Algorithms

Lent Term 2025/26

Dr John Fawcett
jkf21@cam.ac.uk

Computer Science Tripos, Part |a

“ With acknowledgement and thanks to Peter Rugg for his many helpful comments, suggestions and
corrections on earlier versions of these notes!

Practicalities - Timetable

Short form: MWF10
Longer form: Mondays, Wednesdays, Fridays at 10am, whole term (24L)

Where: Arts School Lecture Theatre A, New Museums Site

Practicalities - Algorithms 1 and 2, assessment

24 lectures are split into 12 + 12 for Algorithms 1 + Algorithms 2.

Assessed via...

e Three ‘ticks’

e One exam question from a choice of two
on Algorithms 1 material (CST Paper 1)

e One exam question from a choice of two
on Algorithms 2 material (CST Paper 1)

https://www.cst.cam.ac.uk/files/pdf/exam-structure.pdf

Section D
Attempt 1 question

7 Algorithms 1
8 Algorithms 1

Section E
Attempt 1 question

9 Algorithms 2
10 Algorithms 2

Practicalities - Resources

Course webpages:

https://www.cl.cam.ac.uk/teaching/2526/Algorithml/
https://www.cl.cam.ac. uk/teachlng/Z /AlgorlthmZ/

(Strongly) Recommended textbooks:

e “CLRS”: Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest
and Clifford Stein Introduction to Algorithms, Fourth Edition ISBN
9780262046305 Published: April 5, 2022 (3rd edition also good!)

e Sedgewick, R., Wayne, K. (2011). Algorithms. Addison-Wesley. ISBN
978-0-321-57351-3

Advice

1. The Algorithms courses (1 and 2) are about the principles of algorithms, not
the examples.

Every computer scientist needs to be able to write a program that sorts a list of
numbers but our discussion of sorting algorithms will make a bigger point.

2. Write code. An algorithm is a set of instructions that always achieve the
objective. Until you have coded it and tested it (or formally proved it...) you
will not be sure that you have covered every case.

The gist is often obvious; the subtle details and edge cases make the algorithm.

Acknowledgements

Thanks to Peter Rugg, Amir Fazel, Victoria Mankin, Duy Huynh, Thomas Giriffiths,
Avi Hyman, Sarath Roshin-Saran, Sirius Chan, Frank Stajano, and many others
who pointed out mistakes and offered corrections to earlier versions.

Algorithms 1

Section 1: Sorting

What is an algorithm??

e CLRS: “Informally, an algorithm is any well-defined computational procedure
that takes some value, or set of values, as input and produces some value,
or set of values, as output.”

e Algorithms solve problems.

e What's a problem?

Problems and Problem Instances

e We distinguish problems and problem instances.

e Problems have a specified input and output. These need to be precise. e.qg.
Input: a sequence of numbers a,, a,, a,, ... a_
Output: a reordering of the input sequence, b., b, b, ... b_such that
b,<b,<b,<..<b

e A problem instance is a specific set of inputs (meeting whatever constraints
the problem imposes)
Instance: 9, 102, 10, -7, 64, 18

e Notice that a problem instance has a specific size whereas a problem can
describe the requirement for any size input and output.

Correctness

e \We say that an algorithm is correct if, for every input instance, the algorithm
terminates (halts) with the correct output.

e Correct algorithms solve their problem.

e An incorrect algorithm might not halt for some input instances.

e An incorrect algorithm might give the wrong answer for some input instances.

e In this course, we are only interested in correct algorithms.

e The Part |l course, Randomised Algorithms, considers a special branch of
incorrect algorithms.

10

Notation [1]

This course uses the same notation as CLRS:

e An array, A[1..n] has length n and its indices are numbered 1..n.
e A[1]is the first item << BEWARE! A common source of bugs!

e We use A.length to refer to the number of items in an array.

o This is familiar to Java and Python programmers
o InC and C++, an array does not have a “.length” property and so we must provide the array
and its length as two arguments to any function that needs access to the length.

void sort(int[] A) { void sort(int *A, uint32_t len) {
Java/Python style. T CICH++ style.
} Passing an array argument gives } Length is provided separately.

access to the length
1"

Notation [2]

Also in common with CLRS, we write our algorithms in pseudocode.

Pseudocode is a hypothetical programming language, usually an imperative
programming language, to abstract away from distracting syntactic details.

Block-structured, fixed-form syntax (white space / indenting matters, like Python).

At various points in the course we will note that our pseudocode is especially
helpful or concise!

We must always be careful not to imagine that the impossible can be achieved by
inventing pseudocode steps that our “real” (target) computer architecture does not
support. (See Computation Theory, Complexity Theory and Quantum Computing.)

12

Notation [3]

In our pseudocode, parameters are passed by value and objects (including arrays)
are passed as pointers.

We follow Java conventions for short-circuiting boolean operators: A|B and A&B
always evaluate both A and B whereas A||B and A&&B only evaluate B if the value
of A has not already determined the final value.

Loop induction variables hold their final value after the loop.

13

Sorting

Problem statement:

e Input: a sequence of numbers a,, a,, a,, ... a_(not necessarily distinct)

e Output: a reordering of the input sequence, b,, b,, b,, ... b_such that
b,<b,sb,<..sb

The items to be sorted are often called keys and might have attached payloads

(also known as values). We sort by the keys and move the payloads around with
the keys so they end up sorted by their keys. Example: sorting an array of person
records by passport number has key=passport_number, payload=person_record.

14

INSERTION-SORT(A)

for 1=2 to A.length
—»-Key = A[7]]
i =73 -1

while 1>0 && A[1]>Key

p—p-A[i+1] = A[1i]

1 =1 -1

Al1i+1l] = Key

The white space indicates which
statements are inside the for loop and
the while loop. This is what it means
to have a fixed-form syntax.

15

How does INSERTION-SORT(A) work? [1]

Earlier problem instance: 9, 102, 10, -7, 64, 18 for j=2 to A.length
A=[9, 102, 10, -7, 64, 18] Key = A[]]
Considering a prefix of length 1, key 9 is i=73 -1

correctly sorted in the array [9].
while i>0 && A[i]>Key

Begin the FOR loop, j=2:

A[i+1] = A[1i]
Key = 102
i =1 -1
i=1
A[i+1] = Key

WHILE 1>0 && 9>102 — no iterations
A[2] =102

16

How does INSERTION-SORT(A) work? [2]

A=[9, 102, 10, -7, 64, 18] for j=2 to A.length

Next iteration of the FOR loop, j=3: Key = A[]]

Key =10 i=9 -1

i=2 while i>0 && A[i]>Key
WHILE 2>0 && 102>10 A[i+1] = A[i]
A[3] =102 i=1i-1

i=1 A[i+1] = Key

WHILE 1>0 && 9>102 — false, stop looping
A[2] =10

17

How does INSERTION-SORT(A) work? [3]

A=[9, 10, 102, -7, 64, 18]

e

The part we The part we
have done. have yet to do.

Exercise for the reader: single-step through the
remaining steps to convince yourself that this
does correctly sort the input sequence.

for j=2 to A.length

Key = A[]]
i=9 -1

while i>0 && A[i]>Key

A[i+1] = A[1i]
i =1 -1
A[i+1] = Key

18

INSERTION-SORT(A)

Proving correctness

1

for 1=2 to A.length

Key = A[7] A: “Is your algorithm correct?”

1=3-1 B: “Yes.”
while 1>0 && A[1]>Key

A[1+1] = A[1]

i =1 -1 B: “Erm...”

Al1i+1l] = Key

‘\\\\ ¢ Hint! Itis helpful to number the lines of your algorithms so
it's easy to refer to them, including in supervisions and exams!

A: “Can you prove it?”

19

How can we prove correctness?

Many algorithms contain a loop, just like Insertion Sort.

We can often prove the correctness of a loop by talking about a mathematical or
logical statement (a property) that involves the program variables (and sometimes
meta-variables) and that has three characteristics:

1. Initialisation: it is true before the loop begins

2. Maintenance: each iteration of the loop changes the values of the variables
in a way that preserves the truth of the statement (i.e. a loop invariant)

3. Termination: when the loop terminates, the condition for termination
combined with the mathematical statement, proves correctness.

