
Compiler Construction
Lecture 6: SLR(1) and LR(1)

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk

Lent 2026

Recap &
plan

DFA

SLR(1)

Parsing
with states

SLR(1)
limits

LR(1)

Bottom-up parsing components

Configurations $α,w$ with actions:

$α, xw$ shift x−−−→ $αx,w$
$αβ,w$ reduce A→β−−−−−−−→ $αA,w$

Items A → β • γ with transitions:

A → β•cγ A → βc•γ

A → β•Bγ A → βB•γ

A → β•Bγ B → •αi

c

B

ϵ

A parsing algorithm:
c := NextToken()
while true:

α := the stack
if A → β•cγ ∈ δG(q0, α)

then shift c; c := NextToken()
if A → β• ∈ δG(q0, α)

then reduce via A → β

if S → β• ∈ δG(q0, α)
then accept (if no more input)

if none of the above
then error

} non-determ
inistic

Recap &
plan

DFA

SLR(1)

Parsing
with states

SLR(1)
limits

LR(1)

Using the NFA

S → •E S → E•

E → •E + T E → •T

E → E• + T T → •F

T → •T ∗ FE → E + •T

E → E + T•

E → T•

T → F•

F → •(E)

F → •id

T → T• ∗ F T → T ∗ •F

F → (•E)

F → (E•)

F → (E)•

F → id•

T → T ∗ F•

E

ϵ

ϵ

ϵ

E

ϵ

ϵ

+

T

ϵ

ϵ

T

F

T

ϵ

*

ϵ

ϵ

(
E

)

ϵϵ

id

F

ϵ

ϵ

stack input
$ (x + y)$
$(x + y)$
$(x +y)$
$(F +y)$
$(T +y)$
$(E +y)$
$(E+ y)$
$(E + y)$
$(E + F)$
$(E + T)$
(E)
$(E) $
$F $
$T $
$E $
$S $

Example: δG(S → •E,E + F) = {T → F•}, so reduce with T → F.
Example: δG(S → •E, (E) = {F → (E•)}, so shift).

Recap &
plan

DFA

SLR(1)

Parsing
with states

SLR(1)
limits

LR(1)

Making the algorithm deterministic

Two sources of nondeterminism:

1. The NFA

F → •(E)

F → (•E)

T → •F

F → •id

ϵ

(ϵ

Solution: convert to a DFA

T → •F
F → •(E)
F → •id

F → (•E)
(

2. Conflicts

$αE + T, x$ reduce E→E+T−−−−−−−−−→
$αE + T, x$ reduce E→T−−−−−−−→
$αE + T, x$ shift x−−−→

Solution: make a deterministic choice

using the input using the grammar
(lookahead) (first and follow)

Two approaches: SLR(1) and LR(1)

The DFA

Recap &
plan

DFA

SLR(1)

Parsing
with states

SLR(1)
limits

LR(1)

The easy part: NFA → DFA

S → E
E → E + T | T
T → T ∗ F | F
F → (E) | id

Grammar G′
2

S → •E
E → •E + T
E → •T
T → •T ∗ F
T → •F
F → •(E)
F → •id

DFA start state = ϵ−closure({S → •E}) =

Transition function:

δ(I,X) = ϵ−closure({A → αX•β | A → α•Xβ ∈ I})

(NB: this is just the powerset/subset construction for converting NFAs to DFAs.)

