ib_cps x ( fun x → x )

Now fib_1 can be used like fib:
L i s t . map f ib_1 [ 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 10 ]
⇝ [ 1 ; 1 ; 2 ; 3 ; 5 ; 8 ; 13 ; 21 ; 34 ; 55 ; 89 ]
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Correctness of CPS conversion for fib

Claim
For all m ≥ 0,

for all k : int →int,
fib_cps m k = k (fib m).

Proof
By strong induction on m.

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

l e t rec f i b m =
i f m = 0 then 1
e l s e i f m = 1 then 1
e l s e f i b (m−1) + f i b (m−2)

l e t rec f ib_cps m k =
i f m = 0 then k 1
e l s e i f m = 1 then k 1
e l s e f ib_cps (m−1) ( fun a →

f ib_cps (m−2) ( fun b →
k (a+b ) ) )

Base case (m = 0): fib_cps 0 k = k 1 = k (fib 0).

Inductive step:
Assume for all n ≤ m, k (fib n) = fib_cps n k.
We want to show: fib_cps (m+1) k = k (fib (m+1)).

fib_cps (m+1) k
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Correctness of CPS conversion for fib

Claim
For all m ≥ 0,

for all k : int →int,
fib_cps m k = k (fib m).

Proof
By strong induction on m.

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

l e t rec f i b m =
i f m = 0 then 1
e l s e i f m = 1 then 1
e l s e f i b (m−1) + f i b (m−2)

l e t rec f ib_cps m k =
i f m = 0 then k 1
e l s e i f m = 1 then k 1
e l s e f ib_cps (m−1) ( fun a →

f ib_cps (m−2) ( fun b →
k (a+b ) ) )

Base case (m = 0): fib_cps 0 k = k 1 = k (fib 0).

Inductive step:
Assume for all n ≤ m, k (fib n) = fib_cps n k.
We want to show: fib_cps (m+1) k = k (fib (m+1)).

fib_cps (m+1) k
≡ (expand fib_cps) . . .

if m+1 = 1 then k 1 else fib_cps ((m+1)−1) (fun a → fib_cps ((m+1)−2) (fun b → k (a+b)))
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Correctness of CPS conversion for fib

Claim
For all m ≥ 0,

for all k : int →int,
fib_cps m k = k (fib m).

Proof
By strong induction on m.

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

l e t rec f i b m =
i f m = 0 then 1
e l s e i f m = 1 then 1
e l s e f i b (m−1) + f i b (m−2)

l e t rec f ib_cps m k =
i f m = 0 then k 1
e l s e i f m = 1 then k 1
e l s e f ib_cps (m−1) ( fun a →

f ib_cps (m−2) ( fun b →
k (a+b ) ) )

Base case (m = 0): fib_cps 0 k = k 1 = k (fib 0).

Inductive step:
Assume for all n ≤ m, k (fib n) = fib_cps n k.
We want to show: fib_cps (m+1) k = k (fib (m+1)).

if m+1 = 1 then k 1 else fib_cps ((m+1)−1) (fun a → fib_cps ((m+1)−2) (fun b → k (a+b)))
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Correctness of CPS conversion for fib

Claim
For all m ≥ 0,

for all k : int →int,
fib_cps m k = k (fib m).

Proof
By strong induction on m.

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

l e t rec f i b m =
i f m = 0 then 1
e l s e i f m = 1 then 1
e l s e f i b (m−1) + f i b (m−2)

l e t rec f ib_cps m k =
i f m = 0 then k 1
e l s e i f m = 1 then k 1
e l s e f ib_cps (m−1) ( fun a →

f ib_cps (m−2) ( fun b →
k (a+b ) ) )

Base case (m = 0): fib_cps 0 k = k 1 = k (fib 0).

Inductive step:
Assume for all n ≤ m, k (fib n) = fib_cps n k.
We want to show: fib_cps (m+1) k = k (fib (m+1)).

if m+1 = 1 then k 1 else fib_cps ((m+1)−1) (fun a → fib_cps ((m+1)−2) (fun b → k (a+b)))
≡ (arithmetic) . . .

if m+1 = 1 then k 1 else fib_cps m (fun a → fib_cps (m−1) (fun b → k (a+b)))
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Correctness of CPS conversion for fib

Claim
For all m ≥ 0,

for all k : int →int,
fib_cps m k = k (fib m).