See Hoare Logic and Separation Logic (Part Il) 20

Properties

e Itis easy to come up with something that is true at the start, e.g. 1=1.

e Does each iteration of the FOR loop preserve the property that 1=17 Yes.
e Is this useful at loop termination? No.

Why not? Because it didn’t help us prove correctness. The “Termination”
condition is the important one: being true at the end of the algorithm needs to

prove correctness. This is also why the property needs to refer to the variables
used in the program!

21

Proving the correctness of INSERTION-SORT(A)

Consider this property, P:

P 2 At the start of each iteration of the FOR
loop, the subarray A[1..j-1] contains the
elements originally in positions 1..j-1, but in
sorted order.

To be perfectly precise, we ought to define what
“at the start of each iteration of the FOR loop”
means.

- It means after assigning the next value to
variable j but before executing the first line
of the loop body.

w DN

for 1=2 to A.length

Key = A[J]

while i>0 && A[i]>Key

A[1+1] = A[1]

22

Proving the initialisation of INSERTION-SORT(A)

P 2 At the start of each iteration of the FOR
loop, the subarray A[1..j-1] contains the
elements originally in positions 1..j-1, but in
sorted order.

Before the first iteration, we have j=2 and
A=[9, 102, 10, -7, 64, 18].

The subarray A[1..j-1] is [9] and that does
indeed contain the same keys as the original
subarray from 1..j-1, and they are in sorted
order.

Initialisation:

w DN

for 1=2 to A.length

Key = A[J]

while i>0 && A[i]>Key

A[1+1] = A[1]

23

Proving the maintenance of INSERTION-SORT(A)

P 2 At the start of each iteration of the FOR
loop, the subarray A[1..j-1] contains the
elements originally in positions 1..j-1, but in
sorted order.

The FOR loop works by moving each key A[j-1],
A[j-2], ... one place to the right until it finds a key
that should not be moved to create space to
insert A[j] in the correct place in sorted order.

Then it inserts A[j] in the place it found.

I\ Check that this works if zero items are
moved and if every item from 1..j-1 is moved.

Maintenance:

w DN

for 1=2 to A.length

Key = A[J]

while i>0 && A[i]>Key

A[1+1] = A[1]

24

Proving the termination (case) of INSERTION-SORT(A)

P 2 At the start of each iteration of the FOR
loop, the subarray A[1..j-1] contains the
elements originally in positions 1..j-1, but in
sorted order.

The FOR loop finishes when j = n+1 (where n is
A.length) because j = j+1 is how the loop
advances. Inserting j = n+1 into P, the subarray
A[1..n] (where n is A.length) contains the original
elements in sorted order.

Termination:
Correctness of INSERTION-SORT(A):

Nuance: | have proved partial correctness.

w DN

for 1=2 to A.length

Key = A[J]

while i>0 && A[i]>Key

A[1+1] = A[1]

25

Partial and Total Correctness

Partial Correctness: if we terminate at all, then we do so with the correct answer.

Total Correctness: partial correctness plus assurance that we will terminate on all
input instances.

Is Insertion Sort also totally correct?

In this case, the FOR loop terminates since it counts upwards from 2 to the array
length, which is finite, so we always reach the stopping condition.

The WHILE loop terminates in every iteration of the FOR loop because it counts
down from (j-1)>0 (because j>1) while i>0, with i=i-1. Well-founded induction.

26

[Non-Examinable] Link to Discrete Maths

Later this term you will meet sets that are inductively defined by axioms and rules.

We can define a set of correct algorithms as those inductively defined by rules
such as this rule from Hoare Logic:

{P} B {P} P& !C =20

{P} WHILE C DO B {Q}

P, Q are the pre-condition and post-condition. C is a boolean-valued expression in
the programming language, and B is the body of the loop.

27

Algorithm Analysis

Analysis is about predicting resource requirements for input instances that we
have not yet run the algorithm on.

e Memory requirements (space complexity)
e CPU time (time complexity)
e Disk operations

In order to express the resource requirements as a function of the input size, we
need to measure the size of an input instance.

The measure of size needs to be “succinct”.

28

Measuring instance size

How large was our instance A=[9, 102, 10, -7, 64, 18]?

Possible answers:

1 — because there is just one array?
6 — because there are 6 numbers in the array?
24 — because 6x 4-byte integers is 24 bytes? Or 48 bytes on a 64-bit CPU.

28 (or 56) — because there is also the “.length” attribute to consider?
Should we count bits, not bytes?

29

Succinct size

The correct measure to use depends on the steps that our algorithm performs.

We are going to derive formulae measuring the time and space complexities as
functions of the input size.

We must be careful not to ‘hide’ large amounts of work by measuring size in a
poor way because that would give misleading claims about the cost of our
algorithms.

Let’s look at my six suggestions in a little more detail...

30

Size=1

This is almost surely an inappropriate measure for INSERTION-SORT(A). |t
performs non-zero work on each item in the input array so, without looking any
further into what it does, the time taken must depend on the length of the array.

The time taken by the algorithm below could be stated as a function of the number
of arrays provided: it is a constant-time function.

1 volid printNumberOfArrays (A)
2 1f (A == null) print “No arrays”

3 else print “One array”

31

Size=A.length

This is correct in all every-day implementations, and in our pseudocode. Why any
caveats?

What about arrays that are so long that our programming language’s integer data
type cannot hold large enough values for the “length” attribute? If we use arbitrary
precision arithmetic (arithmetic where numbers are themselves arrays of digits)
then “+1” is not a constant time operation because a carry can ripple along the
array of digits and the number of CPU cycles required depends on the size of the
value we are incrementing.

Similarly if the values in the array are arbitrary precision: > takes variable time!

32

Size=number of bytes or bits

Using the size in bytes (with or without counting array length) correctly accounts
for arrays of arbitrary-precision values.

Using the size in bits is helpful when an algorithm operates at the bit-level, e.g. an
algorithm that multiplies two n-bit numbers, or the various types of adder you study
in Digital Electronics.

33

What about Size=2/ength?

This is not appropriate because it (massively) overestimates the size of the
instance we were asked to work on. If we think that an input instance is much
larger than it really is, then terrible algorithms could look very efficient!

¢ The concept of a succinct measure of the size of an input will be defined
formally in Part IB Complexity Theory. For Algorithms 1, an intuition is sufficient
and in Algorithms 2, when we look at some more exotic data structures, we will be
precise about how we want our input to be represented such that its size is clear.

34

A little more on being precise...

We must also be clear about what our memory can contain and the cost of the
basic steps in our pseudocode language. You would need to change this if you
use fancy hardware, a quantum computer, magic, etc.

Memory ‘cells’, such as the elements in an array, can only hold one item.
Indexing an array item takes one time unit (for read or write): A[i] takes 1 unit
Arithmetic operations take 1 time unit

Comparisons take 1 time unit

Assignments to variables take 1 time unit

The running time of an algorithm is the number of primitive operations performed.

35

Cost of INSERTION-SORT(A)

1 for j=2 to A.length Cost
2 Key = A[7] Cost
3 i=73 -1 Cost
4 while i>0 && A[i]>Key Cost
5 A[i+1] = A[1i] Cost
6 i=1-1 Cost
7 A[i+1l] = Key Cost

executed

executed

executed

executed

executed

executed

executed

n-1 + 1 = n times
n-1 times

n-1 times

ZDTQ t, times
ZDTQ (tj—l) times
ZDTQ (tj—l) times

n-1 times

¢ Remember that FOR and WHILE loops evaluate the loop condition on the occasion that stops the loop
(i.e. after the last iteration to determine that no more iterations are required).

