

Compiler Construction

Lecture 5: Foundations of LR parsing

Jeremy Yallop

jeremy.yallop@cl.cam.ac.uk

Lent 2026

Derivations

Recap: example grammars

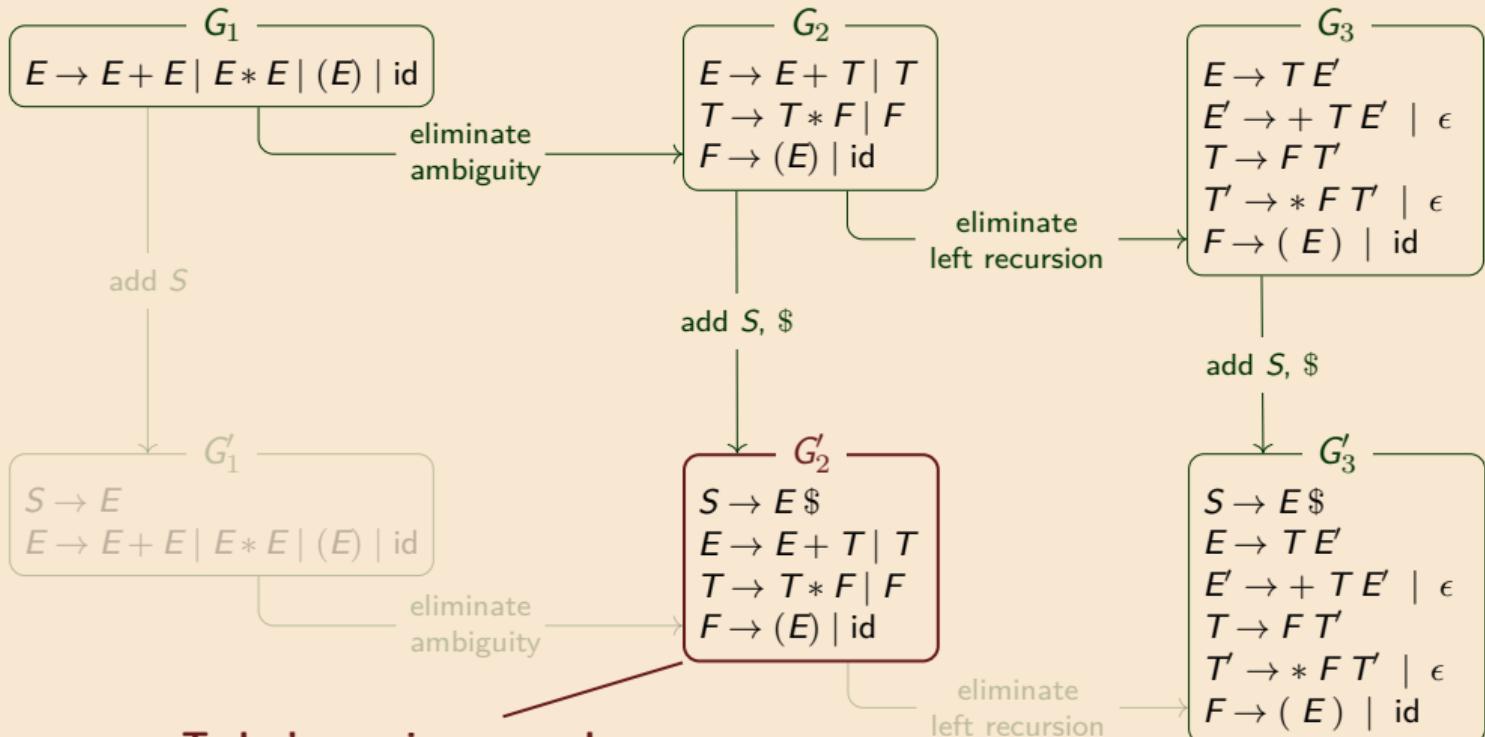
Derivations

Formalisation

Shift & reduce

Items

Key idea



Leftmost vs rightmost derivations

Derivations

Formalisation

$$wA\alpha \Rightarrow_{Im} w\beta\alpha$$

(basis of top-down (**LL**) parsing)

Rightmost derivation step:

$$\alpha A w \Rightarrow_{rm} \alpha\beta w$$

(basis of bottom-up (**LR**) parsing)