Proof
By strong induction on m.

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

l e t rec f i b m =
i f m = 0 then 1
e l s e i f m = 1 then 1
e l s e f i b (m−1) + f i b (m−2)

l e t rec f ib_cps m k =
i f m = 0 then k 1
e l s e i f m = 1 then k 1
e l s e f ib_cps (m−1) ( fun a →

f ib_cps (m−2) ( fun b →
k (a+b ) ) )

Base case (m = 0): fib_cps 0 k = k 1 = k (fib 0).

Inductive step:
Assume for all n ≤ m, k (fib n) = fib_cps n k.
We want to show: fib_cps (m+1) k = k (fib (m+1)).

if m+1 = 1 then k 1 else fib_cps m (fun a → fib_cps (m−1) (fun b → k (a+b)))
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Correctness of CPS conversion for fib

Claim
For all m ≥ 0,

for all k : int →int,
fib_cps m k = k (fib m).

Proof
By strong induction on m.

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

l e t rec f i b m =
i f m = 0 then 1
e l s e i f m = 1 then 1
e l s e f i b (m−1) + f i b (m−2)

l e t rec f ib_cps m k =
i f m = 0 then k 1
e l s e i f m = 1 then k 1
e l s e f ib_cps (m−1) ( fun a →

f ib_cps (m−2) ( fun b →
k (a+b ) ) )

Base case (m = 0): fib_cps 0 k = k 1 = k (fib 0).

Inductive step:
Assume for all n ≤ m, k (fib n) = fib_cps n k.
We want to show: fib_cps (m+1) k = k (fib (m+1)).

if m+1 = 1 then k 1 else fib_cps m (fun a → fib_cps (m−1) (fun b → k (a+b)))
≡ (inductive assumption for m − 1 and k = (fun b → k (a+b))) . . .

if m+1 = 1 then k 1 else fib_cps m (fun a → (fun b → k (a+b)) (fib (m−1)))
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Correctness of CPS conversion for fib

Claim
For all m ≥ 0,

for all k : int →int,
fib_cps m k = k (fib m).

Proof
By strong induction on m.

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

l e t rec f i b m =
i f m = 0 then 1
e l s e i f m = 1 then 1
e l s e f i b (m−1) + f i b (m−2)

l e t rec f ib_cps m k =
i f m = 0 then k 1
e l s e i f m = 1 then k 1
e l s e f ib_cps (m−1) ( fun a →

f ib_cps (m−2) ( fun b →
k (a+b ) ) )

Base case (m = 0): fib_cps 0 k = k 1 = k (fib 0).

Inductive step:
Assume for all n ≤ m, k (fib n) = fib_cps n k.
We want to show: fib_cps (m+1) k = k (fib (m+1)).

if m+1 = 1 then k 1 else fib_cps m (fun a → (fun b → k (a+b)) (fib (m−1)))
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Correctness of CPS conversion for fib

Claim
For all m ≥ 0,

for all k : int →int,
fib_cps m k = k (fib m).

Proof
By strong induction on m.

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

l e t rec f i b m =
i f m = 0 then 1
e l s e i f m = 1 then 1
e l s e f i b (m−1) + f i b (m−2)

l e t rec f ib_cps m k =
i f m = 0 then k 1
e l s e i f m = 1 then k 1
e l s e f ib_cps (m−1) ( fun a →

f ib_cps (m−2) ( fun b →
k (a+b ) ) )

Base case (m = 0): fib_cps 0 k = k 1 = k (fib 0).

Inductive step:
Assume for all n ≤ m, k (fib n) = fib_cps n k.
We want to show: fib_cps (m+1) k = k (fib (m+1)).

if m+1 = 1 then k 1 else fib_cps m (fun a → (fun b → k (a+b)) (fib (m−1)))
≡ (inductive assumption for m and k = (fun a → (fun b → k (a+b)) (fib (m-1)))) . . .

if m+1 = 1 then k 1 else (fun a → (fun b → k (a+b)) (fib (m−1))) (fib m)
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Correctness of CPS conversion for fib

Claim
For all m ≥ 0,

for all k : int →int,
fib_cps m k = k (fib m).