Cost of INSERTION-SORT(A)

T(n) = an + (b+c+g)(n-1) + d sz':z tj Cost a, executed n-1 + 1 = n times
+ (e+f) Z”j=2 (tj-1) Cost b, executed n-1 times
where t _is number of iterations of the WHILE Cost ¢, executed n-1 times

loop that are performed when j = x-1.
Cost d, executed an=2 t, times

Cost e, executed)",

s, (E-1) times

I\ Notice that t depends on the input datal!
J Cost f, executed an=2 (tj—l) times

i\ We said that a=b=c=d=e=f=g=1 time unit but |
any constant amount of time would not change Cost g, executed n-1 times
the functional form.

¢ The running time, T(n), on inputs of size n is the cost of each line multiplied by the number of times the
line is executed. 37

Best case cost of INSERTION-SORT(A)

T(n)=an + (b+c+g)(n-1) +d 27, t + (e+f) 2", (t-1)

If the input data is in sorted order, no iterations of the WHILE loop are ever
performed = tj =1

T(n) = pn + q for constants p and q

Linear time complexity, O(n), in the base case.

38

Worst case cost of INSERTION-SORT(A)

T(n)=an + (b+c+g)(n-1) +d 27, t + (e+f) 2", (t-1)

If the input data is in reverse sorted order, each WHILE loop performs j-1 iterations
= tj = j (remembering that the WHILE loop does a comparison after the last
iteration to determine that no more should occur).

not=>"_j=n(n+1)/2-1 Sum of an arithmetic sequence - 1 (to exclude 15 term)
=2] J-2J

n_t-1)=5"__(j-1) = n(n-1)/2 Sum of an arithmetic sequence

2 V] =2

T(n) = pn? + gn + r for constants p, g and r. Quadratic time complexity, O(n?).

39

Average case cost of INSERTION-SORT(A)

On average, one half of the keys in the subarray A[1..j-1] will be less than A[j].
This also gives two arithmetic progressions and a T(n) that is O(n?).

¢ The average case is often the same as the worst case, as happens for
Insertion Sort.

40

Which case do we want?

Usually (and if unspecified) we want the worst case running time and/or memory
consumption, because:

1. It gives an upper bound: if we provision sufficient resources we know that the

computation will succeed.
2. The worst case might occur fairly often (e.g. humans might not use a
computer to perform an “easy case” that they could do quicker in their heads).
3. The average case is often the same order of magnitude as the worst case
and for such algorithms there is no interesting differentiation to be made

between average case and worst case.

41

Order of Growth

We often care most about how rapidly the expected running time grows with the

size of the input. Prof. Robert Sedgewick (Princeton) captures this nicely: “Good
algorithms are better than supercomputers” and “Great algorithms are better than
good ones.” His book motivates this:

Insertion Sort O(N?)

MergeSort O(N Ig N)

QuickSort O(N Ig N) [expected]

Thousand Million Billion Thousand Million Billion Thousand Million Billion
Home PC instant 2.8 hours 317 years instant 1 second 18 minutes instant 0.6 12 minutes
seconds
Super- instant 1 second 1 week instant instant instant instant instant instant
computer

¢ See Robert Sedgewick, Algorithms, 2nd, 3rd or 4th edition for details.

42

Order of Growth: ©(g(n))

©(g(n)) is the set of functions, f(n), such that there exist positive constants c,, c,
and n, such that 0 < c,g(n) < f(n) < c,g(n) foralln 2 n,,.

g(n) is an asymptotically tight bound for f(n). This means, within a constant
(multiplicative) factor.

Example: if the true cost is 10.3 n? + 6.1n - 0.4, we can write ©(n?) but not ©(n*) or
O(n).

43

Order of Growth: O(g(n))

O(g(n)) is the set of functions, f(n), such that there exist positive constants ¢ and
n, such that 0 <f(n) = cg(n) foralln=n,.

g(n) is an asymptotic upper bound for f(n).
Notice that ©(g(n)) & O(g(n))
Example:

If the true cost is 10.3 n? + 6.1n - 0.4, we can write O(n?) and O(n*) but not O(n).

44

Order of Growth: Q(g(n))

QQ(g(n)) is the set of functions, f(n), such that there exist positive constants ¢ and
n, such that 0 < c g(n) <f(n) foralln=n,.

g(n) is an asymptotic lower bound for f(n).
Notice that f(n) € ©(g(n)) & f(n) € O(g(n)) A f(n) € Q(g(n))
Example:

If the true cost is 10.3 n? + 6.1n - 0.4, we can write Q(n?) and Q(n) but not Q(n*).

45

Order of Growth: o(g(n)) and w(g(n))

Little-o and little-omega denote asymptotically non-tight versions of their ‘big’
counterparts. O(n?) is an asymptotically tight bound for 3n? but O(n®) is not.
o(g(n)) is non-tight.

o(g(n)) is the set of functions, f(n), such that for any positive constant c, there
exists a positive constant n, such that 0 <f(n) < cg(n)forallnz=n,.

w(g(n)) is the set of functions, f(n), such that for any positive constant c, there
exists a positive constant n, such that 0 < c g(n) < f(n) foralln2n,.

Examples: 3n? is in O(n?) and Q(n?) but neither in o(n?) nor w(n?).

46

Useful properties

Transitivity: O, O, Q, o, w are transitive
e.g. f(n) € O(g(n)) A g(n) € O(h(n)) = f(n) € O(h(n))

Reflexive: ©, O, Q are reflexive
e.g. f(n) € O(f(n))

Symmetric: O is symmetric
e.g. f(n) € ©(g(n)) if and only if g(n) € O(f(n))

47

Other sorting techniques

Insertion sort is an incremental algorithm: having already built a sorted version
of the subarray A[1..j-1], it inserts AJj] into the correct place to build A[1..]].

Another technique is divide and conquer:

1. Divide the original problem into two or more smaller instances of the same
problem.

2. Conquer the subproblems by calling the same function recursively on each of
them in turn.

3. Combine the solutions to the subproblems to build the solution to the original

problem.

48

Divide and Conquer sorting: MERGE-SORT(A, p, I)

1 1f p<r

% q = floor ((p+r)/2) // Divide

3 MERGE-SORT (A, P, g) // } Conquer the two

4 MERGE—-SORT (A, g+1, r) // } subproblems

5 MERGE (A, P, J, I) // Combine (next slide)

Claim: this sorts the array, A, from index p to index r, inclusive at both ends.

49

MERGE(A, p, q, I)

1 let nl =g-p + 1
2 let n2 = r - g
3 let L. = new Array(l..nl+1)

4 let R = new Array(l..n2+1)

5 L[l..nl] = A[p..p+tnl-1]
6 Llnl+l] =
7 R[1..n2] = A[gt+tl..g+tn2]
8 R[n2+1] = =

10
11
12
13
14
15
16

50

Effect of MERGE-SORT(A, p, r) on memory

A=[9, 10, 102, -7, 64, 18, =, «] // Size is a power of 2

MERGE-SORT (A, 1, 8):
q=4 because floor ((1+8)/2)=4
MERGE-SORT (A, 1, 4) - A=[-7, 9, 10, 102, o4, 18, -,
MERGE—-SORT (A, 5, 8) - A=[-7, 9, 10, 102, 18, 64, <,

MERGE (A, 1, 5, 8) - A=[-7, 9, 10, 18, 64, 102, «,

51

Effect of MERGE-SORT(A, p, r) on memory

A=[9, 10, 102, -7, 64, 18, =, =]
MERGE—SORT ([-7,9,10,18,64,102,,]

[-7,9,10,102] ////////// \\\\\\\\\\ [18 64,w,w]

MERGE—SORT (MERGE—SORT (

lﬂr///// \:i;:Ej\ [18Aﬁf///// \j:iﬁ\\\

2
(A,1,2) M.-S 3,4) M.-S.(A,5,6) M.-S.(A,7,8)

/NN N

52

We don'’t need the padding!

A=[9, 10, 102, -7, 64, 18]

MERGE—-SORT ([-7,9,10,18,64,102]

[9,10,102] / \ 726, 64]

MERGE—SORT (MERGE—SORT (

[9/$ /k
S (B, 4,5)

M M.-S. (A, 3,3) M.-S.(A,6,0)

SN N

53

Analysis of MERGE-SORT(A, p, r)

The measure of input size, n, is the length of the region to be sorted, i.e.r-p + 1.