Shift & reduce

where

$$w \in T^*$$

$$\alpha, \beta \in (N \cup T)^*$$

$$A \rightarrow \beta \in P$$

Items

Key idea

***Bottom-up* parsers perform the derivation in reverse**

Derivations

Formalisation

Shift & reduce

Items

Key idea

<i>S</i>	\Rightarrow_{rm}	E	Rightmost derivation
	\Rightarrow_{rm}	T	
	\Rightarrow_{rm}	F	
	\Rightarrow_{rm}	(E)	
	\Rightarrow_{rm}	(<i>E</i> + T)	
	\Rightarrow_{rm}	(<i>E</i> + F)	
	\Rightarrow_{rm}	(E + <i>y</i>)	
	\Rightarrow_{rm}	(T + <i>y</i>)	
	\Rightarrow_{rm}	(F + <i>y</i>)	
	\Rightarrow_{rm}	(<i>x</i> + <i>y</i>)	

Bibl. etmanat

flip!

Reversed lightfoot derivation 16

— parsing direction —→

Backwards derivation \rightsquigarrow stack machine execution

Derivations

Formalisation

Shift & reduce

Items

Key idea

$(x + y) \Leftarrow$
 $(F + y) \Leftarrow$
 $(T + y) \Leftarrow$
 $(E + y) \Leftarrow$
 $(E + F) \Leftarrow$
 $(E + T) \Leftarrow$
 $(E) \Leftarrow$
 $F \Leftarrow$
 $T \Leftarrow$
 $E \Leftarrow S$

View reversed derivation
as a stack machine

$S \rightarrow E \$$ G'_2
 $E \rightarrow E + T \mid T$ $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid \text{id}$

stack	input
\$	$(x + y) \$$
$\$(F$	$+y) \$$
$\$(T$	$+y) \$$
$\$(E$	$+y) \$$
$\$(E + F$	$) \$$
$\$(E + T$	$) \$$
$\$(E)$	\$
\$F	\$
\$T	\$
\$E	\$
\$S	\$

Formalisation

Derivations

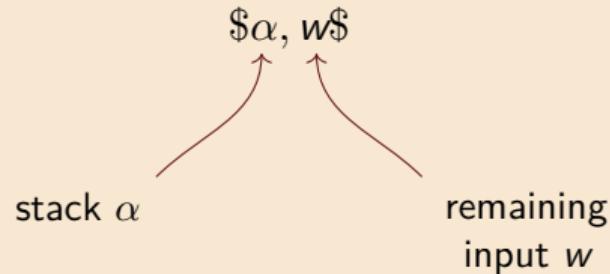
Formalisation

Shift & reduce

Items

Key idea

An **LR parser configuration** has the form



The configuration is **valid** when there exists a rightmost derivation of the form

$$S \xRightarrow{^*_{rm}} \alpha w$$

(NB: stacks now grow *rightwards*.)

Derivations

Formalisation

Shift & reduce

Items

Key idea

There may be **lots of possible steps** from each configuration.

Suppose:

$$\alpha A w \Rightarrow_{rm} \alpha \beta B z w$$

One possible step between configurations replaces $\beta B z$ with A on top of the stack:

$$\$ \alpha \beta B z, w \$ \xrightarrow[A \rightarrow \beta B z]{\text{reduce}} \$ \alpha A, w \$$$

This action is called a **reduction** using production $A \rightarrow \beta B z$.

Reductions are not sufficient

Derivations

Formalisation

Shift &
reduce

Items

Key idea

Suppose we have the derivation:

$$\begin{aligned} & \alpha A w \\ \Rightarrow_{rm} & \alpha \beta B z w \quad (\text{using } A \rightarrow \beta B z) \\ \Rightarrow_{rm} & \alpha \beta \gamma z w \quad (\text{using } B \rightarrow \gamma) \end{aligned}$$

The reverse simulation gets stuck:

$$\begin{array}{c} \$ \alpha \beta \gamma, z w \$ \\ \xrightarrow[B \rightarrow \gamma]{\text{reduce}} \$ \alpha \beta B, z w \$ \\ \xrightarrow{\text{???}} \text{???} \end{array}$$

We have βB on top of the stack, but
we want $\beta B z$ on top of the stack.