Proof
By strong induction on m.

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

l e t rec f i b m =
i f m = 0 then 1
e l s e i f m = 1 then 1
e l s e f i b (m−1) + f i b (m−2)

l e t rec f ib_cps m k =
i f m = 0 then k 1
e l s e i f m = 1 then k 1
e l s e f ib_cps (m−1) ( fun a →

f ib_cps (m−2) ( fun b →
k (a+b ) ) )

Base case (m = 0): fib_cps 0 k = k 1 = k (fib 0).

Inductive step:
Assume for all n ≤ m, k (fib n) = fib_cps n k.
We want to show: fib_cps (m+1) k = k (fib (m+1)).

if m+1 = 1 then k 1 else (fun a → (fun b → k (a+b)) (fib (m−1))) (fib m)
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Correctness of CPS conversion for fib

Claim
For all m ≥ 0,

for all k : int →int,
fib_cps m k = k (fib m).

Proof
By strong induction on m.

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

l e t rec f i b m =
i f m = 0 then 1
e l s e i f m = 1 then 1
e l s e f i b (m−1) + f i b (m−2)

l e t rec f ib_cps m k =
i f m = 0 then k 1
e l s e i f m = 1 then k 1
e l s e f ib_cps (m−1) ( fun a →

f ib_cps (m−2) ( fun b →
k (a+b ) ) )

Base case (m = 0): fib_cps 0 k = k 1 = k (fib 0).

Inductive step:
Assume for all n ≤ m, k (fib n) = fib_cps n k.
We want to show: fib_cps (m+1) k = k (fib (m+1)).

if m+1 = 1 then k 1 else (fun a → (fun b → k (a+b)) (fib (m−1))) (fib m)
≡ (beta reduction ×2) . . .

if m+1 = 1 then k 1 else k (fib m + fib (m−1))
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Correctness of CPS conversion for fib

Claim
For all m ≥ 0,

for all k : int →int,
fib_cps m k = k (fib m).

Proof
By strong induction on m.

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

l e t rec f i b m =
i f m = 0 then 1
e l s e i f m = 1 then 1
e l s e f i b (m−1) + f i b (m−2)

l e t rec f ib_cps m k =
i f m = 0 then k 1
e l s e i f m = 1 then k 1
e l s e f ib_cps (m−1) ( fun a →

f ib_cps (m−2) ( fun b →
k (a+b ) ) )

Base case (m = 0): fib_cps 0 k = k 1 = k (fib 0).

Inductive step:
Assume for all n ≤ m, k (fib n) = fib_cps n k.
We want to show: fib_cps (m+1) k = k (fib (m+1)).

if m+1 = 1 then k 1 else k (fib m + fib (m−1))
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Correctness of CPS conversion for fib

Claim
For all m ≥ 0,

for all k : int →int,
fib_cps m k = k (fib m).

Proof
By strong induction on m.

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

l e t rec f i b m =
i f m = 0 then 1
e l s e i f m = 1 then 1
e l s e f i b (m−1) + f i b (m−2)

l e t rec f ib_cps m k =
i f m = 0 then k 1
e l s e i f m = 1 then k 1
e l s e f ib_cps (m−1) ( fun a →

f ib_cps (m−2) ( fun b →
k (a+b ) ) )

Base case (m = 0): fib_cps 0 k = k 1 = k (fib 0).

Inductive step:
Assume for all n ≤ m, k (fib n) = fib_cps n k.
We want to show: fib_cps (m+1) k = k (fib (m+1)).

if m+1 = 1 then k 1 else k (fib m + fib (m−1))
≡ ( if e1 then k e2 else k e3 ≡ k ( if e1 then e2 else e3)) . . .

k ( if m+1 = 1 then 1 else fib m + fib (m−1))
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Correctness of CPS conversion for fib

Claim
For all m ≥ 0,

for all k : int →int,
fib_cps m k = k (fib m).

Proof
By strong induction on m.

