Compiler Construction

Lecture 4: LL parsing

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk
Lent 2026

LL(k)

Recap: recursive descent

rec e toks = e’ (t toks)
e' = function

ADD :: toks — e' (t toks)
toks — toks (* € %)

. matching (if rhs starts with a terminal, e.g. E— + T F')
Two actions .. _ . . :
predicting (if rhs starts with a nonterminal, e.g. £ — T F')

— B
— C

Q: how do we predict a right-hand side? e.g. given 2

Idea: use the rest of the input (lookahead).

Plan: precompute all possible rhs for each nonterminal /terminal combination

(L)eftmost derivation

(L)eft-to-right parse k-symbol lookahead

Looking at the next k tokens, an LL(k) parser predicts the next production.
We will consider LL(1).

For LL(1) add an end-of-input marker

Add an end-of-input marker

<N3, TSa P3a E> Gé <N§37 Té’ Pg’,a S>

{E,ET, TF} = {E,ET,TFS}
{+7*7(7)7id} Té - {+7*7(7)7id7$}

E $
TE
+TFE |e
FT

xF T | e
(8| id

TE
+TFE |e
FT
xF T |e

(E) | id

L EL L Ll

Derivations

A leftmost derivation of (x+y)

Derivations

® O

S —
E —
E —
E —
T —
T —
T —
F —
F -

Idea: Can we turn leftmost derivation s into a stack machine (PDA)?

A leftmost derivation of (x+y)

Derivations

® O

=
—
—
_>
_>
—
—
—
_>

Idea: Can we turn leftmost derivation s into a stack machine (PDA)?

A leftmost derivation of (x+y)

Derivations

® O

—
—
—
_>
_>
—
—
—
_>

Idea: Can we turn leftmost derivation s into a stack machine (PDA)?

A leftmost derivation of (x+y)

S =Im E$
=Im TES
=Im FTFES

Derivations

® O

—
—
—
_>
%
—
—
—
_>

Idea: Can we turn leftmost derivation s into a stack machine (PDA)?

A leftmost derivation of (x+y)

ES
TES
FTES$
(E)T E$

Derivations

® O

—
—
—
_>
_>
—
—
—
_>

Idea: Can we turn leftmost derivation s into a stack machine (PDA)?

A leftmost derivation of (x+y)

ES

TES
FTES$
(E)T E$
(TEYT'E'$

Derivations

® O

—
—
—
_>
_>
—
—
—
_>

Idea: Can we turn leftmost derivation s into a stack machine (PDA)?

A leftmost derivation of (x+y)

E$

TES
FTES$
(E)T E$
(TEYT'E'$
FTE)TES$

Derivations

® O

—
—
—
_>
%
—
—
—
_>

Idea: Can we turn leftmost derivation s into a stack machine (PDA)?

A leftmost derivation of (x+y)

E$

TES
FTES$
(E)T E$
(TEYT'E'$
FTE)TES$
xT' E)T E'$

Derivations

® O

—
—
—
_>
_>
—
—
—
_>

Idea: Can we turn leftmost derivation s into a stack machine (PDA)?

A leftmost derivation of (x+y)

E$

TES
FTES$
(E)T E$
(TEYT'E'$
FTE)TES$
xT' E)T E'$
(xEYT E'$

Derivations

® O

—
—
—
_>
_>
—
—
—
_>

Idea: Can we turn leftmost derivation s into a stack machine (PDA)?

A leftmost derivation of (x+y)

ES$ U
TES |
FTES
(E) T E'$
(TE)T'ES
FTEYTES$
(xT E)T E'$
(xE)T E'$

=m (x+ TE)T E$

Derivations

® O

—
—
—
_>
_>
—
—
—
_>

Idea: Can we turn leftmost derivation s into a stack machine (PDA)?

A leftmost derivation of (x+y)

ES$ U
TES |
FTES
(E) T E'$
(TE)T'ES
FTEYTES$
(xT E)T E'$
(xE)T E'$

Sm (x+ TE)TES$
Sm (x+ FTE)T E'$

Derivations

® O

—
—
—
_>
%
—
—
—
_>

Idea: Can we turn leftmost derivation s into a stack machine (PDA)?

