Compiler Construction

Lecture 8: CPS & defunctionalization

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk
Lent 2026

interpreter 0
(simple, denotational)

: cps + defunctionalize

b

interpreter 1
(explicit stack)

Source-to-source transformations

Source to

source

® OO

CPS

Mutual
recursion

Source-to-source transformations

Source-to-source transformations map programs to a subset of the input language
higher—orer
functions

data types data types

first-order first-order
functions functions

tail recursion tail recursion

Source-to-source transformations can show that some constructs are inessential

Transforming intepreter 0
Source to
source

.00 Interpreter 0 uses OCaml's stack and higher-order functions to implement Slang:

let rec interpret (e, env, store) =
match e with

|”I'_ambda(x, e) — FUN (fun (v, s) —

interpret (e, update(env, (x, v)),
| App(el, e2) —

let (v2, storel) interpret(e2, env, store) in
let (vl, store2) interpret(el, env, storel) in

Our aim: transform the interpreter so it doesn't use these features

lllustrating on fib

Source to

source Fibonacci function Illustrate ideas on fib function

Aim: apply ideas to interpreter 0

I

T=--CPS---d17n - -- indexed recursion - ---- - 5

Continuation-Passing Style

Continuation-passing style: motivation

Programs in continuation-passing style have some useful properties:

Evaluation order is explicit Every call is a tail call

f (gx) ~gx (funy — fyk)

Every intermediate result is named Every continuation is reified

CPS conversion of fib

let rec fib m =

if m=0 then 1

else if m=1 then 1

else fib (m—1) + fib (m—2)

let-bind function calls

let rec fib m = let rec fib_cps m k =

if m=0 then 1 if m=0 then k 1

else if m=1 then 1 CPS else if m=1 then k 1

else let a = fib (m—1) in| convert else fib_cps (m—1) (fun a —
let b = fib (m—2) in fib_cps (m—2) (fun b —
a+b k (atb)))

CPS conversion of fib: details

1. Add a continuation parameter k to each function

2. Apply k to values returned by the function
3. Replace each application let binding with a continuation argument

let rec fib m= let rec fib_cps m k =
if m=0 then 1 if m=0 then k 1
CPS else if m=1 then k 1

else if m=1 then 1
else [let a =|fib (m—1) in | convert else fib_cps (m—1) |[(fun a —
fib_cps (m—2) (fun b —

let b = fib (m—2) in]
k !aerHi

a+b

Use the identity continuation

fib_cps has the type int — (int — int) — int.
To recover a function of type int —int, pass the identity continuation fun x —x:

let rec fib_cps m k =

if m=0 then k 1

else if m=1 then k 1

else fib_cps (m—1) (fun a —

(
flb _cps (m=2) (fun b —
k (atb)))

let fib_1 x = fib_cps x (fun x — x)

Now fib_1 can be used like fib:

List.map fib_1 [0; 1; 2; 3; 4; 5; 6;
~ [1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89]

Claim
For all m > 0,
for all k : int —int,
fib_cps m k = k (fib m).

Correctness of CPS conversion for fib

Proof
By strong induction on m.

Base case (m = 0): fib_cps @ k = k 1 = k (fib 0).

Inductive step:

Assume for all n < m, k (fib n) = fib_cps n k.
We want to show: fib_cps (m+1) k = k (fib (m+1)).

fib_cps (m+1) k

let rec fib m=

if m=0 then 1

else if m= 1 then 1
else fib (m—1) + fib (

let rec fib_cps m k =

if m=0 then k 1

else if m=1 then k 1

else fib_cps (m—1) (fun a —
fib_cps (m—2) (fun b —
k (a+b)))

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

Correctness of CPS conversion for fib

let rec fib m=
if m=0 then 1
Claim Proof else if m=1 then 1

For all m > 0, By strong induction on m. &'se fib (m=1) + fib (
for all k : int —int,

fib_cps m k = k (fib m). Ie.: e gibﬁzr’:skmlk =

else if m=1 then k 1

else fib_cps (m—1) (fun a —
fib_cps (m—2) (fun b —
K (ath)))

Base case (m = 0): fib_cps @ k = k 1 = k (fib 0).