Derivations

A **shift** action shifts a terminal onto the stack.

Formalisation

Shift & reduce

$$\begin{array}{ll}
 \alpha \textcolor{brown}{A} w & \$\alpha\beta\gamma, zw\$ \\
 \xrightarrow{rm} \alpha\beta B zw \quad (\text{using } \textcolor{brown}{A} \rightarrow \beta B z) & \xrightarrow{\substack{\text{reduce} \\ B \rightarrow \gamma}} \$\alpha\beta B, \textcolor{brown}{z} w\$ \\
 \xrightarrow{rm} \alpha\beta\gamma zw \quad (\text{using } \textcolor{brown}{B} \rightarrow \gamma) & \xrightarrow{\substack{\text{shift} \\ z}} \$\alpha\beta B \textcolor{brown}{z}, w\$ \\
 & \xrightarrow{\substack{\text{reduce} \\ A \rightarrow \beta B z}} \$\alpha A, w\$ \\
 \end{array}$$

Items

Q: *How do we know when to stop shifting?*
 (e.g. here we don't want to shift w)

Key idea

Derivations

Formalisation

Shift & reduce

Items

Key idea

Derivation

$\alpha BwA z$
 $\Rightarrow_{rm} \alpha Bw y z$ (using $A \rightarrow y$)
 $\Rightarrow_{rm} \alpha \gamma w y z$ (using $B \rightarrow \gamma$)

Our parser's possible actions:

$\$ \alpha \gamma, w y z \$$
 $\xrightarrow{\text{reduce}} \$ \alpha B, w y z \$$
 $\xrightarrow{B \rightarrow \gamma} \$ \alpha B w, y z \$$
 $\xrightarrow{\text{shift}}$
 $\xrightarrow{w} \$ \alpha B w y, z \$$
 $\xrightarrow{\text{shift}}$
 $\xrightarrow{y} \$ \alpha B w y, z \$$
 $\xrightarrow{\text{reduce}}$
 $\xrightarrow{A \rightarrow y} \$ \alpha B w A, z \$$

Again: *how do we know when to reduce and when to stop shifting?*

Shift & reduce

Derivations

It appears that if we have a derivation

Formalisation

$$S \xrightarrow{^*_{rm}} w$$

we can always “replay” it in reverse using shift/reduce actions:

Shift &
reduce

● ○ ○ ○

Items

$$$, w \$ \rightarrow^* \$ S, \$$$

i.e. **shift and reduce are sufficient.**

Key idea

However, we have used the desired derivation to guide the “replay”.

When parsing there is no derivation available in advance.

So **our parser is non-deterministic**: it must *guess* what the future holds.

Replay parsing of $(x + y)$ using shift/reduce actions

Derivations

Formalisation

Shift & reduce

Items

Key idea

top of stack X next input token a

stack	input	action[X, a]	stack	input	action[X, a]
\$	$(x + y)\$$	shift ($\$(E + F$)\$	reduce $T \rightarrow F$
$\$($	$x + y)\$$	shift x	$\$(E + T$)\$	reduce $E \rightarrow E + T$
$\$(x$	$+y)\$$	reduce $F \rightarrow id$	$\$(E$)\$	shift)
$\$(F$	$+y)\$$	reduce $T \rightarrow F$	$\$(E)$	\$	reduce $F \rightarrow (E)$
$\$(T$	$+y)\$$	reduce $E \rightarrow T$	$\$F$	\$	reduce $T \rightarrow F$
$\$(E$	$+y)\$$	shift +	$\$T$	\$	reduce $E \rightarrow T$
$\$(E+$	$y)\$$	shift y	$\$E$	\$	reduce $S \rightarrow E$
$\$(E + y$)\$	reduce $F \rightarrow id$	$\$S$	\$	accept!