E.g. the previous example sorted 1..8 and 8-1+1 = 8 keys to be sorted
Let T(n) be the cost of solving a problem of size n using MERGE-SORT(A, p, r).
When p=r, the algorithm stops immediately: T(1) = 1
When p<r, the algorithm...

e Calculates g, which is ©(1) work
e C(Calls itself on two problems of size at most n/2: 2x T(n/2) work
e Calls MERGE(A, p, q, r): let’s call the cost of that M(A, p, q, r).

54

Analysis of MERGE(A, p, q, I)

Letn=r-p+1 i.e. the total length of the two subarrays to be merged

MERGE(A, p, q, r)...

e Creates and fills two arrays of total length n+2 — ©O(n) total cost
e Loopsfromk=ptor (n iterations)
o Assigns into an array position — constant cost — O(1)
o Adds one to either i or j — constant cost — O(1) — ©O(n) total from n iterations

Total cost of MERGE(A, p, q, r), M(A, p, q, r) € O(n)
i.e. M(A, p, q,r) =k (r-p+ 1) for some constant k>0, for all n = n,

55

Full Analysis of MERGE-SORT(A, p, r)

Remembern=r-p+ 1.

T(1) =1

T(n)=0O(1) work + 2x T(n/2) work + M(A, p, q, I) // informal concept!
= O(1) work + 2x T(n/2) work + k, (r-p + 1) // mixed notation!
= O(1) work + 2x T(n/2) work + k, n // mixed notation!
=k, +2T(n/2) +k, n // real maths!

Closed form solution [1]

We want the closed form solution: this means not defined in terms of itself
through direct or indirect recursive calls to the T() function.

Recursive form:
T(1) =1
T(n) =k, +2T(n/2) +k, n

57

Closed form solution [2]

One approach is to substitute into itself and spot a pattern.

T(n)=k, +k, n+2T(n/2)
=k, +k,n+2(k, +k,n/2+2T(n/4))
=k, +k,n+2(k, +k,n2+2[k, +k,n/4+2T(n/8)])

=k, (1+2+4+..) /l'log,n terms
+tk,n(1+1+1+...) //log,n terms
+ 2lo9n T(1)
=k, (n-1)+k,nlog,n+n € O(nlog,n) =0O(n log n)
H_J

o _ Notice that the base of logs is irrelevant because
Derivation on the next slide a change of base is a multiplicative scale factor!

58

Closed form solution [3]

Derivation of k, (1+2+4 + ...) /l'log,n terms
=k, (n-1)

This is a geometric series with a=1, r=2, n’=|ogzn.

Sum first n terms = a(1-r")/(1-r) =1 (1 - 29M/(1-2) = (1 - n)/-1 = n-1.

59

Another way to find the cost of MERGE-SORT(A, p, r) [1]

Here i1s the call tree again:

MERGE-SORT (A, 1, 8) 1 CaHCOSﬂng|9-+k2n
/ \ 2 calls at this level
MERGE-SORT (A, 1, 4) MERGE—-SORT (A, 5,

/ \ / \8) Costk, +k, n/2
4 calls at this level

M.-S.(A,1,2) M.-S.(A,3,4) M.-S.(A,5,6) M.=S.(A, 7,85 4k 4K nja
1 2

60

Another way to find the cost of MERGE-SORT(A, p, r) [2]

The k, terms are asymptotically dominant over the k. terms.
The k,terms are k, n + 2k, n/2+4 k,n/4 + ... =k, nx NUM_LEVELS
The tree has log,n + 1 levels (since log,1 = 0).

= Total cost is O(n log n).

61

Notes on those solutions

1. You will see some authors using this notation where we inserted constants k.

ifn =1
2 T(n/4) + O(n) ifn>1
Mathematically, this is unhygienic because we’re adding a cost and a set but

it's obvious why some people might prefer this crime against type correctness
to the clutter of our constants!

2. We assumed that the array length was a power of 2. What if it's not?
We get T(n) = T(ceil(n/2)) + T(floor(n/2)) + k, + k, n, with the same solution.

I\ Derivations often assume that T(n) = 1 for small enough n, and this is true for most algorithms.
Boundary conditions are often neglected but remember to check that this applies in your own proofs! 62

The Master Theorem

Leta =1 and b > 1 be constants, let f(n) be a function, and let T(n) be defined on
the non-negative integers by the recurrence

T(1) =1 and T(n) = a T(n/b) + f(n)

where we interpret n/b to mean either floor(n/b) or ceil(n/b). Then T(n) has the
following asymptotic bounds:

1. Iff(n) € O(n”(-€ + log,a)) for some constant €>0, then T(n) € ©(n"log a)
. Iff(n) € ©(n"(log a)), then T(n) € ©(n"log,a - Ig n)
3. Iff(n) € Q(n*(e + log,a)) for some constant €>0, and if a f(n/b) < ¢ f(n) for
some constant c<1 and all sufficiently large n, then T(n) € O(f(n))

" is “raise to the power”, written like this so the font is easier to read! “Ig x” is log, x. 63

Understanding The Master Theorem: case 1

1. Iff(n) € O(n"(-¢ + log a)) for some constant £>0, then T(n) € O(n"log, a)

f(n) is bounded from above by n*(log, a), i.e. n*(log,a) > f(n) beyond some point n,
then n”(log, a) dominates and the solution is ©(n"log,a).

BUT what about €? That is requiring that n*(log,_a) dominates f(n) by a polynomial
factor of at least n* for some €>0.

Notice this leaves a gap between cases 1 and 2: there are situations where The
Master Theorem cannot solve the recurrence equation. Fortunately, these crop up

fairly rarely in practice.

64

Understanding The Master Theorem: case 3

3. Iff(n) € Q(n"(¢ + log,a)) for some constant €>0, and if a f(n/b) < c f(n) for
some constant c<1 and all sufficiently large n, then T(n) € O(f(n))

f(n) is bounded from below by n*(log, a), i.e. n*(log,a) < f(n) beyond some point n,
then f(n) dominates and the solution is O(f(n)).

Again, € requires that f(n) dominates n”(log,a) by a polynomial factor of at least n*
for some €>0 AND we have the “regularity” condition that a f(n/b) < ¢ f(n).

Notice this leaves another gap between cases 2 and 3 when The Master Theorem
cannot solve the recurrence equation. The “regularity” condition is usually met.

65

Understanding The Master Theorem: case 2

2. Iff(n) € ©(n*(log,a)), then T(n) € O(n"log,a - Ig n)

When f(n) and n*(log,a) are the same size, we multiply by a logarithmic factor so
the solution is O(f(n) - Ig n) = ©(n*log, a - Ig n).

66

The Master Theorem: MERGE-SORT(A, p, r)

Our recurrence relation was T(n) =2 T(n/2) + k, n + k,

Applying The Master Theorem, we have a=2, b=2, and f(n) = k, n + k, € O(n).
Calculate n?log a = n*log,2 = n"1 =n.

Case 2 applies because f(n) € O(n"log, a) = O(n)

We read off the solution: T(n) € O(n g n)

... and cite The Master Theorem to explain our working.

Remember that ©(n Ig n) = ©(n log, ,n) (or any other base) as multiplicative scale factors can be ignored.

67

Other examples of The Master Theorem [1]

T(1) =1 and T(n)=9 T(n/3) + n

We have a=9, b=3, f(n)=n and we calculate n*log, a € O(n?).

We must find some €>0 such that f(n) € O(n"(-€ + log,9)),
i.e. that n € O(n”(-¢ + log,9)).
e=0.1 suffices: log,9 =2 so n € O(n"®) and case 1 applies.

The solution is T(n) € O(n?), by The Master Theorem.