Inductive step:
Assume for all n < m, k (fib n) = fib_cps n k.
We want to show: fib_cps (m+1) k = k (fib (m+1)).

fib_cps (m+1) k
= (expand fib_cps) ...
if m+1 =1 then k 1 else fib_cps ((m+1)—1) (fun a — fib_cps ((m+1)—2) (fun b — k (a-+b)))

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

Correctness of CPS conversion for fib

let rec fib m=
if m=0 then 1
Claim Proof else if m=1 then 1

For all m > 0, By strong induction on m. &'se fib (m=1) + fib (
for all k : int —int,

fib_cps m k = k (fib m). Ie.: e gibﬁzr’:skmlk =

else if m=1 then k 1

else fib_cps (m—1) (fun a —
fib_cps (m—2) (fun b —
K (ath)))

Base case (m = 0): fib_cps @ k = k 1 = k (fib 0).

Inductive step:
Assume for all n < m, k (fib n) = fib_cps n k.
We want to show: fib_cps (m+1) k = k (fib (m+1)).

if m+1 =1 then k 1 else fib_cps ((m+1)—1) (fun a — fib_cps ((m+1)—2) (fun b — k (a+b)))

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

Claim
For all m > 0,
for all k : int —int,
fib_cps m k = k (fib m).

Base case (m = 0): fib_cps 0 k =

Inductive step:

Proof
By strong induction on m.

k 1=k (fib 0).

Assume for all n < m, k (fib n) = fib_cps n k.

We want to show: fib_cps (m+1)

k = k (fib (m+1)).

Correctness of CPS conversion for fib

let

rec fib m =

if m=0 then 1

else if m= 1 then 1
else fib (m—1) + fib (

let rec fib_cps m k =

if m=0 then k 1

else if m=1 then k 1

else fib_cps (m—1) (fun a —
fib_cps (m—2) (fun b —
k (a+b)))

if m+1 =1 then k 1 else fib_cps ((m+1)—1) (fun a — fib_cps ((m+1)—2) (fun b — k (a+b)))

= (arithmetic) ...

if m+1 =1 then k 1 else fib_cps m (fun a — fib_cps (m—1) (fun b — k (a+b)))

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

Claim
For all m > 0,
for all k : int —int,
fib_cps m k = k (fib m).

Base case (m = 0): fib_cps 0 k =

Inductive step:

Assume for all n < m, k (fib n) =

Correctness of CPS conversion for fib

Proof
By strong induction on m.

k 1=k (fib 0).

fib_cps n k.

We want to show: fib_cps (m+1) k = k (fib (m+1)).

let rec fib m=
if m=0 then 1

else
else

if m=1 then 1
fib (m—1) + fib (

let rec fib_cps m k =
if m=0 then k 1

else
else

if m=1 then k 1
fib_cps (m—1) (fun a —
fib_cps (m—2) (fun b —
k (atb)))

if m+1 =1 then k 1 else fib_cps m (fun a — fib_cps (m—1) (fun b — k (a+b)))

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

Claim
For all m > 0,
for all k : int —int,
fib_cps m k = k (fib m).

Base case (m = 0): fib_cps 0 k =

Inductive step:

Correctness of CPS conversion for fib

Proof
By strong induction on m.

k 1=k (fib 0).

Assume for all n < m, k (fib n) = fib_cps n k.

