Compiler Construction

Lecture 6: SLR(1) and LR(1)

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk
Lent 2026

SLR(1)

Parsing
with states

SLR(1)
limits

LR(1)

Bottom-up parsing components

Configurations $«, w$ with actions: A parsing algorithm:
¢ := NextToken()
while true:

$aA, wh « := the stack

or, xw Shift x, $ax, wh
$Oéﬂ W$ reduce A—f
k)

Items A — (5 e v with transitions: if A— Becy € d6(qo,)
then SHIFT ¢; ¢ := NextToken()

4 e € la

then REDUCE via A — f3
if S— Be € dc(qo,)

A — [BeBy B A — 3Bery then ACCEPT (if no more input)

213S1UIWA]dP-UoU

if none of the above
then ERROR

Using the NFA

SLR(1)

Parsing
with states

T €
SI:-HIT'(ti) [T — Te * F)—>[T~> T * -FH

Example: §5(S — oE, E+ F) = {T — Fe}, so reduce with T — F.
Example: 06(S — oE, (E) = {F — (Ee)}, so shift).

LR LR LR LD LD LD LD L PRSP

LR(1)

Making the algorithm deterministic

Two sources of nondeterminism:
1. The NFA 2. Conflicts

$05E—|- T X$ reduce E5E+ T
5 —_—

$SaE+ T, x$
$SaE+ T, x$

Solution: make a deterministic choice

reduce E—T
_—

shift x
—

using the input using the grammar
(lookahead) (FIRST and FOLLOW)

Two approaches: SLR(1) and LR(1)

The DFA

The easy part: NFA — DFA

Recap &

/
plan Grammar G,

S—E
S oF E—-E+T|T

DFA T T+F|F
E—eE+T F— (E)|id

®0O E—eT
DFA start state = e—closure({S — ¢E}) = | T — oTx F
T— eoF
F— o(E)

Parsing F — eid
with states

SLR(1)

Transition function:

SLR(1) d(1, X) = e—closure({A — aXef | A= aeXB € I})

limits

LR(1) (NB: this is just the powerset/subset construction for converting NFAs to DFAs.)

Some DFA transitions for grammar G,

Recap &

"/
plan Grammar G,

S—E
S E—-E+T|T
DFA T— T«F|F
F— (E)|id
[X NGO

E—eE+ T
E—eT
Parsing T— eTxF
with states T — oF
F — (Ee) F— o(E)
SLR(1) E— Ee+ T F — eid

limits

B (o e L9 (e

LR(1)

Full DFA for the stack language of G

Recap &

h— ls Iy
plan E S— Ee E—E+eT E— E+ Te
E— Ee+ T T—eTxF T— TexF

T— oF
F— o(E)

DFA lp —— F oid
T E— Te — -
(Y X) T— TexF I7

T— TxeF
F— o(E)

ho
Is . (
— M F— eid T— TxFe
F — ide

SLR(1)

id
. id
Parsing Ig

h1
with states F — (Ee) F— (E)e

+| E>Ee+ T

SLR(1)
limits

LR(1)

Adapted from Compilers
(Aho, Lam, Sethi, Ullman)

SLR(1)

Resolving shift/reduce conflicts

The state k, has a shift/reduce conflict.
I
E— Te
StR(1) T TexF

® OO
The Simple LR(1) approach resolves the conflict using the next token c:

shift reduce with E— T
if c=x only if c € FoLLOW(E) = {(, +, $}.

Recap &
plan

SLR(1)

0O

Parsing
with states

SLR(1)
limits

LR(1)

Deterministic SLR(1) parsing

Recall: when the stack contains «, the parser is in state d(ly,). For example,

h ls Iy
E | S— Ee + | ESE+eT | T | ESE+Te
E— Ee+ T T—eTxF T— Tex F
T — oF

F— o(E)
F — eid

Let / be the current state and ¢ the next token. Then:
1. When A — PBecy € [then shift c onto stack

2. When A — fe € [and c € FOLLOW(A) then reduce with A —

Replay parsing of (x+ y) using SLR(1) actions

action reason

shift (

shift x

reduce F — id
reduce T — F
reduce E— T
shift +

'Y X) shift y

reduce F — id
reduce T — F
reduce E — E-
shift)

reduce F — (E
reduce T — F
reduce F — E
reduce S — E

SLR(1)

Parsing with states

Previous approach

Maintain a stack of symbols

$(E+ id
Parsing At each step:
with states
| JONONONG) Use the full stack
to find items

: don’t restart the DFA at every step

New approach

Maintain a stack of states
04165
At each step:

Use the top of the stack
to find actions

Recap &
plan

SLR(1)

Parsing
with states
0000

SLR(1)
limits

LR(1)