68

Other examples of The Master Theorem [2]

T(1)=1 and T(n)=3T(n/4)+nlign
We have a=3, b=4, f(n)=n Ig n and we calculate n*log,a € ©(n°").

f(n) € Q(n”(¢ + log,3)) when € = 0.2 so case 3 will apply if we can prove the
“regularity” condition. For sufficiently large n, we have

a f(n/b) =3 (n/4) Ig(n/4) < (3/4) nIg n = ¢ f(n) for c = 3/4.

So case 3 does apply and the solution is T(n) € O(n Ig n), by The Master
Theorem.

69

Other examples of The Master Theorem [3]

T(1)=1 and T(n)=2T(n/2)+nlign
We have a=2, b=2, f(n)=n Ig n and we calculate n*log,a € O(n).
f(n) is asymptotically greater than ©(n) so we try case 3 again.

We need a constant €>0 such that f(n) € Q(n”(e + log,a)) but f(n)/n*log,a =1g n
and this is asymptotically less than n® for any positive constant €. Here, f(n) does
dominate n*log, a but not by a polynomial factor (only by a logarithmic factor).

This case falls between cases 2 and 3, and cannot be solved by The Master
Theorem.

70

Exercises

It turns out that matrix multiplication can be solved using Strassen’s Algorithm with
this recurrence equation:

T(1) =1 and T(n) = 7 T(n/2) + k n?

Show that the closed form solution is T(n) € O(n'97).

Find the closed form solution of the recurrence equation

T(1) =1 and T(n) = 2 T(n/4) + \n (CLRS 4.5-1 (b))

71

QUICKSORT(A, p, 1)

PARTITION(A, p, r)

1 1f p<r

2 g = PARTITION (A, p, r)
3 QUICKSORT (A, p, g-1)

4 QUICKSORT (A, g+l1, 1)

Initial call:

QUICKSORT (A, 1, A.length)

4 if A[J] £ x
5 i =1 +1
6 swap (A[1], A[J])

7 swap(A[1+1l], Alr])

8 return 1 + 1

72

Intuition behind QUICKSORT(A, p, r)

e If the subarray to be sorted is length 0 or 1 then no action is required.
e Otherwise, pick any element as the pivot and rearrange the items in the
subarray such that it looks like this:

[items < pivot value ... pivot ... items > pivot value]
Notice that the pivot is definitely in the correct place!

e If your array might contain duplicates, values equal to the pivot can be placed
on either side arbitrarily.

e Recurse on the subarray to the left of the pivot (excluding the pivot itself)

e Recurse on the subarray to the right of the pivot (excluding the pivot itself)

73

Intuition behind PARTITION(A, p, r)

‘X’ is the pivot value. It is chosen to be 1 x = Alr]
the last item in the subarray (index r).

<- region to be sorted -> 3 for j = p to r-1
8 2 1 &5 2 4 .. 4 if A[3] £ x
p r 5 i=1i+1
6 swap (A[i], A[J])
x=4 7 swap(A[1+1], Alrl])

8 return 1 + 1

74

Intuition behind PARTITION(A, p, r)

We walk through the subarray 1 x = Alr]
maintaining ‘i’ as the right end of the
items currently known to be less than
the pivot. If we find an item that should

be to the left of the pivot, we increase ' 4 if A[j] £ x

and put it there. 5 S o4 1
<- region to be sorted -> 6 swap (A[1], A[3])
8 2 1 5 2 4 .. 7 swap(A[i+1l], A[r])

i P,] r 8 return 1 + 1

Key: known less than pivot, Pivot, known greater than pivot, not processed yet

Intuition behind PARTITION(A, p, r)

8 <4 is false so we move on:
<- region to be sorted ->

8 2 1 5 2 4

[P r

swap (A[1], A[J])
swap (A[i+1], Alzr])

return 1 + 1

76

Intuition behind PARTITION(A, p, r)

2 <4 is true so we run the IF: 1 x = A[r]
<- region to be sorted -> 2 1i=p -1
2 8 1 5 2 4 3 for J = p to r-1
pi] r Z if A[j] £ x
5 i=1+1

Then we move on again:

6 swap (A[1], A[J])
2 8 1 5 2 4

7 swap(A[1+1l], Alr])
p.i J r

8 return 1 + 1

77

Intuition behind PARTITION(A, p, r)

1 <4 is true so we run the IF: 1 x = Alr]
<- region to be sorted -> 2 1i=p -1
2 1 8 5 2 4 .. 3 for J = p to r-1
5 i=1+1

Then we move on again:

6 swap (A[1], A[J])
2 1 8 5 2 4

7 swap(A[1+1l], Alr])
p J r

8 return 1 + 1

78

Intuition behind PARTITION(A, p, r)

5 <4 is false so we move on:
<- region to be sorted ->

2 1 8 3 2 4

p i joor

swap (A[1], A[J])
swap (A[i+1], Alzr])

return 1 + 1

79

Intuition behind PARTITION(A, p, r)

2 <4 is true so we run the IF: 1 x = Alr]
<- region to be sorted -> 2 1i=p -1
2 1 2 5 8 4 .. 3 for J = p to r-1
5 i=1+1

Then we move on again:

6 swap (A[1], A[J])
2 1 2 5 8 4

7 swap(A[1+1l], Alr])
P | T

8 return 1 + 1

80

Intuition behind PARTITION(A, p, r)

Loop ends; swap the pivot into place: 1
<- region to be sorted -> 2

2 1 2 4 8 B8 .. 3

P | J,r ’
Return i+1 = the pivot position! ’
6

7

swap (A[1], A[J])
swap (A[i+1], Alzr])

return 1 + 1

81

Intuition behind PARTITION(A, p, r)

Notice that 5 & 8 swapped order 1 x = Alr]
several times. We never compared
these two sort keys and we have no
preference for which order they end up

in, only that both are to the right of the 4 if A[J] £ x
pivot. 5 i =1+1
2 1 2 4 8 5 .. 6 swap (A[i], A[3])

7 swap(A[1+1l], Alr])

8 return 1 + 1

82

Algorithm paradigm

This is a divide and conquer algorithm.

Divide: partition the subarray, A, to be sorted into three regions [L p G] where p is
any key chosen arbitrarily from A; L contains all the keys from A that are less than

or equal to p (but not the pivot itself), in any order; G contains all the keys from A
that are greater than p, in any order.

Conquer: recurse on the two subarrays L and G
Combine: no-op!

The algorithm is correct provided PARTITION() works: let’s prove that it does.

83

Requirement for PARTITION(A, p, r)

Given that p..r defines a valid subarray within A, PARTITION(A, p, r) must...

1. Rearrange the elements of A[p..r] into two (possibly empty) subarrays
Alp..g-1] and A[g+1..r] such that

a. Each element of A[p..g-1] is less than or equal to A[q]
b. A[q] is less than or equal to each element of A[g+1..r]

2. Returnq.

84

Proof of correctness for PARTITION(A, p, r) [1]

PARTITION is based on a loop so we look for a loop invariant property. Based on
our walk-through of PARTITION, we might capture its behaviour with this property:

Let P £ At the beginning of each iteration of the FOR loop, for any array index k:

1. Ifp<k=<i, then Ak] < x. // Region known to contain < pivot
2. Ifi+1 <k <j-1,then Ak] > x. // Region known to contain > pivot

// No claim about the unprocessed region
3. If k=r, then A[K] = x. // The pivot has not been lost/corrupted!

We check initialisation, maintenance, termination...

85

Proof of correctness for PARTITION(A, p, r) [2]

Let P £ At the beginning of each iteration of the FOR loop, for any array index k:

1. Ifp<k=<i, then AIk] < x. // Region known to contain < pivot
2. Ifi+1 <k <j-1,then Alk] > x. // Region known to contain > pivot

// No claim about the unprocessed region
3. If k=r, then A[K] = x. // The pivot has not been lost/corrupted!

At initialisation, i=p-1 so #1 is vacuously true because no k are in range. The
same applies to #2 and line 1 set the pivot (x) to the last item so #3 is true.

= P holds (is true) when PARTITION() begins.