We want to show: fib_cps (m+1)

k = k (fib (m+1)).

let

rec fib m =

if m=0 then 1

else if m= 1 then 1
else fib (m—1) + fib (

let rec fib_cps m k =

if m=0 then k 1

else if m=1 then k 1

else fib_cps (m—1) (fun a —
fib_cps (m—2) (fun b —
k (a+b)))

if m+1 =1 then k 1 else fib_cps m (fun a — fib_cps (m—1) (fun b — k (a+b)))

= (inductive assumption for m — 1 and k = (fun b — k (a+b))) ...

if m+1 =1 then k 1 else fib_cps m (fun a — (fun b — k (a+b)) (fib (m—1)))

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

Claim
For all m > 0,
for all k : int —int,
fib_cps m k = k (fib m).

Base case (m = 0): fib_cps 0 k =

Inductive step:

Assume for all n < m, k (fib n) =

Correctness of CPS conversion for fib

Proof
By strong induction on m.

k 1=k (fib 0).

fib_cps n k.

We want to show: fib_cps (m+1) k = k (fib (m+1)).

let rec fib m=
if m=0 then 1

else
else

if m=1 then 1
fib (m—1) + fib (

let rec fib_cps m k =
if m=0 then k 1

else
else

if m=1 then k 1
fib_cps (m—1) (fun a —
fib_cps (m—2) (fun b —
k (atb)))

if m+1 =1 then k 1 else fib_cps m (fun a — (fun b — k (a+b)) (fib (m—1)))

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

Claim
For all m > 0,
for all k : int —int,
fib_cps m k = k (fib m).

Base case (m = 0): fib_cps 0 k =

Inductive step:

Correctness of CPS conversion for fib

Proof
By strong induction on m.

k 1=k (fib 0).

Assume for all n < m, k (fib n) = fib_cps n k.

We want to show: fib_cps (m+1)

k = k (fib (m+1)).

let

rec fib m =

if m=0 then 1

else if m= 1 then 1
else fib (m—1) + fib (

let rec fib_cps m k =

if m=0 then k 1

else if m=1 then k 1

else fib_cps (m—1) (fun a —
fib_cps (m—2) (fun b —
k (a+b)))

if m+1 =1 then k 1 else fib_cps m (fun a — (fun b — k (a+b)) (fib (m—1)))

= (inductive assumption for m and k = (fun a — (fun b — k (a+b)) (fib (m-1)))) ...

if m+1 =1 then k 1 else (fun a — (fun b — k (a-+b)) (fib (m—1))) (fib m)

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

Claim
For all m > 0,
for all k : int —int,

fib_cps m k = k (fib m).
Base case (m = 0): fib_cps 0 k =

Inductive step:

Assume for all n < m, k (fib n) =

Correctness of CPS conversion for fib

Proof
By strong induction on m.

k 1=k (fib 0).

fib_cps n k.

We want to show: fib_cps (m+1) k = k (fib (m+1)).

let rec fib m=
if m=0 then 1

else
else

if m=1 then 1
fib (m—1) + fib (

let rec fib_cps m k =
if m=0 then k 1

else
else

if m=1 then k 1
fib_cps (m—1) (fun a —
fib_cps (m—2) (fun b —
k (atb)))

if m+1 =1 then k 1 else (fun a — (fun b — k (a+b)) (fib (m—1))) (fib m)

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

Claim
For all m > 0,
for all k : int —int,
fib_cps m k = k (fib m).

Base case (m = 0): fib_cps 0 k =

Inductive step:

Correctness of CPS conversion for fib

Proof
By strong induction on m.

k 1=k (fib 0).

let

Assume for all n < m, k (fib n) = fib_cps n k.

We want to show: fib_cps (m+1)

k = k (fib (m+1)).

rec fib m =

if m=0 then 1

else if m= 1 then 1
else fib (m—1) + fib (

let rec fib_cps m k =

if m=0 then k 1

else if m=1 then k 1

else fib_cps (m—1) (fun a —
fib_cps (m—2) (fun b —
k (a+b)))

if m+1 =1 then k 1 else (fun a — (fun b — k (a+b)) (fib (m—1))) (fib m)

= (beta reduction x2) ...

if m+1 =1 then k 1 else k (fib m -+ fib (m—1))

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

Claim
For all m > 0,
for all k : int —int,
fib_cps m k = k (fib m).