Recap &
plan

DFA

SLR(1)

Parsing
with states

SLR(1)
limits

LR(1)

Some DFA transitions for grammar G2

S → E
E → E + T | T
T → T ∗ F | F
F → (E) | id

Grammar G′
2

F → (•E)
E → •E + T
E → •T
T → •T ∗ F
T → •F
F → •(E)
F → •id

E → T•
T → T• ∗ F

F → (E•)
E → E•+ T

F → id •

T → F•

T

E

id

F

(

Recap &
plan

DFA

SLR(1)

Parsing
with states

SLR(1)
limits

LR(1)

Full DFA for the stack language of G2

S → •E
E → •E + T
E → •T
T → •T ∗ F
T → •F
F → •(E)
F → •id

S → E•
E → E•+ T

E → E + •T
T → •T ∗ F
T → •F
F → •(E)
F → •id

E → E + T•
T → T• ∗ F

E → T•
T → T• ∗ F

F → id•

F → (•E)
E → •E + T
E → •T
T → •T ∗ F
T → •F
F → •(E)
F → •id

T → F•

T → T ∗ •F
F → •(E)
F → •id

F → (E•)
E → E•+ T

F → (E)•

T → T ∗ F•

I0 I1

I10

I11

I2

I3

I4

I5

I6

I7

I8

I9
E + T

F

F

)

∗

E(

id

T

(

+

F

(

id
id

id

∗T

F

Adapted from Compilers
(Aho, Lam, Sethi, Ullman)

SLR(1)

Recap &
plan

DFA

SLR(1)

Parsing
with states

SLR(1)
limits

LR(1)

Resolving shift/reduce conflicts

The state I2 has a shift/reduce conflict.

E → T•
T → T• ∗ F

I2

The Simple LR(1) approach resolves the conflict using the next token c:

shift
if c = ∗

reduce with E → T
only if c ∈ follow(E) = {(,+, $}.

Recap &
plan

DFA

SLR(1)

Parsing
with states

SLR(1)
limits

LR(1)

Deterministic SLR(1) parsing

Recall: when the stack contains α, the parser is in state δ(I0, α). For example,

δ(I0,E + T) = I9

S → •E
E → •E + T
E → •T
T → •T ∗ F
T → •F
F → •(E)
F → •id

S → E•
E → E•+ T

E → E + •T
T → •T ∗ F
T → •F
F → •(E)
F → •id

E → E + T•
T → T• ∗ F

I0 I1 I6 I9
E + T

Let I be the current state and c the next token. Then:
1. When A → β•cγ ∈ I then shift c onto stack

2. When A → β• ∈ I and c ∈ follow(A) then reduce with A → β

Recap &
plan

DFA

SLR(1)

Parsing
with states

SLR(1)
limits

LR(1)

Replay parsing of (x + y) using SLR(1) actions

stack, input state action reason
$ (x + y)$ I0 shift (F → •(E) ∈ δ(I0, ϵ) = I0
$(x + y)$ I4 shift x F → •id ∈ δ(I0, () = I4
$(x +y)$ I5 reduce F → id "+" ∈ follow(F)
$(F +y)$ I3 reduce T → F "+" ∈ follow(T)
$(T +y)$ I2 reduce E → T "+" ∈ follow(E)
$(E +y)$ I8 shift + E → E•+ T ∈ δ(I0, (E) = I8
$(E+ y)$ I6 shift y F → •id ∈ δ(I0, (E+) = I6
$(E + y)$ I5 reduce F → id ")" ∈ follow(F)
$(E + F)$ I3 reduce T → F ")" ∈ follow(T)
$(E + T)$ I9 reduce E → E + T ")" ∈ follow(E)
(E) I8 shift) E → (E•) ∈ δ(I0, (E) = I8
$(E) $ I11 reduce F → (E) "$" ∈ follow(F)
$F $ I3 reduce T → F "$" ∈ follow(T)
$T $ I2 reduce F → E "$" ∈ follow(E)
$E $ I1 reduce S → E "$" ∈ follow(S)
$S $ accept!