$S \rightarrow E \$$
 $E \rightarrow E + T \mid T$
 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid id$

Aside: shift and reduce construct trees

Derivations

shift (

shift x

reduce $F \rightarrow id$

reduce $T \rightarrow F$

reduce $E \rightarrow T$

shift +

shift y

reduce $F \rightarrow id$

reduce $T \rightarrow F$

reduce $E \rightarrow E + T$

shift)

reduce $F \rightarrow (E)$

reduce $T \rightarrow F$

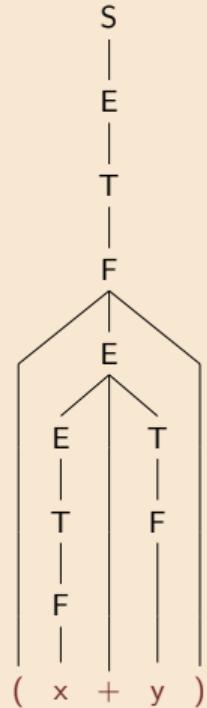
reduce $E \rightarrow T$

reduce $S \rightarrow E$

Shift &
reduce

Items

Key idea



$S \rightarrow E \$$

$E \rightarrow E + T$

$E \rightarrow T$

$T \rightarrow T * F$

$T \rightarrow F$

$F \rightarrow (E)$

$F \rightarrow id$

How do we decide when to shift or reduce?

Derivations

Formalisation

Shift &
reduce

Items

Key idea

Suppose $A \rightarrow \beta\gamma$ is a production. In the configuration

$$\$ \alpha \beta \gamma, x \$$$

we *might* want to reduce with $A \rightarrow \beta\gamma$.

However, if we have

$$\$ \alpha \beta, x \$$$

we *might* want to continue parsing,
hoping to eventually have $\beta\gamma$ on top of the stack,
so that we can then reduce to A .

Items

Derivations

LR(0) items record how much of a production's RHS is already parsed.

Formalisation

For every grammar production

$$A \rightarrow \beta\gamma \quad (\beta, \gamma \in (N \cup T)^*)$$

Shift & reduce

there is an LR(0) item

$$A \rightarrow \beta \bullet \gamma$$

$$A \rightarrow \beta \bullet \gamma$$

means: we've parsed input x derivable from β
we *might* next see input derivable from γ

Key idea

LR(0) items for G_2

Derivations

Formalisation

$$S \rightarrow \bullet E$$

$$S \rightarrow E \bullet$$

$$E \rightarrow \bullet E + T$$

$$E \rightarrow E \bullet + T$$

$$E \rightarrow E + \bullet T$$

$$E \rightarrow E + T \bullet$$

$$T \rightarrow \bullet T * F$$

$$T \rightarrow T \bullet * F$$

$$T \rightarrow T * \bullet F$$

$$T \rightarrow T * F \bullet$$

$$F \rightarrow \bullet (E)$$

$$F \rightarrow (\bullet E)$$

$$F \rightarrow (E \bullet)$$

$$F \rightarrow (E) \bullet$$

Shift & reduce

$$E \rightarrow \bullet T$$

$$E \rightarrow T \bullet$$

$$T \rightarrow \bullet F$$

$$T \rightarrow F \bullet$$

$$F \rightarrow \bullet \text{id}$$

$$F \rightarrow \text{id} \bullet$$

Items

Key idea

Derivations

Definition: item $A \rightarrow \beta \bullet \gamma$ is **valid for** $\phi\beta$ if there exists a derivation

 S $\Rightarrow_{rm}^* \phi A w$ $\Rightarrow_{rm} \phi \beta \gamma w$

Shift & reduce

If

 $A \rightarrow \beta \bullet \gamma$ is valid for $\phi\beta$

then

Items

Key idea

parser can use $A \rightarrow \beta \bullet \gamma$ as a guide in configuration $\$ \phi \beta, w \$$

Using items as parsing guides

Derivations

Formalisation

Shift &
reduce

Items

Key idea

Suppose parser is in config $\$φβ, cz\$$ and $A → β • cγ$ is valid for $φβ$.
Then we *might* shift c onto the stack:

$$\$φβ, cz\$ \xrightarrow{\text{shift } c} \$φβc, z\$$$

Suppose parser is in config $\$φβ, z\$$ and $A → β •$ is valid for $φβ$.
Then we *might* perform a reduction

$$\$φβ, z\$ \xrightarrow[A \rightarrow β]{\text{reduce}} \$φA, z\$$$

Using items as parsing guides (continued)

Derivations

Formalisation

Shift & reduce

Items

Key idea

Suppose parser is in valid config $\$φβ, w\$$ (so $S \Rightarrow_{rm}^* φβw$).