Base case (m = 0): fib_cps 0 k =

Inductive step:

Assume for all n < m, k (fib n) =

Correctness of CPS conversion for fib

Proof
By strong induction on m.

k 1=k (fib 0).

fib_cps n k.

We want to show: fib_cps (m+1) k = k (fib (m+1)).

if m+1 =1 then k 1 else k (fib m + fib (m—1))

let

rec fib m =

if m=0 then 1

else if m= 1 then 1
else fib (m—1) + fib (

let rec fib_cps m k =

if m=0 then k 1

else if m=1 then k 1

else fib_cps (m—1) (fun a —
fib_cps (m—2) (fun b —
k (a+b)))

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

Correctness of CPS conversion for fib

let rec fib m=
if m=0 then 1
Proof else if m=1 then 1

Claim
else fib (m—1) + fib (

For allm > 0, By strong induction on m.

for all k : int —int,
. _ . let rec fib_cps m k =
fib_cps m k = k (fib m). ifm=—0 then k 1

. @4 _ _ . else if m=1 then k 1

Base case (m = 0): fib_cps @ k = k 1 = k (fib 0). else fib_cps (m-1) (fun a —
fib 2 f b —
Inductive step: kl (—aigj))(m_) (o
Assume for all n < m, k (fib n) = fib_cps n k.

We want to show: fib_cps (m+1) k = k (fib (m+1)).

if m+1 =1 then k 1 else k (fib m + fib (m—1))
= (if el then k e2 else k e3 = k (if el then e2 else e3)) ...

k (if m+1 =1 then 1 else fib m + fib (m—1))

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

Claim
For all m > 0,
for all k : int —int,
fib_cps m k = k (fib m).

Base case (m = 0): fib_cps 0 k =

Inductive step:

Assume for all n < m, k (fib n) =

Correctness of CPS conversion for fib

Proof
By strong induction on m.

k 1=k (fib 0).

fib_cps n k.

We want to show: fib_cps (m+1) k = k (fib (m+1)).

k (if m+1 =1 then 1 else fib m + fib (m—1))

let

rec fib m =

if m=0 then 1

else if m= 1 then 1
else fib (m—1) + fib (

let rec fib_cps m k =

if m=0 then k 1

else if m=1 then k 1

else fib_cps (m—1) (fun a —
fib_cps (m—2) (fun b —
k (a+b)))

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

Claim
For all m > 0,
for all k : int —int,
fib_cps m k = k (fib m).

Base case (m = 0): fib_cps 0 k =

Inductive step:

Assume for all n < m, k (fib n) =

Correctness of CPS conversion for fib

Proof
By strong induction on m.

k 1=k (fib 0).

fib_cps n k.

We want to show: fib_cps (m+1) k = k (fib (m+1)).

k (if m+1 =1 then 1 else fib m + fib (m—1))

= (definition of fib) ...
k (fib (m+1))

let rec fib m=
if m=0 then 1

else
else

if m=1 then 1
fib (m—1) + fib (

let rec fib_cps m k =
if m=0 then k 1

else
else

if m=1 then k 1
fib_cps (m—1) (fun a —
fib_cps (m—2) (fun b —
k (atb)))

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

Claim
For all m > 0,
for all k : int —int,
fib_cps m k = k (fib m).

Correctness of CPS conversion for fib

Proof
By strong induction on m.

Base case (m = 0): fib_cps @ k = k 1 = k (fib 0).

Inductive step:

Assume for all n < m, k (fib n) = fib_cps n k.
We want to show: fib_cps (m+1) k = k (fib (m+1)).

k (fib (m+1))

let rec fib m=

if m=0 then 1

else if m= 1 then 1
else fib (m—1) + fib (

let rec fib_cps m k =

if m=0 then k 1

else if m=1 then k 1

else fib_cps (m—1) (fun a —
fib_cps (m—2) (fun b —
k (a+b)))

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

Claim
For all m > 0,
for all k : int —int,
fib_cps m k = k (fib m).

