Compiler Construction

Lecture 4: LL parsing

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk
Lent 2026

LL(k)

Recap: recursive descent

rec e toks = e’ (t toks)
e' = function

ADD :: toks — e' (t toks)
toks — toks (* € %)

. matching (if rhs starts with a terminal, e.g. E— + T F')
Two actions .. _ . . :
predicting (if rhs starts with a nonterminal, e.g. £ — T F')

— B
— C

Q: how do we predict a right-hand side? e.g. given 2

Idea: use the rest of the input (lookahead).

Plan: precompute all possible rhs for each nonterminal /terminal combination

(L)eftmost derivation

(L)eft-to-right parse k-symbol lookahead

Looking at the next k tokens, an LL(k) parser predicts the next production.
We will consider LL(1).

For LL(1) add an end-of-input marker

Add an end-of-input marker

<N3, TSa P3a E> Gé <N§37 Té’ Pg’,a S>

{E,ET, TF} = {E,ET,TFS}
{+7*7(7)7id} Té - {+7*7(7)7id7$}

E $
TE
+TFE |e
FT

xF T | e
(8| id

TE
+TFE |e
FT
xF T |e

(E) | id

L EL L Ll

Derivations

A leftmost derivation of (x+y)

ES
TES (
FTES (
(E)T E'S (
TEYT'ES (
(
(
(

x+ TE)T E$
x+ FTE)TFES
x+yT E)T E$
x+yE)T ES$
x+y) T E$
x+y) E'$

x+y)$

Derivations

® O

(
FTEYTES$
(xT E)T E'$
(xE)T E'$

A e A

Idea: Can we turn leftmost derivation s into a stack machine (PDA)?

From derivation to stack machine

w has been read from the input
a is on on the stack

Plan: if S :>ﬁn wa'$ then

stack use production input stack use production
S S— ES +y)$ —&—TE’)T'E’$ match
i E$ E— TF)$ TEN)TES T— FT
TES T— FT)$ FTE)TES$S F—id
FTE$ F— (E)$ idTE)TE$ match
(E)TE'$ match $ TE)TES T —e¢
$ E)
$)
$
$
$

Derivations

)
ETE$ E— TE) TE$ E e
TENTE$ T— FT) TE'$S match
FTE)TES F—id
ldT’E’)TE’ match
TE)TES T —e
ENTES$ E — +TF

TES T —e
EF$ E —¢
$ accept!

How do we automate selection of the production to use at each step?

The LL(1) parsing table

The FIRST set for a sequence of symbols « represents the terminals that may
occur at the start of derivations of a (and ¢, if a = ¢€)

FIRST(o) ={ae T|3B (NUT) ", a="ap} U {e|a="¢}

We can compute FIRST for each rhs and nonterminal (details later):

ES = {(>id}
TFE {(,id}
+TE"6 {+a€}
FT {(,id}
x FT |e = {x,¢}
(E) | id = {(id}

N
-
N
N
N
N

FOLLOW

The FOLLOW set for a nonterminal A represents the terminals that may follow
A in a derivation from the start symbol

FOLLOW(A) = {a | 3a3,S =T aAaj}

We can compute FOLLOW for each nonterminal in a grammar (details later):

E$
TE FOLLOW
+TE e FOLLOW

(E)
(F
FT FOLLOW(
(
(

)

xF T |e FOLLOW
(E) | id FOLLOW

L L d

7
T)
3]

Q:is ")" € FOLLOW(E)? Yes: S= E$= TE$S = FTE$S = (E)TES

The LL(1) Parsing table M

The parsing table maps (nonterminal, terminal) pairs to right-hand sides.

e id |+

Initialize M: TF
foreach Ae N, ac T, MA a] = {}

Populate M:
foreach Ae N
for each production A — «

if a€ FIRST(a) and a # ¢
then M[A, a] = M[A, a] U {a}

else if e € FIRST ()
then for each b € FOLLOW(A)

M[A, b] = MIA, b] U {a}

LL(k)
Derivations
Table
0000
Algorithm

Analysis

Bottom-up

!