86

Proof of correctness for PARTITION(A, p, r) [3]

Let P £ At the beginning of each iteration of the FOR loop, for any array index k:

1. Ifp<k=<i, then AIk] < x. // Region known to contain < pivot

2. Ifi+1 <k <j-1,then Alk] > x. // Region known to contain > pivot
// No claim about the unprocessed region

3. If k=r, then A[K] = x. // The pivot has not been lost/corrupted!

For the maintenance step, we need a case split on whether we enter the IF.

We don’t enter the IF when A[j] > x. The only change is to incrementj. #1 and #3
are unchanged so continue to hold. #2 holds as the item newly in range is > x.

87

Proof of correctness for PARTITION(A, p, r) [4]

Let P £ At the beginning of each iteration of the FOR loop, for any array index k:

// Region known to contain < pivot

// Region known to contain > pivot

// No claim about the unprocessed region
// The pivot has not been lost/corrupted!

1. Ifp<k<i, then Ak] < x.
2. Ifi+1 <k <j-1, then AK] > x.

3. If k=r, then A[K] = x.
If we do enter the IF then A[j] < x and we swap A[i] and A[j]. The swap ensures #1
still holds even though i has been incremented. #2 still holds because the item in
A[j-1] was previously known to satisfy #2. #3 is unchanged.

= the Maintenance step preserves property P.

88

Proof of correctness for PARTITION(A, p, r) [9]

Let P £ At the beginning of each iteration of the FOR loop, for any array index k:

1. Ifp<k=<i, then AIk] < x. // Region known to contain < pivot
2. Ifi+1 <k <j-1,then Alk] > x. // Region known to contain > pivot

// No claim about the unprocessed region
3. If k=r, then A[K] = x. // The pivot has not been lost/corrupted!

When the loop terminates, j=r (so the unprocessed region is empty). All values up
to and including position i were < x and positions i+1..r-1 were > x at the end of
the previous iteration so when we do the final swap of A[i+1] and A[r], we achieve
the post-condition for the PARTITION procedure.

We actually over-achieved the post-condition: all our items to the right of the pivot are strictly
greater than the pivot but are only required to be = pivot. 89

Other ways to express Quicksort, e.g. in OCaml

let rec gs = function
fun x -> pivot >= x

| [1 -> 1[I /

| pivot::rest -> (List.filter ((>=) pivot) rest |> gs)

@ pivot :: Reverse apply
(List.filter ((<) pivot) rest |> gs);;

: 1int list = [1; 2; 2; 3; 4; 5; 8]

90

Little Demo [1]

let gen cmp () =

let ¢ = ref 0 in
let read ¢ () = !c 1in
let cmp (a : int) b = (¢ := !c+l; a <= b) in
(cmp, read c)
let rec gs cmp = function
[=> 1]
| x::xs -> ((List.filter (cmp x) xs) |> gs cmp)

@ x
((List.filter

(fun y —-> not(cmp x Vy))

XS)

| > gs cmp)

91

Little Demo [2]

let perm 1 =
let rec perm c =

0l => 0[]

| when ¢ = 0

| Xx::xs -> (perm

function

-> []

@ perm (c-1)
in perm (List.length 1) 1

(List.length xs) xs

|> List.map
(xs@[x])

let stimulus = [1;2;3;4;5] 1in
List.map (
fun 1 ->
let (c,r) = gen cmp() in

(gs cl; r()/2)

) (perm stimulus);;

(fun

1 —-> x:

:1))

92

Other ways to express Quicksort, e.g. with Hoare-Partition

HOARE—-PARTITION (A, p,

1
2
3

x = Alp]
1 =p -1
J=1r + 1

while true

repeat j =

until A[j]

r)

7
8
9
10
11
12

repeat 1 = 1+1
until A[i] 2> x
if 1 < 7

swap (A[1], A[3J])
else

return j

93

Performance of QUICKSORT(A, p, r)

e \We usually take the number of key-comparisons as the unit of cost.
o These occur within PARTITION()

e Although integer “<” is cheap on most CPUs, substantially more CPU work
might be required to compare values of another data type, e.g. strings, so
comparisons can quickly dominate the cost.

e We don’t count the cost of adding 1 to integers (“i =i + 17, nor in the machine
code implementation of the FOR loop) because there is a fixed number of
CPU instructions per comparison so counting them would be equivalent to
increasing a multiplicative constant factor.

e |t all depends on how PARTITION() splits the subarray...

94

Best-case performance of QUICKSORT(A, p, r) [1]

The best, worst and average cases are different for QUICKSORT.

Best case:

e Every time we pick a pivot, PARTITION happens to split range p..r “in half”.

e More precisely, partitioning n items will yield one subproblem of size floor(n/2)
and another of size ceil(n/2)-1 (remember the pivot is excluded from both).
PARTITION sweeps through the subarray performing one comparison per key
T(1) =
T(n)=2T(n/2) +

PARTITION(A, p, r) € O(n)
wheren=r-p+1

Where did the floor and ceil go?! 95

Best-case performance of QUICKSORT(A, p, r) [2]

T(1)=1
T(n)=2T(n/2) + kn

Applying The Master Theorem, a=2, b=2, f(n) = kn. Calculate n*log,a = n.
Noting that f(n) € ©(n*log, a) = O(n), case 2 applies and we read off the solution:

T(n) € ©(nlg n)

96

Ratio-splitting performance of QUICKSORT(A, p, r) [1]

In fact, we can see that The Master Theorem would be satisfied if we split in any
ratio, even 1% — 99%! Consider a 25% — 75% split at each level.

T(1)=1
T(n)=T(n/4) + T(3n/4) + k n

Now let's draw the recursive calls and calculate the total cost.

97

Ratio-splitting performance of QUICKSORT(A, p, r) [2]

If this tree were full, we would have kn cost per level
and log, ,n levels = O(n Ig n).

i /4 /”\ 3n/4 i
: n/16/ \ 3n/16 3n/16 / \Qn/16 :
Tl PN PN P
log,n i
levels I

v

If the tree were log,n deep, we still get O(n Ig n). log, ,n
levels

98

Ratio-splitting performance of QUICKSORT(A, p, r) [3]

If this tree were full and had the deepest depth right across, we would have kn
cost per level and log, ,n levels = O(n Ig n).

If the tree were full and had the shallowest depth right across, we would have kn
cost per level and log,n deep = O(n Ig n).

It is easy to generalise and observe that any ratio split between the two sides will
result in ©(n Ig n) performance.

This is instructive: it tells us to aim for a ratio split when we design divide and
conquer algorithms because those are likely to be performant.

99

Worst-case performance of QUICKSORT(A, p, r) [1]

Worst case:

e Every time we pick a pivot, PARTITION happens to split ‘n’ items into zero on
one side, the pivot, and n-1 on the other side.

e In other words, the pivot is either the largest or smallest key in the subarray.
e (In)Famously, one such situation is when the input is already sorted.
T(1)=1
T(N)=T(n-1)+ T(0)+kn=T(n-1) +kn

100

Worst-case performance of QUICKSORT(A, p, r) [2]

T(1)=1
T(n)=T(n-1) +kn

We solve using the substitution method: substitute the definition of T(n) into itself
and spot the pattern.

T(n) = T(n-1) + kn = (T(n-2) + k(n-1)) + kn = ((T(n-3) + k(n-2)) + k(n-1)) + kn = ...

The number of times we can subtract 1 from n until we hit the base case is n-1 so
we have an arithmetic progression of n terms, first term 1 (the base case), and
sum being kn(n+1)/2 € O(n?).

101

Constant-splitting performance of QUICKSORT(A, p, r)

It doesn’t have to be “0 and n-1"! Splitting n keys into [x, 1 pivot, (n-x-1)] for any
constant, x, gives the same outcome.

T(1)=1
T(n) =T(n-x-1) +T(X) + k n

Whatever value ‘X’ is, T(x) is some constant so disappears into the constant factor.

The arithmetic progression has a step size of ‘X’ instead of 1, but the sum is still in
©(n?). This is also instructive: avoid divide-and-conquer algorithms that split off a
constant size subproblem from the rest!