A leftmost derivation of (x+y)

ES | YT E
e o (x+ TE)TES$

FTES$ =m (x+ FTE)TES
® O =m (x+yT E)TES

Derivations

(E) T E'$
(TE)T'ES
FTEYTES$
(xT E)T E'$
(xE)T E'$

—
—
—
_>
_>
—
—
—
_>

Idea: Can we turn leftmost derivation s into a stack machine (PDA)?

A leftmost derivation of (x+y)

£ E)T F
TES x+ TE)T E$

(
Fp (x+ FTE)T E'$
| (x+yE) T E'$

Derivations

(TE’)TE’$ _
FTEYTES$
(xT E)T E'$
(xE)T E'$

—
—
—
_>
_>
—
—
—
_>

Idea: Can we turn leftmost derivation s into a stack machine (PDA)?

A leftmost derivation of (x+y)

ES
TES
FTES

x+ TE)T E'$
x+ FTE)TES$

Derivations

(E)T E$
x+yE)T E'$

x+y) T E$

TE)T'ES

(
(
DO (x+yT E)T E'$
‘ (
(

(_
FTEYTES$
(xT E)T E'$
(xE)T E'$

A e A

Idea: Can we turn leftmost derivation s into a stack machine (PDA)?

A leftmost derivation of (x+y)

ES
TES (
FTES (
(E)T E'S (
._ (

(

(

x+ TE)T E$
x+ FTE)TES$
x+yT E)T E$
x+yE)T ES$
x+y) T E$
x+y) E'$

Derivations

® O

(TE)T'ES
FTEYTES$
(xT E)T E'$
(xE)T E'$

A e A

Idea: Can we turn leftmost derivation s into a stack machine (PDA)?

A leftmost derivation of (x+y)

ES
TES (
FTES (
(E)T E'S (
TEYT'ES (
(
(
(

x+ TE)T E$
x+ FTE)TFES
x+yT E)T E$
x+yE)T ES$
x+y) T E$
x+y) E'$

x+y)$

Derivations

® O

(
FTEYTES$
(xT E)T E'$
(xE)T E'$

A e A

Idea: Can we turn leftmost derivation s into a stack machine (PDA)?

From derivation to stack machine

w has been read from the input

Plan: if S= wa$ then .
Im 3 « is on on the stack

input stack use production

Derivations

How do we automate selection of the production to use at each step?

From derivation to stack machine

w has been read from the input
a is on on the stack

Plan: if S :>ﬁn wa'$ then

stack use production
S S—ES

Derivations

How do we automate selection of the production to use at each step?

From derivation to stack machine

w has been read from the input
a is on on the stack

Plan: if S :>ﬁn wa'$ then

stack use production
S S—ES
i E$ E— TF

Derivations

How do we automate selection of the production to use at each step?

From derivation to stack machine

w has been read from the input
a is on on the stack

Plan: if S :>ﬁn wa'$ then

stack use production
S S—ES

oo E$ E— TE

TE$S T— FT

Derivations

How do we automate selection of the production to use at each step?

From derivation to stack machine

w has been read from the input
a is on on the stack

Plan: if S :>ﬁn wa'$ then

stack use production
S S—ES
oo E$ E— TE
TE$S T— FT
FTES$ F— (E)

Derivations

How do we automate selection of the production to use at each step?

From derivation to stack machine

w has been read from the input
a is on on the stack

Plan: if S :>ﬁn wa'$ then

stack use production
S S—ES
oo E$ E— TE
TES T— FT
FTES$ F— (E)
(E)T E'$ match

Derivations

How do we automate selection of the production to use at each step?

From derivation to stack machine

w has been read from the input
a is on on the stack ’

Plan: if S :>ﬁn wa'$ then

stack use production
S S—ES
oo E$ E— TE
TES T— FT
FTES$ F— (E)
(E)T E'$ match
EN\TES E— TF

Derivations

How do we automate selection of the production to use at each step?