Parsing with states

Recap &
plan

DFA

SLR(1)

Parsing
with states

SLR(1)
limits

LR(1)

Idea: don’t restart the DFA at every step

Previous approach

Maintain a stack of symbols

$ (E + id
At each step:

Use the full stack
to find items

New approach

Maintain a stack of states

0 4 1 6 5

At each step:

Use the top of the stack
to find actions

Recap &
plan

DFA

SLR(1)

Parsing
with states

SLR(1)
limits

LR(1)

LR parsing with DFA states on the stack

tok := NextToken()
while true:

state := TopStackState()
if action[state, tok] = shift state

then push state
tok := NextToken()

else if action[state, tok] = reduce A → β

then pop |β| states
push goto[TopStackState(),A]

else if action[state, tok] = accept
then accept and exit

else error

Recap &
plan

DFA

SLR(1)

Parsing
with states

SLR(1)
limits

LR(1)

Constructing ACTION and GOTO for SLR(1)

If A → α•aβ ∈ Ii and δ(Ii, a) = Ij
then action[i, a] = shift j.

If A → α• ∈ Ii and A ̸= S
then for each a ∈ follow(A),

action[i, a] = reduce A → α

If S → α• ∈ Ii
then action[i, $] = accept

If δ(Ii,A) = Ij
then goto[i,A] = j

(action resolves conflicts; goto records nonterminal transitions Ii A−→ Ij)

Recap &
plan

DFA

SLR(1)

Parsing
with states

SLR(1)
limits

LR(1)

ACTION and GOTO for G′
2

Adapted from Compilers
(Aho, Lam, Sethi, Ullman)

State Action Goto
id + ∗ () $ E T F

0 s5 s4 1 2 3
1 s6 acc
2 r2 s7 r2 r2
3 r4 r4 r4 r4
4 s5 s4 8 2 3
5 r6 r6 r6 r6
6 s5 s4 9 3
7 s5 s4 10
8 s6 s11
9 r1 s7 r1 r1
10 r3 r3 r3 r3
11 r5 r5 r5 r5

Recap &
plan

DFA

SLR(1)

Parsing
with states

SLR(1)
limits

LR(1)

Example parse

Stack Symbols Input Action
0 id ∗ id + id$ shift
0 5 id ∗ id + id$ reduce F → id goto[0,F] = 3
0 3 F ∗ id + id$ reduce T → F goto[0,T] = 2
0 2 T ∗ id + id$ shift
0 2 7 T ∗ id + id$ shift
0 2 7 5 T ∗ id + id$ reduce F → id goto[7,F] = 10
0 2 7 10 T ∗ F + id$ reduce T → T ∗ F goto[0,T] = 2
0 2 T + id$ reduce E → T goto[0,E] = 1
0 1 E + id$ shift
0 1 6 E + id$ shift
0 1 6 5 E + id $ reduce F → id goto[6,F] = 3
0 1 6 3 E + F $ reduce T → F goto[6,T] = 9
0 1 6 9 E + T $ reduce E → E + T goto[0,E] = 1
0 1 E $ accept

Adapted from Compilers
(Aho, Lam, Sethi, Ullman)

The limits of SLR(1)

Recap &
plan

DFA

SLR(1)

Parsing
with states

SLR(1)
limits

LR(1)

The limits of SLR(1)

A new example grammar (for assignment expressions):

G4 = ⟨N4,T4,P4, S′⟩

N4 = {S′, S, L,R}

T4 = {∗, :=, id}

P4 : S′ → S $
S → L := R | R
L → ∗R | id
R → L

Recap &
plan

DFA

SLR(1)

Parsing
with states

SLR(1)
limits

LR(1)

LR(0) DFA for grammar G4

R → •L
L → • ∗ R
L → •i
S → •L := R
S → •R
S′ → •S

S′ → S•

R → L•
S → L• := R

S → R•

R → •L
L → • ∗ R
L → •i
S → L := •R

S → L := R• R → L•

R → •L
L → • ∗ R
L → ∗•R
L → •i

L → ∗R•

L → i•

I0

I3

I4

I5

I6

I8 I7

I1

I9

I2

S

L

R

:=

R

∗

L

∗

i
i

i

R

L

∗

Ambiguity
In state 4 there is a shift/reduce conflict
between S → L• := R and R → L•

Recap &
plan

DFA

SLR(1)

Parsing
with states

SLR(1)
limits

LR(1)

SLR(1) cannot resolve this conflict.