102

Order Statistics

The it" order statistic is the i'" smallest value in a set of n elements (NB: ‘set’
implies there are no duplicates). Finding it is known as the selection problem:

Input: a set, A, of n (distinct) numbers and an integer, i such that 1 <i<n.
Output: the element x € A that is larger than exactly i-1 other elements of A.

One obvious way to get the i order statistic is to sort the sequence and read off
the value in the i'" position. We know this can be achieved in guaranteed ©(n Ig n)
time using MERGE-SORT, dominated by the sorting step.

Can we do better?

103

Minimum and Maximum

The minimum is the first order statistic and the maximum is the n". A simple linear
scan can find either (or both) in ©(n) time, performing n-1 comparisons.

MINIMUM (A) MAXIMUM (A)

1 min = A[1] 1 max = A[1l]

2 for 1=2 to A.length 2 for 1=2 to A.length
3 if min > A[1] 3 if max < A[i]

4 min = A[1i] 4 max = A[1]

5 return min 5 return max

Challenge: find both min and max using at most 3 floor(n/2) comparisons.

104

QUICKSELECT(A, p, I, i)

1 1f p ==

2 return A[p] // region size is one

3 g = PARTITION(A, p, I)

4 k=g-p+1

5 1if i ==

0 return A[g] // pivot is in position i
7 else if 1 < k return QUICKSELECT (A, p, g-1, 1)

8 else return QUICKSELECT (A, gt+l, r, 1-k)

105

How does QUICKSELECT(A, p, r, i) work?

e Similar to QUICKSORT() except we recurse only on the side containing the it"

element

e Notice the stopping conditions:
o If the subarray has size one then the only element has to be the one we want
o If, by luck, the pivot ends up in position i, we can return it because the pivot is in the correct
place in sorted order.

e Notice two further optimisations we could make:
o If the pivot ended up in position i-1, we could return MINIMUM() on A[g+1..r]
o If the pivot ended up in position i+1, we could return MAXIMUM() on A[p..q-1]
o Each of these would perform x-1 comparisons on the x (many) items in the subarray and
guarantee to return a result; that beats continuing QUICKSELECT(), which would perform x-1
comparisons to partition about the next pivot and only terminate if, by luck, the pivot is the it",

106

Worst-case cost of QUICKSELECT(A, p, I, i)

In the worst case, PARTITION() might split any subarray into O and n-1 elements
each time. We recurse on the non-zero partition.

T(1)=1
T(n)=T(n-1) +kn

Using the substitution method, we find that the worst case cost € O(n?).

107

Improving QUICKSORT and QUICKSELECT

There are several standard improvements discussed in algorithms literature.

Randomise the input data before starting
Take out all values equal to the pivot
Pick the pivot randomly
Median-of-Three pivot
Median-of-Medians pivot

-

108

Randomise the input data before starting

Perform O(n)-many random swaps to ‘scramble’ the input array. This can incur
substantial extra cost to generate good-quality random numbers but makes all
input permutations (roughly) equally likely: good if pathological inputs are likely!

If the input data was already equally likely to be in any permutation, this does not
make the worst case any less likely to occur, nor make it any less expensive when
it does: for every worst case avoided, another becomes a worst case as a result of
permuting an initially scrambled input order into a worst-case ordering.

This does make it hard or impossible to generate an input for QUICKSELECT that
will hit the worst case. This might be an important security consideration.

I\ For QUICKSORT, it's still trivial to provide input that hits the worst case: make every value in the array be
the same so every pivot is a worst case! 109

Take out all values equal to the pivot

When partitioning, split into three regions with the middle region containing all the
values equal to the pivot.

This is especially effective if the input might be a long array containing a small
number of distinct values (i.e. lots of duplicates).

This also turns the “all values are the same” worst case into a best case so it can
used in combination with the previous technique.

let rec gs = function

| [1 -> [1]

| pivot::rest -> (List.filter ((>) pivot) rest |> gs)
@ (List.filter ((=) pivot) rest)
@ (List.filter ((<) pivot) rest |> gs);;

110

Pick the pivot randomly

Instead of using the last key in the subarray as the next pivot (or the first in the
OCaml implementation), pick a pivot at random.

This also incurs the cost of generating good quality random numbers but only
needs as many as the number of levels in the recursion.

If some input orderings are more likely than others, and the more likely ones
happen to lead to worst case performance, then, like randomising the input, this
can reduce the probability of hitting a worst case.

111

Median-of-Three pivot

If the subarray has length 1, we return. For length 2, we compare and swap if
necessary.

Otherwise, we pick three items, systematically or randomly, and use the median
as the pivot.

- If the items are distinct (as is always the case for QUICKSELECT), we have
reduced the likelihood of hitting the worst case from ~2-in-n to ~2-in-n2.

- Because there is always at least one item larger than the pivot and at least
one smaller, we guarantee to take two items (that and the pivot) out of
contention in each split, so we halve the number of splits.

112

Median-of-Medians pivot [1]

Earlier, we learnt to aim for a ratio split in divide-and-conquer algorithms. The
median-of-three idea only guaranteed at least 1 key on either side of the pivot: a
constant-and-the-rest type of split.

To get a ratio split, we change PARTITION() to work as follows.

1. Consider the input subarray to be groups of 5 keys (the last may be smaller)
2. Find the median of each group of 5 by insertion sort and taking the 3™
3. Find the median of those medians using QUICKSELECT and use it as the pivot

This helps QUICKSELECT (and QUICKSORT on distinct items). Let’s see why...

113

Definition of ‘Median’

For an odd number, n, of distinct elements, the median is in position (n+1)/2 when
they are in sorted order. Equivalently, (n-1)/2 elements are smaller than it.

For an even number, n, of distinct elements, the lower median and upper
median are the two on either side of the halfway point, when they are in sorted
order.

In both cases, the lower median is in position floor((n+1)/2) and the upper median
is in position ceil((n+1)/2).

In algorithms literature, the unqualified term ‘median’ refers to the lower median.

I\ In many branches of mathematics, the median of an evenly-sized collection is the average of the lower
and upper medians. Not so in algorithms! 114

Median-of-Medians pivot [2]

The final pivot is the median of the ceil(n/5) medians.

Half of the medians (ceiling of one half if there’s an even number of medians as
we use the lower median) must be greater than pivot: floor(’z ceil(n/5)) keys.

For each median greater than the pivot, two of the five in its group are even
greater (except the last group, which might be fewer than 5; and the group from
which the pivot came when there’s an odd number of medians).

So 3(ceil(’z ceil(n/5))-2) = 3n/10 - 6 keys are definitely greater than the pivot.

Even the worst case is 7n/10 + 6 on one side and 3n/10 - 6 on the other.

115

Median-of-Medians pivot [3]

Finding the median of 5 numbers is a constant-time operation: ©(1).

Suppose the cost of any problem with fewer than 140 elements is constant.
(Bear with me...)

The worst-case recurrence for QUICKSELECT() would become...

T(n) =k ifn <140
T(n) = T(ceil(n/5)) + T(7n/10 + 6) + k n otherwise

$ X

Cost of finding the 50™ Cost of partitioning
percentile (median) about the median pivot
Cost of finding the Cost of recursing on the

i order statistic larger side (worst case) 116

Another way to solve recurrence equations

Guess! Then substitute your guess to see that it checks out.

Example: This is what we need to verify:

T(1) = 1 this is what our guess means so
T(h) = T(n/2) + kn? / if it's true, our guess is correct!
n)=T(n n

Guess that T(n) € O(n®), i.e. for all n > n_, T(n) < cn?, for some constant ¢>0.

Verify: T(n) = T(n/2) + kn? < cn?/4 + kn?. This is < cn? provided k < 3c¢/4, so there
is a constant, c>0 satisfying this (specifically any value at least 4k/3).

117

Median-of-Medians pivot [4]

We guess that the answer is ©(n), i.e. the cost is cn for some real constant, c>0.