Correctness of CPS conversion for fib

Proof
By strong induction on m.

Base case (m = 0): fib_cps @ k = k 1 = k (fib 0).

Inductive step:

Assume for all n < m, k (fib n) = fib_cps n k.
We want to show: fib_cps (m+1) k = k (fib (m+1)).

k (fib (m+1))
QED

let rec fib m=

if m=0 then 1

else if m= 1 then 1
else fib (m—1) + fib (

let rec fib_cps m k =

if m=0 then k 1

else if m=1 then k 1

else fib_cps (m—1) (fun a —
fib_cps (m—2) (fun b —
k (a+b)))

NB: We approximate OCaml functions by mathematical functions, ignoring side effects etc.

Defunctionalization

Defunctionalization properties

Defunctionalized programs have some useful properties:

No higher-order functions All values are data

e

All control-flow is first order Every function is named

Defunctionalization: example

. Add a constructor to fn for each fun type fn = Lt_three

. Replace each fun with its constructor | Gt of int

. Add a case to apply for each fun let apply fn x =
.. . match fn, x with
. Replace each application p x with apply p x | Lt_three, x —

| Gt y, x = x >

let rec filter p 1 = let rec filter p 1
match 1 with match 1 with
| [1 — [1 | [1 — [1
| x :: xs — | x :: xs —
if px if apply p x
then x :: filter p xs then x :: filter p xs
else filter p xs else filter p xs

let f 1y = let f 1y =
filter (fun x — x < 3) 1 filter Lt_three 1
@ filter (fun x — x > y) 1 @ filter (Gt y) 1

Defunctionalization: example

1. Add a constructor to fn for each fun ‘ type fn =[Lt_three]
2. Replace each fun with its constructor |

3. Add a case to apply for each fun let apply fn x =
.. . match fn, x with
4. Replace each application p x with apply p x | Lt_three, x —

| Gt y, x = x >

let rec filter p 1 = let rec filter p 1
match 1 with match 1 with
| [1 — [1 | [1 — [1
| x :: xs — | x :: xs —
if px if apply p x
then x :: filter p xs then x :: filter p xs
else filter p xs else filter p xs

let f 1y = let f 1y =
filter[(fun x — x < filter Lt_three 1
@ filter[(fun x — x > @ filter (Gt y) 1

Combining CPS & defunctionalization

Defunctionalizing fib_cps

let rec fib_cps m k =
if m=0 then k 1
else if m=1 then k 1
else fib_cps (m—1) (fun a — (x KI x)
flb _cps (m=2) (fun b — (*x K2 x)
k (at+b)))

let fib_1 x = fib_cps x (fun x — x) (x ID x)

To defunctionalize fib_cps, define a constructor for each fun:

type cont = ID | K1 of int x cont | K2 of int * cont

Constructor arguments are free variables, and we treat k2 as free in ki:

let k2 = fun a b — k (atb)

let k1 fun a — fib_cps (m—2) (k2 a)

Defunctionalized fib_cps

Now define an apply function of type cont —int —int

type cont = ID | K1 of int % cont | K2 of int * cont

let rec apply_cont k v = match k, v with
| ID, a — a

| KI (m, k), a — fib_cps_defun (m—2) (K2 (a, k))
| K2 (a, k), b — apply_cont k (a+b)

and call apply_cont at every application of a continuation:

and fib_cps_defun m k =
if m= 0 then apply_cont k 1
else if m= 1 then apply_cont k 1
else fib_cps_defun (m —1) (K1 (m, k))

let fib_2 m = fib_cps_defun m ID

Correctness of fib_cps defunctionalization

Claim
Let <c> represent a continuation ¢ : int — int constructed by fib_cps.
Then

apply_cont <c> m

fib_cps n c fib_cps_defun n <c>

(Proof left as an exercise)