From derivation to stack machine

w has been read from the input
a is on on the stack ’

Plan: if S :>ﬁn wa'$ then

stack use production
S S—ES
oo E$ E— TE
TES T— FT
FTES$ F— (E)
(E)T E'$ match
EN\TES E— TF
TENTES T— FT

Derivations

How do we automate selection of the production to use at each step?

From derivation to stack machine

w has been read from the input
a is on on the stack ’

Plan: if S :>ﬁn wa'$ then

.. stack
Derivations

use production

S
(X ES
TE'$

FTES

(ETES

ETES

TE)TE'S

FTE)TE$

How do we automate selection of the production to use at each step?

S— E%
E—TF
T— FT
F— (E)
match

E—TF
T— FT
F—id

From derivation to stack machine

w has been read from the input
a is on on the stack ’

Plan: if S :>ﬁn wa'$ then

.. stack
Derivations

use production

S

(X ES
TE'S

FTES

(ETES

ETES

TE)TE'S

FTE)TE$

idT EYTE'$

How do we automate selection of the production to use at each step?

S— E$
E— TF
T— FT
F— (E)
match
E— TF
T— FT
F—id
match

From derivation to stack machine

w has been read from the input
a is on on the stack

Plan: if S :>ﬁn wa'$ then

stack use production
S S—ES
oo E$ E— TE
TES T— FT
FTES$ F— (E)
(E)T E'$ match
EN\TES E— TF
TENTES T— FT
FTE)TES$S F—id
ldT’E’)TE’ match
E)

Derivations

TE$S T —e

How do we automate selection of the production to use at each step?

From derivation to stack machine

w has been read from the input
a is on on the stack ’

Plan: if S :>ﬁn wa'$ then

stack use production
S S—ES
i E$ E—TF
TES T— FT
FTES$ F— (E)
(E)T E'$ match
EN\TES E— TF
TENTES T— FT
FTE)TES$S F—id
ldT’E’)TE’ match
TENYTE$S T —e¢
EYTES$ E — +TF

Derivations

How do we automate selection of the production to use at each step?

From derivation to stack machine

w has been read from the input
a is on on the stack

Plan: if S :>ﬁn wa'$ then

stack use production input stack use production
S S—E3 +y)$ +TE)TES$ match
i E$ E— TFE
TES T— FT
FTES$ F— (E)
(E)TE'$ match
EN\TES E— TF
TENTES T— FT
FTE)TES$S F—id
ldT’E’)TE’ match
TENYTE$S T —e¢
EYTES$ E — +TF

Derivations

How do we automate selection of the production to use at each step?

From derivation to stack machine

w has been read from the input
a is on on the stack

Plan: if S :>ﬁn wa'$ then

stack use production input stack use production
S S—E3 +y)$ +TE)TES$ match
i E$ E— TFE y)$ TEN)TES T— FT
TES T— FT
FTES$ F— (E)
(E)TE'$ match
EN\TES E— TF
TENTES T— FT
FTE)TES$S F—id
ldT’E’)TE’ match
TENYTE$S T —e¢
EYTES$ E — +TF

Derivations

How do we automate selection of the production to use at each step?

From derivation to stack machine

w has been read from the input
a is on on the stack

Plan: if S :>ﬁn wa'$ then

stack use production input stack use production
S S—E3 +y)$ +TE)TES$ match
i E$ E— TFE y)$ TEN)TES T— FT
TES T— FT 8 FTE)TES F—id
FTES$ F— (E)
(E)TE'$ match
EN\TES E— TF
TENTES T— FT
FTE)TES$S F—id
ldT’E’)TE’ match
TENYTE$S T —e¢
EYTES$ E — +TF

Derivations

How do we automate selection of the production to use at each step?

From derivation to stack machine

w has been read from the input

Plan: if S= wa$ then .
Im 3 « is on on the stack

stack use production input stack use production
S S— ES +y) —&—TE’)T'E’SB match
e E$ E— TFE) TEN)TES T— FT
TE$S T— FT) FTEYTES F—id
FTE$ F— (E)$ idTE)TE$ match
(E)TE'$ match
EN\TES E— TF
TENTES T— FT
FTE)TES$S F—id
ldT’E’)TE’ match
TENYTE$S T —e¢
EYTES$ E — +TF

Derivations

$
$
$
$

How do we automate selection of the production to use at each step?