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

l e t rec f i b m =
i f m = 0 then 1
e l s e i f m = 1 then 1
e l s e f i b (m−1) + f i b (m−2)

l e t rec f ib_cps m k =
i f m = 0 then k 1
e l s e i f m = 1 then k 1
e l s e f ib_cps (m−1) ( fun a →

f ib_cps (m−2) ( fun b →
k (a+b ) ) )

Base case (m = 0): fib_cps 0 k = k 1 = k (fib 0).

Inductive step:
Assume for all n ≤ m, k (fib n) = fib_cps n k.
We want to show: fib_cps (m+1) k = k (fib (m+1)).

k ( if m+1 = 1 then 1 else fib m + fib (m−1))
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Correctness of CPS conversion for fib

Claim
For all m ≥ 0,

for all k : int →int,
fib_cps m k = k (fib m).

Proof
By strong induction on m.

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

l e t rec f i b m =
i f m = 0 then 1
e l s e i f m = 1 then 1
e l s e f i b (m−1) + f i b (m−2)

l e t rec f ib_cps m k =
i f m = 0 then k 1
e l s e i f m = 1 then k 1
e l s e f ib_cps (m−1) ( fun a →

f ib_cps (m−2) ( fun b →
k (a+b ) ) )

Base case (m = 0): fib_cps 0 k = k 1 = k (fib 0).

Inductive step:
Assume for all n ≤ m, k (fib n) = fib_cps n k.
We want to show: fib_cps (m+1) k = k (fib (m+1)).

k ( if m+1 = 1 then 1 else fib m + fib (m−1))
≡ (definition of fib) . . .

k ( fib (m+1))
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Correctness of CPS conversion for fib

Claim
For all m ≥ 0,

for all k : int →int,
fib_cps m k = k (fib m).

Proof
By strong induction on m.

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

l e t rec f i b m =
i f m = 0 then 1
e l s e i f m = 1 then 1
e l s e f i b (m−1) + f i b (m−2)

l e t rec f ib_cps m k =
i f m = 0 then k 1
e l s e i f m = 1 then k 1
e l s e f ib_cps (m−1) ( fun a →

f ib_cps (m−2) ( fun b →
k (a+b ) ) )

Base case (m = 0): fib_cps 0 k = k 1 = k (fib 0).

Inductive step:
Assume for all n ≤ m, k (fib n) = fib_cps n k.
We want to show: fib_cps (m+1) k = k (fib (m+1)).

k ( fib (m+1))
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Correctness of CPS conversion for fib

Claim
For all m ≥ 0,

for all k : int →int,
fib_cps m k = k (fib m).

Proof
By strong induction on m.

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

l e t rec f i b m =
i f m = 0 then 1
e l s e i f m = 1 then 1
e l s e f i b (m−1) + f i b (m−2)

l e t rec f ib_cps m k =
i f m = 0 then k 1
e l s e i f m = 1 then k 1
e l s e f ib_cps (m−1) ( fun a →

f ib_cps (m−2) ( fun b →
k (a+b ) ) )

Base case (m = 0): fib_cps 0 k = k 1 = k (fib 0).

Inductive step:
Assume for all n ≤ m, k (fib n) = fib_cps n k.
We want to show: fib_cps (m+1) k = k (fib (m+1)).

k ( fib (m+1))
QED



Defunctionalization
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Defunctionalization properties

Defunctionalized programs have some useful properties:

No higher-order functions All values are data

All control-flow is first order Every function is named

fun x → e
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Defunctionalization: example

l e t rec filter p l =
match l with
| [] → []
| x :: xs →

i f p x
then x :: filter p xs
e l s e filter p xs

l e t f l y =
filter ( fun x → x < 3) l

@ filter ( fun x → x > y) l

type fn = Lt_three
| Gt of int

l e t apply fn x =
match fn, x with
| Lt_three , x → x < 3
| Gt y, x → x > y

l e t rec filter p l =
match l with
| [] → []
| x :: xs →

i f apply p x
then x :: filter p xs
e l s e filter p xs

l e t f l y =
filter Lt_three l

@ filter (Gt y) l

1. Add a constructor to fn for each fun
2. Replace each fun with its constructor
3. Add a case to apply for each fun
4. Replace each application p x with apply p x
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Defunctionalization: example