Suppose we see := in the input in state I4. Then:

shifting is valid

Since S → L• := R ∈ I4,
and δ(I4, ”:=”) = I6,

action[4, ”:=”] = shift 6

reducing is valid

Since R → L• ∈ I4
and ”:=” ∈ follow(R),

action[4, ”:=”] = reduce R → L

LR(1)

Recap &
plan

DFA

SLR(1)

Parsing
with states

SLR(1)
limits

LR(1)

Beyond SLR(1): LR(1)

With SLR(1) there may be

shift-reduce
conflicts

reduce-reduce
conflicts

when action and goto are not uniquely defined.

Options: fix the grammar, or use a more powerful parsing technique.
LR(1) parsing extends LR(0) items with an explicit lookahead token a:

A → α•β, a

}} }
LR(1) item

LR(0) item lookahead token

Recap &
plan

DFA

SLR(1)

Parsing
with states

SLR(1)
limits

LR(1)

Define an NFA with LR (1) items as states

A → α•cβ, a A → αc•β, a

A → α•Bβ, a A → αB•β, a

A → α•Bβ, a B → •γ, b

For each b ∈ first(βa):

c

B

ϵ

Recap &
plan

DFA

SLR(1)

Parsing
with states

SLR(1)
limits

LR(1)

LR(1) DFA for grammar G4

L → • ∗ R, :=
L → •i, :=
R → •L, $
L → • ∗ R, $
L → •i, $
S → •L := R, $
S → •$, $
S′ → •S, $

S′ → S•, $

R− → •L, :=
L → ∗•R, :=
L → • ∗ R, :=
L → •i, :=
R → •L, $
L → ∗•R, $
L → • ∗ R, $
L → •i, $

R → L•, $
S → L• := R, $

S → R•, $

L → i•, :=
L → i•, $

L → ∗R•, :=
L → ∗R•,

R → L•, :=
R → L•, $

R → •L, $
L → • ∗ R, $
L → •i, $
S → L := •R, $

R → •L, $
L → ∗•R, $
L → • ∗ R, $
L → •i, $

S → L := R•,

L → i•, $

L → ∗R•, $

R → L•, $

S0 S1

S10

S11

S12

S13

S2

S3

S4

S5

S6

S7

S8

S9

S i

∗

L

R

∗
i

R

L

:=

i

∗

L
R

∗ i

R

L

No ambiguity.
Reduce R → L only if next token is $.
Shift only if next token is :=.

Recap &
plan

DFA

SLR(1)

Parsing
with states

SLR(1)
limits

LR(1)

Constructing ACTION and GOTO for LR(1)

If [A → α•aβ, b] ∈ Ii and δ(Ii, a) = Ij
then action[i, a] = shift j.

If [A → α•, b] ∈ Ii and A ̸= S,
then action[i, b] = reduce A → α

If [S → α•, $] ∈ Ii
then action[i, $] = accept

If δ(Ii,A) = Ij
then goto[i,A] = j.

Key change from SLR(1): use lookahead (i.e. first), not follow, to select reduce actions

Recap &
plan

DFA

SLR(1)

Parsing
with states

SLR(1)
limits

LR(1)

SLR(1) vs LR(1)

If [A → α•] ∈ Ii and A ̸= S
then for each a ∈ follow(A),

action[i, a] = reduce A → α

SLR(1)
If [A → α•, b] ∈ Ii and A ̸= S

then
action[i, b] = reduce A → α

LR(1)

NB: b used only for reductions, not for shifts

LR(1) more powerful than SLR(1)
LR(1) DFA may have a very large number of states.
LALR1 optimises DFA, collapsing states (but can give strange error messages)

1Implemented in yacc; not covered here

Next time: translation

	Recap & plan
	DFA
	SLR(1)
	Parsing with states
	SLR(1) limits
	LR(1)