From derivation to stack machine

w has been read from the input

Plan: if S= wa$ then .
Im 3 « is on on the stack

.. stack
Derivations

use production input

stack

use production

S
(X ES
TE'S

FTES

(ETES

ETES

TE)TE'S

FTE)TE$

:dTE’)TE’

TE)TES
EYTES

S— E$
E— TF
T— FT
F— (E)
match
E— TF
T— FT
F—id
match
T — ¢
E — +TF

+TE’) TES
TE)TE'$
FTE)TE$
)
)

idTEYTES
TE)TES

match
T— FT
F—id
match
T — ¢

How do we automate selection of the production to use at each step?

From derivation to stack machine

w has been read from the input
a is on on the stack

Plan: if S :>ﬁn wa'$ then

stack use production input stack use production
S S— ES +TE’) TES$ match
e E$ E— TFE TEN)TES T— FT
TES T— FT FTEYTES F—id

)

)

E)

Derivations

FTE$ F— (E idTE)TE$ match
(E)TE'$ match TE)TES T —e
ETES E— TE TES E e
TENTES T—FT
FTE)TES F—id
ldT’E’)TE’ match
TE)TES T —e
ENTES$ E — +TF

How do we automate selection of the production to use at each step?

From derivation to stack machine

w has been read from the input

Plan: if S= wa$ then .
Im 3 « is on on the stack

stack use production input stack use production
S S— E$ +y) +TE’ TE'$ match

e E$ E— TFE) TE$S T—FT

TES T— FT) FTE)TES F—id

Derivations

(E)TE'$ match)
E\TE$S E— TE)
TENTE$ T— FT)
FTEYTES F—id
ldT’E’)TE’ match
TE)TES T —e¢
ENYTE$ E — +TF

TEYTE$ T —¢
TE$ E —e¢
TE$ match

$)
$ TE)
$)
FTES$ F— (E))$ i dT'E)TE$ match
$)
$ E)
$)

How do we automate selection of the production to use at each step?

From derivation to stack machine

w has been read from the input

Plan: if S= wa$ then .
Im 3 « is on on the stack

stack use production input stack use production
S S— ES +y) +TE’) TES$ match
e E$ E— TFE) TEN)TES T— FT
TES T— FT) FTEYTES F—id
FTE$ F— (E)$ idTE)TE$ match
)
E)
)

Derivations

(E)TE'$ match) TE)TES T —e
ETE$ E— TE) TE$ E e
TENTE$ T— FT) TE'$S match
FTE)TES F—id
ldT’E’)TE’ match
TE)TES T —e
ENTES$ E — +TF

$
$
$
$
$
$
$
$

TES T —e

How do we automate selection of the production to use at each step?

From derivation to stack machine

w has been read from the input
a is on on the stack

Plan: if S :>ﬁn wa'$ then

stack use production input stack use production
S S— ES +y)$ —&—TE’)T'E’$ match
i E$ E— TF)$ TEN)TES T— FT
TES T— FT)$ FTE)TES$S F—id
FTE$ F— (E)$ idTE)TE$ match
(E)TE'$ match $ TE)TES T —e¢
$ E)
$)
$
$

Derivations

)
ETE$ E— TE) TE$ E e
TENTE$ T— FT) TE'$S match
FTE)TES F—id
ldT’E’)TE’ match
TE)TES T —e
ENTES$ E — +TF

TES T —e¢
E$ F —¢

How do we automate selection of the production to use at each step?

From derivation to stack machine

w has been read from the input
a is on on the stack

Plan: if S :>ﬁn wa'$ then

stack use production input stack use production
S S— ES +y)$ —&—TE’)T'E’$ match
i E$ E— TF)$ TEN)TES T— FT
TES T— FT)$ FTE)TES$S F—id
FTE$ F— (E)$ idTE)TE$ match
(E)TE'$ match $ TE)TES T —e¢
$ E)
$)
$
$
$

Derivations

)
ETE$ E— TE) TE$ E e
TENTE$ T— FT) TE'$S match
FTE)TES F—id
ldT’E’)TE’ match
TE)TES T —e
ENTES$ E — +TF

TES T —e
EF$ E —¢
$ accept!

