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Recap: recursive descent

l e t r e c e toks = e' (t toks)
and e' = f u n c t i o n

| ADD :: toks → e' (t toks)
| toks → toks (* ϵ *)

. . .

E → T E′

E′ → + T E′

E′ → ϵ
. . .

Two actions matching (if rhs starts with a terminal, e.g. E → + T E′)
predicting (if rhs starts with a nonterminal, e.g. E′ → T E′) .

Q: how do we predict a right-hand side? e.g. given A → B
A → C

Idea: use the rest of the input (lookahead).
Plan: precompute all possible rhs for each nonterminal/terminal combination
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(L)eft-to-right parse

(L)eftmost derivation

k-symbol lookahead

Looking at the next k tokens, an LL(k) parser predicts the next production.
We will consider LL(1).
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For LL(1) add an end-of-input marker

Add an end-of-input marker $:

G3 = ⟨N3,T3,P3,E⟩
where

N3 = {E,E′T,T′F}
T3 = {+, ∗, (, ), id}

P3 =

E → T E′

E′ → +T E′ | ϵ
T → F T′

T′ → ∗F T′ | ϵ
F → (E) | id

G′
3 = ⟨N′

3,T′
3,P′

3,S⟩
where

N′
3 = {E,E′T,T′F,S}

T′
3 = {+, ∗, (, ), id, $}

P′
3 =

S → E $
E → T E′

E′ → +T E′ | ϵ
T → F T′

T′ → ∗F T′ | ϵ
F → (E) | id
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A leftmost derivation of (x+y)

S → E $
E → T E′

E′ → +T E′

E′ → ϵ
T → F T′

T′ → ∗F T′

T′ → ϵ
F → (E)
F → id

⇒lm E $

⇒lm T E′ $

⇒lm F T′ E′ $

⇒lm (E) T′ E′ $

⇒lm (T E′)T ′E′ $

⇒lm (F T′ E′) T′ E′ $

⇒lm (x T’ E′)T′ E′ $

⇒lm (x E’) T′ E′ $

⇒lm (x + T E′) T′ E′ $

⇒lm (x + F T′ E′) T′ E′ $

⇒lm (x + y T′ E′) T′ E′ $

⇒lm (x + y E’) T′ E′ $

⇒lm (x + y) T’ E′ $

⇒lm (x + y) E’ $
⇒lm (x + y) $

S

Idea: Can we turn leftmost derivation s into a stack machine (PDA)?
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From derivation to stack machine

Plan: if S ⇒+
lm wα$ then w has been read from the input

α is on on the stack .

input stack use production
(x + y)$ S S → E$
(x + y)$ E$ E → TE′

(x + y)$ TE′$ T → FT′

(x + y)$ FT′E′$ F → (E)
(x + y)$ (E)T′E′$ match
x + y)$ E)T′E′$ E → TE′

x + y)$ TE′)T′E′$ T → FT′

x + y)$ FT′E′)T′E′$ F → id
x + y)$ idT′E′)T′E′$ match
+y)$ T′E′)T′E′$ T′ → ϵ

+y)$ E′)T′E′$ E′ → +TE′

input stack use production
+y)$ +TE′)T′E′$ match

y)$ TE′)T′E′$ T → FT′

y)$ FT′E′)T′E′$ F → id
y)$ idT′E′)T′E′$ match
)$ T′E′)T′E′$ T′ → ϵ

)$ E′)T′E′$ E′ → ϵ

)$ )T′E′$ match
$ T′E′$ T′ → ϵ

$ E′$ E′ → ϵ

$ $ accept!

How do we automate selection of the production to use at each step?
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FIRST

The FIRST set for a sequence of symbols α represents the terminals that may
occur at the start of derivations of α (and ϵ, if α ⇒∗ ϵ)

FIRST(α) = {a ∈ T | ∃β ∈ (N ∪ T)∗, α ⇒∗ aβ} ∪ {ϵ | α ⇒∗ ϵ}

We can compute FIRST for each rhs and nonterminal (details later):

S → E $ FIRST(S) = { ( , id }
E → T E′ FIRST(E) = { ( , id }
E′ → +T E′ | ϵ FIRST(E′) = {+ , ϵ }
T → F T′ FIRST(T) = { ( , id }
T′ → ∗ F T′ | ϵ FIRST(T′) = { ∗ , ϵ }
F → (E) | id FIRST(F) = { ( , id }
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FOLLOW

The FOLLOW set for a nonterminal A represents the terminals that may follow
A in a derivation from the start symbol

FOLLOW(A) = {a | ∃αβ, S ⇒+ αAaβ}

We can compute FOLLOW for each nonterminal in a grammar (details later):

S → E $
E → T E′ FOLLOW(E) = {), $}
E′ → +T E′ | ϵ FOLLOW(E′) = {), $}
T → F T′ FOLLOW(T) = {+, ), $}
T′ → ∗F T′ | ϵ FOLLOW(T′) = {+, ), $}
F → (E) | id FOLLOW(F) = {+, ∗, ), $}

Q: is ")" ∈ FOLLOW(E)? Yes: S ⇒ E$ ⇒ TE′$ ⇒ FT′E′$ ⇒ (E)T′E′$
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The LL(1) Parsing table M

The parsing table maps ⟨nonterminal, terminal⟩ pairs to right-hand sides.