Observation: continuations have list (stack) structure

type int_list = type cont =
NIL ID

| CONS of int = int_list | K1 of int % cont (%
| K2 of int % cont (%

Idea: replace cont with standard lists:

type tag = SUB2 of int (x Kl: k (at+b) *)
| PLUS of int (% K2: fib_cps (m—2) (k2 a) x)

type tag_list_cont = tag list

fib_cps_defun revisited, using lists for continuations

type tag = SUB2 of int | PLUS of int
type tag_list_cont = tag list
let rec apply_tag_list_cont k v = match k, v with

[, a — a
SUB2 m :: k, a — fib_cps_defun_tags (m—2) (PLUS a

PLUS a :: k, b — apply_tag_list_cont k (atb)

k)

fib_cps_defun_tags m k =
if m= 0 then apply_tag_list_cont k 1
else if m= 1 then apply_tag_list_cont k 1
else fib_cps_defun_tags (m—1) (SUB2 m :: k)

let fib_3 m = fib_cps_defun_tags m []

Mutual recursion

Mutual recursion ~~ single recursion

Source to
source
Mutual recursion can be eliminated using indexing.

Given a set of mutually-recursive functions:

let rec is_even n=n =0 || is_odd (n — 1)
and is_odd n = n <> 0 && is_even (n — 1)

define an index datatype with one constructor for each function:

type eo = Even | Odd

and define a function that maps an index argument to a corresponding body:

let rec is f n =
match f with
I | Even — n =0 || is Odd (n — 1)
Mutual | Odd — n <> 0 && is Even (n — 1)

recursion

(| NONORONG)

Mutual recursion ~ single recursion for fib

type state_type =
| FIB (* for right—hand—sides starting with fib_ x*)
| APP (% for right—hand—sides starting with apply_ x)

type state = (state_type x int x tag_list_cont) — int

(x eval acts as either apply_tag_list_cont or fib_cps_defun_tags x*)
let rec eval = function

| FIB, eval (APP, 1, k)

| FIB, eval (APP, 1, k)

| FIB, eval (FIB, m—1, SUB2 m :: k)

| APP, k — eval (FIB, m—2, PLUS a :: k)

| APP, k — eval (APP, a+b, k)

| APP,

Mutual let fib_4 m = eval (FIB, m, [])

recursion

(X _NONONG)

Eliminate tail recursion to obtain The Fibonacci Machine

(x step : state — state *)
let step = function
| FIB, 0, k — (APP, 1, k)
— (APP, 1, k)
(FIB, m—1, SUB2 m :: k)
UB2m :: k — (FIB, m—2, PLUS a :: k)

APP, b, PLUS a :: k — (APP, a+b, k)

— failwith "step runtime error!”

| k
| FIB, k —
| APP, S

|

| —

n

let rec driver = function (% clearly tail recursive! x)
| APP, a, [] — a
| state — driver (step state)

(* fib_5 : int — int x*)

let fib_5 m = driver (FIB, m, [])
Mutual
recursion

00000 (This version makes the tail-recursive structure very explicit.)

Tracing of fib_5 4

Source to

SO CE function

.k — (APP, 1, k)
.k — (APP, 1, k)
k — (FIB, m—1, SUB2 m :: k)
, SUB2 m :: k — (FIB, m=2, PLUS a :: k)
; SUB2 4] , b, PLUS a :: k — (APP, atb, k)
; SUB2 4]
; SUB2 4]
; SUB2 4]

N
S0 ()

NN W= = NN W

w
P i)

Mutual
recursion

4
3
2
1
1
0
1
2
1
1
3
2
1
1
0
1
2
5

00000

Current state

Source to
source

We turned the recursive fib into a function that uses no OCaml stack space
The transformed fib function carries its own stack as an extra argument

We transformed fib incrementally, with each step easily proved correct

Mutual
recursion

Next time: application to interpreter 0