How do we automate selection of the production to use at each step?

The LL(1) parsing table

The FIRST set for a sequence of symbols « represents the terminals that may
occur at the start of derivations of a (and ¢, if a = ¢€)

FIRST(o) ={ae T|3B (NUT) ", a="ap} U {e|a="¢}

We can compute FIRST for each rhs and nonterminal (details later):

ES = {(>id}
TFE {(,id}
+TE"6 {+a€}
FT {(,id}
x FT |e = {x,¢}
(E) | id = {(id}

N
-
N
N
N
N

FOLLOW

The FOLLOW set for a nonterminal A represents the terminals that may follow
A in a derivation from the start symbol

FOLLOW(A) = {a | 3a3,S =T aAaj}

We can compute FOLLOW for each nonterminal in a grammar (details later):

E$
TE FOLLOW
+TE e FOLLOW

(E)
(F
FT FOLLOW(
(
(

)

xF T |e FOLLOW
(E) | id FOLLOW

L L d

7
T)
3]

Q:is ")" € FOLLOW(E)? Yes: S= E$= TE$S = FTE$S = (E)TES

The LL(1) Parsing table M

The parsing table maps (nonterminal, terminal) pairs to right-hand sides.

e id |+

Initialize M: TF
foreach Ae N, ac T, MA a] = {}

Populate M:
foreach Ae N
for each production A — «

if a€ FIRST(a) and a # ¢
then M[A, a] = M[A, a] U {a}

else if e € FIRST ()
then for each b € FOLLOW(A)

M[A, b] = MIA, b] U {a}

LL(k)
Derivations
Table
0000
Algorithm

Analysis

Bottom-up

!

Table M for grammar G

3
FOLLOW sets for Gj:

FIRST sets for Gj:

|So B |ESTE |E 5 +TE |E e | T FT | T 5 +FT |F—= (E) | F—id |
| (Gid | (d |+] € | (Gd | « | (| id |

Table M for Gj:

The algorithm

The LL(1) Parsing Algorithm

a := NextToken()
X := TopOfStack()
while (X # $)

if X=a (* match *)

then Pop(); a := NextToken()
Algorithm else if M[X, a] = {a} (* predict *)
®0 then Pop(); Push(c)
X := TopOfStack()

Using M to parse (x+y)

stack action

Algorithm

Using M to parse (x+y)

stack action

x+y)$ S M, (= {Es}

Algorithm

Using M to parse (x+y)

stack action
(X + y)$ 5 M[57 (]
(x+y)$ E$ MIE, (]

{E5}
{TE}

Algorithm

Using M to parse (x+y)

input stack action
(x+y)$ S MS, (] ={E3}
(x+y)$ Es MIE (] ={TF}
(x+y)$ TES$S MIT,(]={FT}

Algorithm

Using M to parse (x+y)

Algorithm

Using M to parse (x+y)

input stack action

(x+y)$ S Ms, (] ={Es}
(x+y)$ ES MIE (] ={TE}
(x+y)$ TE'S MT,(]={FT}
(x+y)$ FTES$ MIF, (] ={(E)}
(x+y)$ (E)TE'$ match

Algorithm

Using M to parse (x+y)

input stack action

(x+y)$ S Ms, (] ={Es}
(x+y)$ ES MIE (] ={TE}
(x+y)$ TE'S MT,(]={FT}
(x+y)$ FTES$ MIF, (] ={(E)}
(x+y)$ (E)TE'$ match

x+y)$ E)YTES$ MIE, id = {TE}

Algorithm

Using M to parse (x+y)

input stack action

(x+y)$ S Ms, (] ={Es}
(x+y)$ ES MIE (] ={TE}
(x+) TES MT,(|={FT}
(x+y) FTES MF,(]={(E)}
(