l e t rec filter p l =
match l with
| [] → []
| x :: xs →

i f p x
then x :: filter p xs
e l s e filter p xs

l e t f l y =
filter ( fun x → x < 3) l

@ filter ( fun x → x > y) l

type fn = Lt_three
| Gt of int

l e t apply fn x =
match fn, x with
| Lt_three , x → x < 3
| Gt y, x → x > y

l e t rec filter p l =
match l with
| [] → []
| x :: xs →

i f apply p x
then x :: filter p xs
e l s e filter p xs

l e t f l y =
filter Lt_three l

@ filter (Gt y) l

1. Add a constructor to fn for each fun
2. Replace each fun with its constructor
3. Add a case to apply for each fun
4. Replace each application p x with apply p x



Combining CPS & defunctionalization
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Defunctionalizing fib_cps

l e t r e c f i b_cps m k =
i f m = 0 then k 1
e l s e i f m = 1 then k 1
e l s e f i b_cps (m−1) ( fun a → (∗ K1 ∗)

f i b_cps (m−2) ( fun b → (∗ K2 ∗)
k ( a+b ) ) )

l e t f ib_1 x = f ib_cps x ( fun x → x ) (∗ ID ∗)

To defunctionalize fib_cps, define a constructor for each fun:
type cont = ID | K1 of i n t ∗ cont | K2 of i n t ∗ cont

Constructor arguments are free variables, and we treat k2 as free in k1:
l e t k2 = fun a b → k ( a+b)
l e t k1 = fun a → f i b_cps (m−2) ( k2 a )
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Defunctionalized fib_cps

Now define an apply function of type cont →int →int

type cont = ID | K1 of i n t ∗ cont | K2 of i n t ∗ cont

l e t r e c apply_cont k v = match k , v with
| ID , a → a
| K1 (m, k ) , a → f ib_cps_defun (m−2) (K2 (a , k ) )
| K2 (a , k ) , b → apply_cont k ( a+b)

and call apply_cont at every application of a continuation:
and f ib_cps_defun m k =

i f m = 0 then apply_cont k 1
e l s e i f m = 1 then apply_cont k 1
e l s e f ib_cps_defun (m −1) (K1 (m, k ) )

l e t f ib_2 m = fib_cps_defun m ID
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Correctness of fib_cps defunctionalization

Claim
Let <c> represent a continuation c : int → int constructed by fib_cps .
Then

apply_cont <c> m = c m

and

fib_cps n c = fib_cps_defun n <c>

(Proof left as an exercise)
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Observation: continuations have list (stack) structure

type i n t _ l i s t =
NIL

| CONS of i n t ∗ i n t _ l i s t

type cont =
ID (∗ ’ Ni l ’ ∗)

| K1 of i n t ∗ cont (∗ ’ Cons ’ ∗)
| K2 of i n t ∗ cont (∗ ’ Cons ’ ∗)

Idea: replace cont with standard lists:

type tag = SUB2 of i n t (∗ K1 : k ( a+b) ∗)
| PLUS of i n t (∗ K2 : f i b_cps (m−2) ( k2 a ) ∗)

type tag_ l i s t_con t = tag l i s t
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fib_cps_defun revisited, using lists for continuations

type tag = SUB2 of i n t | PLUS of i n t
type tag_ l i s t_con t = tag l i s t

l e t r e c app ly_tag_ l i s t_cont k v = match k , v with
| [ ] , a → a
| SUB2 m : : k , a → f ib_cps_defun_tags (m−2) (PLUS a : : k )
| PLUS a : : k , b → app ly_tag_ l i s t_cont k ( a+b)

and f ib_cps_defun_tags m k =
i f m = 0 then app ly_tag_ l i s t_cont k 1
e l s e i f m = 1 then app ly_tag_ l i s t_cont k 1
e l s e f ib_cps_defun_tags (m−1) (SUB2 m : : k )

l e t f ib_3 m = fib_cps_defun_tags m [ ]



Mutual recursion
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Mutual recursion ⇝ single recursion