LR parsing with DFA states on the stack

tok := NextToken()
while true:
state := TopStackState()
if ACTION([state, tok] = SHIFT state

then push state
tok := NextToken()

else if ACTION]state, tok] = REDUCE A —

then pop || states
push GOTO[TopStackState(), A

else if ACTION][state, tok] = ACCEPT
then accept and exit

else ERROR

Recap &
plan

SLR(1)

Parsing
with states
0000

SLR(1)
limits

LR(1)

Constructing ACTION and GOTO for SLR(1)

If A— aeafp € l;and 6(l;,a) = |;
then ACTION[/, a] = SHIFT j.
IfA—aecliand A#S
then for each a € FOLLOW(A),
ACTION[/, a] = REDUCE A — «
If S— ae € [;
then ACTION[/, §] = ACCEPT
If 6(1;, A) = I;
then coToli, A] = j

. . " A
(ACTION resolves conflicts; GOTO records nonterminal transitions /; — I;)

ACTION and GOTO for G,

Recap &
plan

ACTION

* ()
4

o

SLR(1)

Parsing
with states
(N X N NO)

SLR(1)

limits

1
2
3
4
)
6
7
3
9

— =
= O

LR(1)
Adapted from Compilers
(Aho, Lam, Sethi, Ullman)

Example parse

Recap &
plan

SYMBOLS INPUT | ACTION

id * id + id$ | shift

id xid +id$ | reduce F — id
F xid +id$ | reduce T — F
T x id + id$ | shift

T * id + id$ | shift

reduce F — id
TxF i reduce T— Tx F
T i reduce E— T
E i shift

E+ i shift

reduce F — id
reduce T — F

SLR(1)

Parsing
with states
00000

SLR(1)

limits

accept
LR(1)

Adapted from Compilers
(Aho, Lam, Sethi, Ullman)

The limits of SLR(1)

Recap &
plan

SLR(1)

Parsing
with states

limits

SLR(1)
 YoXo)

LR(1)

The limits of SLR(1)

A new example grammar (for assignment expressions):

Gy = (Ny, Ty, Py, S)
Ny = {5’, S, L, R}
T4 = {*, =, Id}

P4Z 5/—>5$
S—»L:=R|R
L— xR |id
R— L

LR(0) DFA for grammar G,

Recap &
plan

Ambiguity
In state 4 there is a shift/reduce conflict
between S — Le := Rand R — Le

Iy
R — Le
S—Lle:=R

SLR(1)

Parsing
with states

limits

SLR(1)
' ¥ Xo)

LR(1)

SLR(1) cannot resolve this conflict.

Suppose we see := in the input in state /4. Then:
shifting is valid reducing is valid
Since S — Le := R € Iy, Since R— Le € I4
and d(ly, ":=") = I, and ":=" € FOLLOW(R),

ACTION[4, ":="] = shift 6 ACTION[4,":="] = reduce R — L

LR(1)

Recap &
plan

SLR(1)

Parsing
with states

SLR(1)
limits

LR(1)

(| NONONONG)

Beyond SLR(1)

With SLR(1) there may be

shift-reduce reduce-reduce
conflicts conflicts

when ACTION and GOTO are not uniquely defined.

Options: fix the grammar, or use a more powerful parsing technique.

LR(1) parsing extends LR(0) items with an explicit lookahead token a:
LR(1) item
T

A— «aef3,a

SY—
LR(0) item lookahead token

Define an NFA with LR (1) items as states

Recap &
plan

Aasdis)— (A a3
B

SLR(1)

Parsing
with states

For each b € FIRST(Sa):
SLR(1)

LR(1)
[X _NONOX®

Recap &
plan

SLR(1)

Parsing
with states

SLR(1)
limits

LR(1)
000000

LR(1) DFA for grammar G,

No ambiguity.
Reduce R — L only if next token is $.
Shift only if next token is :=.

Constructing ACTION and GOTO for LR(1)

If [A— aeaB, b] € ljand §(l;,a) = |;
then ACTION[/, a] = SHIFT .
If [A— e, b| € [iand A # S,
then ACTION[/, b = REDUCE A — «
If [S— e, 8] €[
then ACTION[/, §] = ACCEPT
If 6(1, A) = I;
then coToli, A] = J.

Key change from SLR(1): use lookahead (i.e. FIRST), not FOLLOW, to select REDUCE actions

SLR(1) vs LR(1)

SLR(1) LR(1)
If [A— el €ljand A#£S If [A— ae, bl € ljand A#S

then for each a € FOLLOW(A), then
ACTION]/, a] = reduce A — a ACTION[i, b] = reduce A — «

NB: b used only for reductions, not for shifts

LR(1) more powerful than SLR(1)

LR(1) DFA may have a very large number of states.
LALR! optimises DFA, collapsing states (but can give strange error messages)

!Implemented in yacc; not covered here

Next time: translation

	Recap & plan
	DFA
	SLR(1)
	Parsing with states
	SLR(1) limits
	LR(1)