ETES MEid={TE}

TEVYTES$S MI[T,id = {FT'}

$
$
x+y)$ (E)TE'$ match
$
Algorithm $

Using M to parse (x+y)

input stack action

(x+y)$ S Ms, (] ={Es}
(x+y)$ ES MIE (] ={TE}
(x+) TES MT,(|={FT}
(x+y) FTES MF,(]={(E)}
(

EYTES$ MIE,id = {TE}
TEVYTES$S MI[T,id = {FT'}
FTEYTES$S MIF,id = {id}

$
$
x+y)$ (E)TE'$ match
$
Algorithm $
$

Using M to parse (x+y)

input stack action

(x+y)$ S Ms, (] ={Es}
(x+y)$ ES MIE (] ={TE}
(x+y)$ TES$S MIT,(]={FT}
(x+y)$ FTES$ MIF, (] ={(E)}
(x+y)$ (E)TE'$ match
: x+y)$ ETE$ ME,id ={TE}
Algorithm x+y)$ TENTES$ MI[T,id = {FT}
x+y)$ FTE)TES$ MF,id) = {id}
$ idTE)TE$ match

Using M to parse (x+y)

input stack action

(x+y)$ S Ms, (] ={Es}
(x+y)$ ES MIE (] ={TE}
(x+y)$ TES$S MIT,(]={FT}
(x+y)$ FTES$ MIF, (] ={(E)}
(x+y)$ (E)TE'$ match
: x+y)$ ETE$ ME,id ={TE}
Algorithm x+y)$ TENTES$ MI[T,id = {FT}
x+y)$ FTE)TES$ MF,id) = {id}
x+y)$ ldT’E')T'E'$ match
$ TE)TES MT,+]={e}

Using M to parse (x+y)

input stack action

(x+y)$ S Ms, (] ={Es}
(x+y)$ ES MIE (] ={TE}
(x+y) TES M[T,(]={FT}
(x+y) FTES MF,(]={(E)}
(

$

$

$ (E)TE'$ match

$ E)TES$ MIE, id = {TE}
Algorithm ><+y)$ TE')TE'$ M[T, id] = {FT’}

$ FTE)TES$ MIF,id = {id}

$

$

$

)
ldT’E')T'E'$ match
TEYTES$ M[T,+]={e}
E)

TES$ M[E,+]={+TF}

Using M to parse (x+y)

input stack action input stack action
(x+y)$ S M[S,(={E3))5 +TE)TES match
(x+)8 ES MIE (= {TE} -
(x+) TES M[T,(= {FT'}
(x+y) FTES$ MIF,(1={(E)}
(x+y) (E)TE'$ match

$

$

$

$ ETES ME,id = {TE}
ety x+y)$ TEYTES M[T,id = {FT}

$ FTEYTES$S MIF,id = {id}

$ ldT’E')T'E'$ match

$ TE)TES MT,+] ={c

$ EYTE$ ME,+] = {+TE}

action

Using M to parse (x+y)

input stack action

TE'$
FTE$
(E)TE'S
ETES
TE)TE'$
FTE)TE$
:dT’E’)T’E’$
TE)TES
E)TES

Algorithm

M(S, (
[(
MIT,
[(]

match

M[E, id) = {TE'}
M[T,id) = {FT'}
MIF, id] = {id}
match

M[T, +] = {¢}
M[E,+] = {+TE}

{E5}

{TE}
{FT'}
{(B)}

+y)$ +TE)TE$ match
y)$ TENTES$ MT,id ={FT}

action

Using M to parse (x+y)

input stack action

TE'$
FTE$
(E)TE'S
ETES
TE)TE'$
FTE)TE$
:dT’E’)T’E’$
TE)TES
E)TES

Algorithm

M(S, (
[(
MIT,
[(]

match

M[E, id) = {TE'}
M[T,id) = {FT'}
MIF, id] = {id}
match

M[T, +] = {¢}
M[E,+] = {+TE}

{E5}
{TE}
{

{

FT'}
(B)}

+y)$ +TE)TE$ match
y)$ TENTES$ MT,id ={FT}
y)$ FTE)TES$ MIF,id = {id}

action

Using M to parse (x+y)