Suppose $A \rightarrow β•γ$ is valid for $φβ$.

Then $γ$ *might* capture the future of our parse (the past of the derivation).

That is, it *might* be that

If so, our parser *might* proceed like so:

$$\begin{array}{llll} S & & & \\ \Rightarrow_{rm}^* φAx & & \xrightarrow{\quad} & \$φβ, yx\$ = \$φβ, w\$ \\ \Rightarrow_{rm} φβγx & & \xrightarrow{\quad} & \$φβγ, x\$ \\ \Rightarrow_{rm}^* φβyx = φβw & & \xrightarrow{\text{reduce}} & \$φA, x\$ \end{array}$$

i.e. our parser could guess that $γ$ will derive a prefix of the remaining input w .

Key idea

Derivations

Formalisation

Shift &
reduce

Items

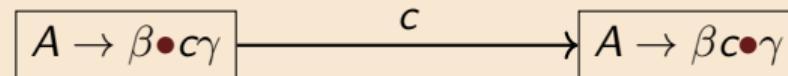
Key idea

Idea: Augment shift/reduce parser so that in every configuration $\$ \alpha, w \$$ it can derive the set of items valid for α .

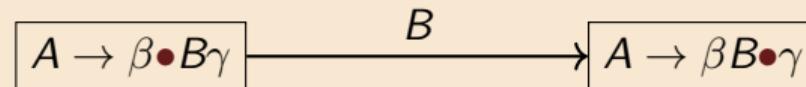
At each step parser can (non-deterministically) select an item to use as a guide.

NFA with LR(0) items as states

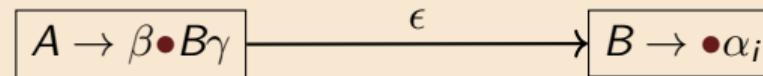
Derivations



Formalisation



Shift & reduce



Items

Initial state is item constructed from unique starting production, e.g.:

$$q0 = S \rightarrow •E$$

Let δ_G be the transition function of this NFA (and every state be accepting).

Key idea

Derivations

Formalisation

Shift &
reduce

Items

Key idea

Theorem:

$$A \rightarrow \beta \bullet \gamma \in \delta_G(q_0, \phi\beta)$$

if and only if

$A \rightarrow \beta \bullet \gamma$ is valid for $\phi\beta$.

(NB: The set of words $\phi\beta$ is a *regular* language!)

A few NFA transitions for grammar G_2

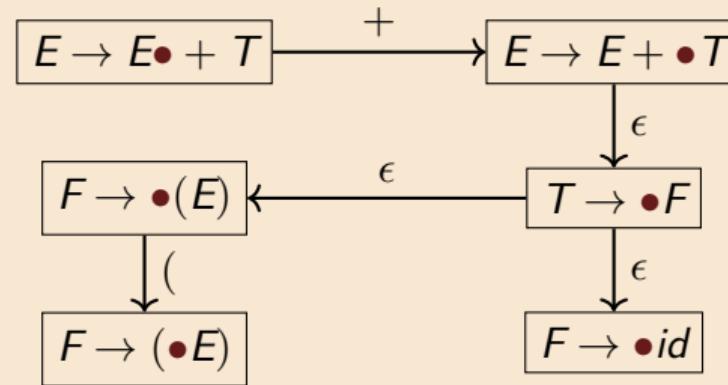
Derivations

Formalisation

Shift & reduce

Items

Key idea



A non-deterministic LR parsing algorithm

Derivations

Formalisation

Shift & reduce

Items

Key idea

$c := \text{NextToken}()$

while true:

$\alpha := \text{the stack}$

if $A \rightarrow \beta \bullet c \gamma \in \delta_G(q_0, \alpha)$

then SHIFT c ; $c := \text{NextToken}()$

if $A \rightarrow \beta \bullet \in \delta_G(q_0, \alpha)$

then REDUCE via $A \rightarrow \beta$

if $S \rightarrow \beta \bullet \in \delta_G(q_0, \alpha)$

then ACCEPT (if no more input)

if none of the above

then ERROR

non-deterministic since
multiple “if” conditions can be true
& multiple items can match any condition

Next time: SLR(1) & LR(1)