Mutual recursion can be eliminated using indexing.
Given a set of mutually-recursive functions:

l e t r e c i s_even n = n = 0 | | is_odd (n − 1)
and is_odd n = n <> 0 && is_even (n − 1)

define an index datatype with one constructor for each function:
type eo = Even | Odd

and define a function that maps an index argument to a corresponding body:
l e t r e c i s f n =

match f with
| Even → n = 0 | | i s Odd (n − 1)
| Odd → n <> 0 && i s Even (n − 1)



Source to
source

CPS

D17n

CPS +
D17n

Mutual
recursion

Mutual recursion ⇝ single recursion for fib

type s ta te_type =
| FIB (∗ f o r r i g h t −hand−s i d e s s t a r t i n g with f ib_ ∗)
| APP (∗ f o r r i g h t −hand−s i d e s s t a r t i n g with apply_ ∗)

type s t a t e = ( s ta te_type ∗ i n t ∗ t ag_ l i s t_con t ) → i n t

(∗ e v a l a c t s as e i t h e r app l y_tag_ l i s t_cont or f ib_cps_defun_tags ∗)
l e t r e c e v a l = f u n c t i o n
| FIB , 0 , k → e v a l (APP, 1 , k )
| FIB , 1 , k → e v a l (APP, 1 , k )
| FIB , m, k → e v a l ( FIB , m−1, SUB2 m : : k )
| APP, a , SUB2 m : : k → e v a l ( FIB , m−2, PLUS a : : k )
| APP, b , PLUS a : : k → e v a l (APP, a+b , k )
| APP, a , [ ] → a

l e t f ib_4 m = e v a l ( FIB , m, [ ] )
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Eliminate tail recursion to obtain The Fibonacci Machine

(∗ s t ep : s t a t e → s t a t e ∗)
l e t s t ep = f u n c t i o n
| FIB , 0 , k → (APP, 1 , k )
| FIB , 1 , k → (APP, 1 , k )
| FIB , m, k → ( FIB , m−1, SUB2 m : : k )
| APP, a , SUB2 m : : k → ( FIB , m−2, PLUS a : : k )
| APP, b , PLUS a : : k → (APP, a+b , k )
| _ → f a i l w i t h ” s t ep : runt ime e r r o r ! ”

l e t r e c d r i v e r = f u n c t i o n (∗ c l e a r l y t a i l r e c u r s i v e ! ∗)
| APP, a , [ ] → a
| s t a t e → d r i v e r ( s t ep s t a t e )

(∗ f ib_5 : i n t → i n t ∗)
l e t f ib_5 m = d r i v e r ( FIB , m, [ ] )

(This version makes the tail-recursive structure very explicit.)
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Tracing of fib_5 4

FIB 4 []
FIB 3 [SUB2 4]
FIB 2 [SUB2 3; SUB2 4]
FIB 1 [SUB2 2; SUB2 3; SUB2 4]
APP 1 [SUB2 2; SUB2 3; SUB2 4]
FIB 0 [PLUS 1; SUB2 3; SUB2 4]
APP 1 [PLUS 1; SUB2 3; SUB2 4]
APP 2 [SUB2 3; SUB2 4]
FIB 1 [PLUS 2; SUB2 4]
APP 1 [PLUS 2; SUB2 4]
APP 3 [SUB2 4]
FIB 2 [PLUS 3]
FIB 1 [SUB2 2; PLUS 3]
APP 1 [SUB2 2; PLUS 3]
FIB 0 [PLUS 1; PLUS 3]
APP 1 [PLUS 1; PLUS 3]
APP 2 [PLUS 3]
APP 5 []

l e t s tep = funct i on
| FIB , 0 , k → (APP, 1 , k )
| FIB , 1 , k → (APP, 1 , k )
| FIB , m, k → (FIB , m−1, SUB2 m : : k )
| APP, a , SUB2 m : : k → (FIB , m−2, PLUS a : : k )
| APP, b , PLUS a : : k → (APP, a+b , k)
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Current state

We turned the recursive fib into a function that uses no OCaml stack space

The transformed fib function carries its own stack as an extra argument

We transformed fib incrementally, with each step easily proved correct



Next time: application to interpreter 0