action

TE'$
FTE$
(E)TE'S
ETES
TE)TE'$
FTE)TE$
:dT’E’)T’E’$
TE)TES
E)TES

Algorithm

M(S, (
[(
MIT,
[(]

match

M[E, id) = {TE'}
M[T,id) = {FT'}
MIF, id] = {id}
match

M[T, +] = {¢}
M[E,+] = {+TE}

{E5}
{TE}
{

{

FT'}
(B)}

+TE’)T'E’$ match
TENTES$ MIT,id = {FT'}

FTEYTES$ MIF,id = {id}

idT'E)T'E'$ match

action

Using M to parse (x+y)

action

TE'$
FTE$
(E)TE'S
ETES
TE)TE'$
FTE)TES
:dT’E’)T’E’$
E)
E)

Algorithm

TES$
TE$

M(S, (
[(
MIT,
[(]

match

M[E, id) = {TE'}
M[T,id) = {FT'}
MIF, id] = {id}
match

M[T, +] = {¢}
M[E,+] = {+TE}

{E5}
{TE}
{

{

FT'}
(B)}

+TE’)T'E’$ match
TENTES$ MIT,id = {FT'}
FTEYTES$ MIF,id = {id}
/dT’E')T'E'$ match
EYTES M[T,)] = {e}

action

Using M to parse (x+y)

action

TE'$
FTE$
(E)TE'S
ETES
TE)TE'$
FTE)TE$
:dT’E’)T’E’$
TE)TES
E)TES

Algorithm

M(S, (
[(
MIT,
[(]

match

M[E, id) = {TE'}
M[T,id) = {FT'}
MIF, id] = {id}
match

M[T, +] = {¢}
M[E,+] = {+TE}

{E5}
{TE}
{

{

FT'}
(B)}

+TE’)T'E’$ match
TENTES$ MIT,id = {FT'}
FTEYTES$ MIF,id = {id}
/dT’E')T'E'$ match
EYTES M[T,)] = {e}
E)YTES MIE)] = {e}

action

Using M to parse (x+y)

action

TE'$
FTE$
(E)TE'S
ETES
TE)TE'$
FTE)TE$
:dT’E’)T’E’$
TE)TES
E)TES

Algorithm

M(S, (
[(
MIT,
[(]

match

M[E, id) = {TE'}
M[T,id) = {FT'}
MIF, id] = {id}
match

M[T, +] = {¢}
M[E,+] = {+TE}

{E5}

{TE}
{FT'}
{(B)}

+TE’)T'E’$ match
TENTES$ MIT,id = {FT'}
FTEYTES$ MIF,id = {id}
/dT’E')T'E'$ match
EYTES M[T,)] = {e}
EYTES MIE)] = {e}
)TE'$ match

action

Using M to parse (x+y)

action

TE'$
FTE$
(E)TE'S
ETES
TE)TE'$
FTE)TE$
:dT’E’)T’E’$
TE)TES
E)TES

Algorithm

M(S, (
[(
MIT,
[(]

match

M[E, id) = {TE'}
M[T,id) = {FT'}
MIF, id] = {id}
match

M[T, +] = {¢}
M[E,+] = {+TE}

{E5}
{TE}
{

{

FT'}
(B)}

+TE’)T'E’$ match
TENTES$ MIT,id = {FT'}
FTEYTES$ MIF,id = {id}
/dT’E')T'E'$ match
EYTES M[T,)] = {e}
EYTES MIE)] = {e}
)TE'$ match
TE$ M[T,$] = {e

action

Using M to parse (x+y)

action

TE'$
FTE$
(E)TE'S
ETES
TE)TE'$
FTE)TES
:dT’E’)T’E’$
E)
E)