Initialize M:
for each A ∈ N, a ∈ T, M[A, a] = {}

Populate M:
for each A ∈ N
for each production A → α

if a ∈ FIRST(α) and a ̸= ϵ

then M[A, a] = M[A, a] ∪ {α}
else if ϵ ∈ FIRST(α)
then for each b ∈ FOLLOW(A)

M[A, b] = M[A, b] ∪ {α}

id + . . .

E TE′ . . .

E′ +TE′ . . .

. . . . . . . . . . . .
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Table M for grammar G′
3

FOLLOW sets for G′
3:

S E E′ T T′ F
) $ ) $ + ) $ + ) $ + ∗ ) $

FIRST sets for G′
3:

S → E$ E → TE′ E′ → +TE′ E′ → ϵ T → FT′ T′ → ∗FT′ F → (E) F → id
( id ( id + ϵ ( id ∗ ( id

Table M for G′
3:

id + ∗ ( ) $
S E$ E$
E TE′ TE′

E′ +TE′ ϵ ϵ
T FT′ FT′

T′ ϵ ∗FT′ ϵ ϵ
F id (E)
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a := NextToken()
X := TopOfStack()
while (X ̸= $)
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Computing NULLABLE

Semantically:

NULLABLE(α) = true iff α ⇒∗ ϵ

Inductively:

NULLABLE(ϵ) = true
NULLABLE(c) = false (c ∈ T)
NULLABLE(A) =

∨
A→α NULLABLE(α) (A ∈ N)

NULLABLE(Xβ) = NULLABLE(X) ∧ NULLABLE(β) (X ∈ T ∪ N)
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Computing NULLABLE: example

NULLABLE(ϵ) = true
NULLABLE(c) = false (c ∈ T)

NULLABLE(A) =
∨

A→α NULLABLE(α) (A ∈ N)

NULLABLE(Xβ) = NULLABLE(X) ∧ NULLABLE(β) (X ∈ T ∪ N)

E → aF
E → ϵ
F → E

NULLABLE(a) = false
NULLABLE(ϵ) = true
NULLABLE(aF) = NULLABLE(a) ∧ NULLABLE(F)

= false ∧ NULLABLE(F)
= false

NULLABLE(E) = NULLABLE(aF) ∨ NULLABLE(ϵ)
= false ∨ true
= true

NULLABLE(F) = NULLABLE(E)
= true
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Computing FIRST

Initialize FIRST sets:
for each a ∈ T, FIRST(a) := {a}
for each A ∈ N, FIRST(A) := {}

Populate FIRST sets:
while FIRST changes
if A → X1X2 . . .Xk is a production then
if NULLABLE(X1X2 . . .Xk)

then FIRST(A) := FIRST(A) ∪{ϵ}
for each j in 1 . . . k

FIRST(A) := FIRST(A) ∪ (FIRST(Xj) −{ϵ})
if not NULLABLE(Xj) then break
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Computing FOLLOW

Initialize FOLLOW sets:
for each A ∈ N , FOLLOW(A) := {}
FOLLOW(S) := {$} (S is the original start symbol)

Populate FOLLOW sets:
while FOLLOW changes
if A → αBβ is a production (B ∈ N, β ̸= ϵ)
then FOLLOW(B) := FOLLOW(B) ∪ (FIRST(β) - {ϵ})

if A → αBβ is a production and ϵ ∈ FIRST(β)
then FOLLOW(B) := FOLLOW(B) ∪ FOLLOW(A)

if A → αB is a production (B ∈ N)
then FOLLOW(B) := FOLLOW(B) ∪ FOLLOW(A)



Bottom-up parsing
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Many grammars cannot be parsed using LL(1)

S → d | X Y S
Y → c | ϵ
X → Y | a

FIRST: X Y S Y
a c d ϵ c ϵ

FOLLOW: X Y
a c d a c d

Table M:

a c d
S XYS XYS XYS

d
X Y Y Y

a
Y ϵ ϵ ϵ

c

There are multiple entries for M[S, d]. The grammar is ambiguous, and not LL(1).
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Bottom-up (LR) parsing is more powerful

Recall: we had to rewrite G2 to eliminate left recursion.

G2 = ⟨N2,T1,P2,E⟩
where

P2 =
E → E + T | T (expressions)
T → T ∗ F | F (terms)
F → (E) | id (factors)

Bottom-up parsing can process a wider class of grammars.

With bottom-up parsing there is no need to eliminate left recursion.



Next time: bottom-up parsing foundations
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