Table M for grammar G

3
FOLLOW sets for Gj:

FIRST sets for Gj:

|So B |ESTE |E 5 +TE |E e | T FT | T 5 +FT |F—= (E) | F—id |
| (Gid | (d |+] € | (Gd | « | (| id |

Table M for Gj:

The algorithm

The LL(1) Parsing Algorithm

a := NextToken()
X := TopOfStack()
while (X # $)

if X=a (* match *)

then Pop(); a := NextToken()
Algorithm else if M[X, a] = {a} (* predict *)
®0 then Pop(); Push(c)
X := TopOfStack()

action

Using M to parse (x+y)

action

TE'$
FTE$
(E)TE'S
ETES
TE)TE'$
FTE)TES
:dT’E’)T’E’$
E)
E)

Algorithm

TES$
TE$

M(S, (
[(
MIT,
[(]

match

M[E, id) = {TE'}
M[T,id) = {FT'}
MIF, id] = {id}
match

M[T, +] = {¢}
M[E,+] = {+TE}

{E5}
{TE}
{

{

FT'}
(B)}

+TE’)T'E’$ match
TENTES$ MIT,id = {FT'}
FTEYTES$ MIF,id = {id}
/dT’E')T'E'$ match
EYTES M[T,)] = {e}
EYTES MIE)] = {e}
)TE'$ match
TE$ M[T,$] = {e
E$ ME,$] = {e}

$ accept!

Analysis

Computing NULLABLE

Semantically:

NULLABLE(a) = true iff

Inductively:

NULLABLE(e true

NULLABLE(c false (ceT
Analysis NULLABLE(A) V4. NULLABLE(«) (A N)
000 NULLABLE(XS) = NULLABLE(X) A NULLABLE(8) (Xe& TUN)

NULLABLE(e)
NULLABLE(c)
NULLABLE(A)
NULLABLE(XB)

Analysis
00O

Computing NULLABLE: example

true

false (ceT

V 4_,o. NULLABLE() (AcN)
NULLABLE(X) A NULLABLE(8) (X € TUN)

NULLABLE(a) false
NULLABLE(e) true

NULLABLE(aF) NULLABLE(a) A NULLABLE(F)
false A NULLABLE(F)
false

NULLABLE(E) NULLABLE(aF) V NULLABLE(¢)
false V true
true

NULLABLE(F) NULLABLE(E)
= true

Computing FIRST

Initialize FIRST sets:
for each a € T, FIRST(a) := {a}
for each A € N, FIRST(A) := {}

Populate FIRST sets:
while FIRST changes
if A— X1 X5...Xis a production then
if NULLABLE(X1 X5 . .. Xk)
then FIRST(A) := FIRST(A) U{e}
foreachjinl ...k
FIRST(A) := FIRST(A) U (FIRST(X;) —{¢})
o060 if not NULLABLE(X;) then break

Analysis

Computing FOLLOW

Initialize FOLLOW sets:
for each Ae N, FOLLOW(A) := {}
FOLLOW(S) := {$} (S is the original start symbol)

Populate FOLLOW sets:
while FOLLOW changes
if A— aBp is a production (B € N, 3 # €)
then FOLLOW(B) := FOLLOW(B) U (FIRST(8) - {e})
if A— aBpS is a production and € € FIRST()
then FOLLOW(B) := FOLLOW(B) U FOLLOW(A)
Analysis if A— aBis a production (B € N)
cooo then FOLLOW(B) := FOLLOW(B) U FOLLOW(A)

Bottom-up parsing

Many grammars cannot be parsed using LL(1)

o = @AV e [0 FoLLow: X 1 ¥
Y — cle acde| ce acd|acd

X — Y|a

S

Table M: X

Y

There are multiple entries for M[S, d|. The grammar is ambiguous, and not LL(1).
Bottom-up

® O

Bottom-up (LR) parsing is more powerful

Recall: we had to rewrite Gy to eliminate left recursion.

Gy (N, Ty, Py, E)

E+ T| T (expressions)

E —
Py T — Tx F\ (terms)
F — (E)|id (factors)

Bottom-up parsing can process a wider class of grammars.

With bottom-up parsing there is no need to eliminate left recursion.
Bottom-up

Next time: bottom-up parsing foundations

	LL(k)
	Derivations
	Table
	Algorithm
	Analysis
	Bottom-up