Algorithm

TES$
TE$

M(S, (
[(
MIT,
[(]

match

M[E, id) = {TE'}
M[T,id) = {FT'}
MIF, id] = {id}
match

M[T, +] = {¢}
M[E,+] = {+TE}

{E5}
{TE}
{

{

FT'}
(B)}

+TE’)T'E’$ match
TENTES$ MIT,id = {FT'}
FTEYTES$ MIF,id = {id}
/dT’E')T'E'$ match
EYTES M[T,)] = {e}
EYTES MIE)] = {e}
)TE'$ match
TE$ M[T,$] = {e
E$ ME,$] = {e}

action

Using M to parse (x+y)

action

TE'$
FTE$
(E)TE'S
ETES
TE)TE'$
FTE)TES
:dT’E’)T’E’$
E)
E)

Algorithm

TES$
TE$

M(S, (
[(
MIT,
[(]

match

M[E, id) = {TE'}
M[T,id) = {FT'}
MIF, id] = {id}
match

M[T, +] = {¢}
M[E,+] = {+TE}

{E5}
{TE}
{

{

FT'}
(B)}

+TE’)T'E’$ match
TENTES$ MIT,id = {FT'}
FTEYTES$ MIF,id = {id}
/dT’E')T'E'$ match
EYTES M[T,)] = {e}
EYTES MIE)] = {e}
)TE'$ match
TE$ M[T,$] = {e
E$ ME,$] = {e}

$ accept!

Analysis

Computing NULLABLE

Semantically:

NULLABLE(a) = true iff

Inductively:

NULLABLE(e true

NULLABLE(c false (ceT
Analysis NULLABLE(A) V4. NULLABLE(«) (A N)
000 NULLABLE(XS) = NULLABLE(X) A NULLABLE(8) (Xe& TUN)

NULLABLE(e)
NULLABLE(c)
NULLABLE(A)
NULLABLE(XB)

Analysis
00O

Computing NULLABLE: example

true

false (ceT

V 4_,o. NULLABLE() (AcN)
NULLABLE(X) A NULLABLE(8) (X € TUN)

NULLABLE(a) false
NULLABLE(e) true

NULLABLE(aF) NULLABLE(a) A NULLABLE(F)
false A NULLABLE(F)
false

NULLABLE(E) NULLABLE(aF) V NULLABLE(¢)
false V true
true

NULLABLE(F) NULLABLE(E)
= true

Computing FIRST

Initialize FIRST sets:
for each a € T, FIRST(a) := {a}
for each A € N, FIRST(A) := {}

Populate FIRST sets:
while FIRST changes
if A— X1 X5...Xis a production then
if NULLABLE(X1 X5 . .. Xk)
then FIRST(A) := FIRST(A) U{e}
foreachjinl ...k
FIRST(A) := FIRST(A) U (FIRST(X;) —{¢})
o060 if not NULLABLE(X;) then break

Analysis

Computing FOLLOW

Initialize FOLLOW sets:
for each Ae N, FOLLOW(A) := {}
FOLLOW(S) := {$} (S is the original start symbol)

Populate FOLLOW sets:
while FOLLOW changes
if A— aBp is a production (B € N, 3 # €)
then FOLLOW(B) := FOLLOW(B) U (FIRST(8) - {e})
if A— aBpS is a production and € € FIRST()
then FOLLOW(B) := FOLLOW(B) U FOLLOW(A)
Analysis if A— aBis a production (B € N)
cooo then FOLLOW(B) := FOLLOW(B) U FOLLOW(A)

Bottom-up parsing

Many grammars cannot be parsed using LL(1)

o = @AV e [0 FoLLow: X 1 ¥
Y — cle acde| ce acd|acd

X — Y|a

S

Table M: X

Y

There are multiple entries for M[S, d|. The grammar is ambiguous, and not LL(1).
Bottom-up

® O

Bottom-up (LR) parsing is more powerful

Recall: we had to rewrite Gy to eliminate left recursion.

Gy (N, Ty, Py, E)

E+ T| T (expressions)

E —
Py T — Tx F\ (terms)
F — (E)|id (factors)

Bottom-up parsing can process a wider class of grammars.

With bottom-up parsing there is no need to eliminate left recursion.
Bottom-up

Next time: bottom-up parsing foundations

	LL(k)
	Derivations
	Table
	Algorithm
	Analysis
	Bottom-up