Substituting our guess into T(n) = T(ceil(n/5)) + T(7n/10 + 6) + k n yields...

T(n)< c ceil(n/5) + c¢(7n/10 + 6) + kn
<cn/5+c +7cn/10 + 6¢C + Kkn
=9cn/10 + 7c + kn
=cn + (-cn/10 + 7c + kn)

Our guess is correct if this is at most cn, which is when (-cn/10 + 7¢ + kn) < 0.
Rearranging gives c = 10k(n/(n-70)). Since n = 140, n/(n-70) < 2 so any c = 20k
validates our guess that T(n) € ©(n).

¢ The cost of finding the i order statistic with QUICKSELECT is independent of i. This is not true of all
strategies!

118

QUICKSORT using Median-of-Medians?

Now we can find the i'" of n distinct elements in ©(n) time, we can rework the
PARTITION(A, p, r) step of QUICKSORT(A, p, r) to use QUICKSELECT() to choose the
best pivot (the median) in each step. This still only costs us O(n)!

Provided the values to be sorted are distinct, the worst case cost for
QUICKSORT(A, p, r) is given by the modified recurrence equation:

T(1) =1 Guaranteed even split since all pivots are medians
T(n) =2 T(n/2) + k n <«— PARTITION() is still ©(n)

T(n) € O(nlgn) (We solved this recurrence relation for MERGE-SORT.)

119

HEAPSORT(A) [1]

The (binary) heap is a data structure. It is sometimes helpful to think about a heap
as a binary tree. However, to achieve the headline asymptotic costs, we need to

store a heap as an array.
Two defining properties of a MIN-HEAP / MAX-HEAP:

1. Structural property: considered as a tree, a heap is a full tree, except
possibly for the lowest level which is filled from left to right.

2. Ordering property: in a min-heap, every node holds a lesser-or-equal key
than its child(ren); in a max-heap, nodes have greater-or-equal keys than their

child(ren).

120

HEAPSORT(A) [2]

16 210

3

20

11

95

6 21 7 <empty>

Right child

A.length =7
A.heap_size =6

This is a MIN-HEAP.
The smallest value in the

collection, 6, is in the root.

Left child

Storing children at 2i and 2i+1
creates this mapping between
array positions and tree positions.

121

HEAPSORT(A) [3]

Array thinking
The root of a heap is always stored in A[1].

The left child of the node in array position i is in
position 2i; the right child is in 2i+1.

The parent of the node in array position i is in
position floor(i/2).

A child that doesn’t exist, is identified by 2i or
2i+1 being ‘off the end’ of the heap_size.

We can tell when a node has no parent because
floor(i/2) = 0 (only the root has no parent).

Tree thinking
The root is pointed to by an external variable.

Each node contains pointers to its left and right
children.

Each node contains a pointer to its parent node.

When a child doesn’t exist, we have a null value
in the parent’s left or right child pointer.

When a parent doesn’t exist, we have a null
value in the node’s parent pointer.

122

HEAPSORT(A) [4]

Heaps are semi-structures. G

Semi-structures are cheaper to build than fully-structured (109 (20)

\

data structures. .

RENCORNCD)

Here, the semi-structuring is about the partial sort order:

- The smallest item is only in one place: the root
- The second smallest is in one of two places (one of root’s children)
- The third smallest is in one of three places (root’s other child, or either child of

the second smallest)

123

HEAPSORT(A) [5]

Semi-structures are clever because they support operations to G
change the heap cheaply, and maintain all the properties of @ @
the semi-structure. .

Max-Heap operations: m @ @

- MAX-FULL-HEAPIFY in O(n) time, MAX-REHEAPIFY in O(lg n) time
- MAX-PEEK in O(1) time
- MAX-INSERT, MAX-EXTRACT, INCREASE-KEY in O(lg n) time << Priority Queue ADT!

Symmetrically, but with DECREASE-KEY, for Min-Heaps.

124

MAX-REHEAPIFY(A, i) [1]

MAX-REHEAPIFY assumes that everything below node i, in its
left and right children (if they exist), are valid MAX-HEAPs.

\

Its purpose is to build a single, large MAX-HEAP out of two, .
existing MAX-HEAPs and one extra key. Q Q @ 2

125

MAX-REHEAPIFY(A, i) [2]

Compare the new key to the roots of the two existing heaps.

If the new key is the largest, we're done. ‘ '
If not, swap with the larger of the two sub-heap roots 0 e @ o
and recurse on the node you swapped with.

Compare 16 to 10, 20. Compare 16 to 12, x. No
Swap. Recurse on R child. swap, no recursive call. Done: we have a MAX-HEAP

20)
(10) 16)

\
\

PN PN
\ F \

1 3 1

4 ~ 4

-

126

MAX-REHEAPIFY(A, i) [3]

1 1 = 21

2 r =21+ 1

3 largest = (1 = A.heap size && A[1l] > A[i]) ? 1 : 1

4 if (r = A.heap size && A[r] > Allargest]) largest = r
5 1f largest != 1

6 swap (A[1], A[largest])

] MAX—-REHEAPIFY (A, largest)

127

MAX-FULL-HEAPIFY(A) [1]

MAX-FULL-HEAPIFY notes that the bottom-level leaves are valid MAX-HEAPS.

It calls MAX-REHEAPIFY on the last node that has at least %
one child, then works its way back up to the root.
This is easy to do with the array representation and turns \

any array into a valid MAX-HEAP.

128

MAX-FULL-HEAPIFY(A) [2]

. Node
1 A.heap size = A.length numbers
2 for i = floor(A.length/2) downto 1 .
3 j

MAX-REHEAPIFY (A, 1)

@ @ @Reheaplfy(1)
Start here .~—., —_— ’ —_— ‘
. ‘.. Reheapify(3) Reheaplfy(2) ot

@ O d 0’ J V &

1y < (18 Q@
) Reheaplfy() recurses
\

‘\ into Reheapify(3)

.
.
> oS
7N 129
\ 1
_,'

MAX-EXTRACT(A)

The largest key in a max-heap is the root. To extract the max, we cannot simply
remove it because that would violate the defining structural property of a heap.

The only key we can remove without violating the structural property is the
rightmost key on the bottom row.

We swap the root with the rightmost key from the bottom row and consider the
heap to occupy one fewer array position (A.heap_size = A.heap_size - 1).

The only ‘damage’ we have done to the structure is at the root so we call
MAX-REHEAPIFY(A, 1) to fix-up the root node. Costis O(lg n) (proof: tree height).

130

HEAPSORT(A) [6]

1 MAX-FULL-HEAPIFY (A)

2 for 1 =

A.length downto 2

3 swap (A[1l], A[1])
4 A.heap size = A.heap size - 1
5 MAX-REHEAPIFY (A, 1)
193427658 ~—»{9... MaxHeap — —¥»{8... MaxHeap —| 9

7...Max Heap— 8 9

11 23456789

|

—[6789

—

789

131

Cost of MAX-FULL-HEAPIFY(A) [1]

Best case

- The initial array order is compatible with the heap ordering property.

- MAX-FULL-HEAPIFY considers about n/2 keys, performs 2 comparisons per
key, but no swaps and no recursive calls.

- This is clearly ©(n).

Worst case

- Occurs when every comparison results in a swap and every recursive call
also results in a swap and another recursive call.

132

Cost of MAX-FULL-HEAPIFY(A) [2]

ITEMS COMPARISONS TOT WORK

X 1 6 1

X X 2 z 2

X X X X z 2 z
X X X X X X X X 8 0 8

Let L = 1+floor(log,n) be the number of levels in the tree. The sum of the TOT WORK column is

L-1

'Zo 2ML-1-) x 2i=...=... € O(n) << Supervision exercise!
1=

i=0 is the leaf level.

X 0

133

Cost of HEAPSORT(A)

We call MAX-FULL-HEAPIFY, which costs ©(n).

Then, n-1 times, we perform a swap costing ©(1) and we call MAX-REHEAPIFY on
the diminished heap. MAX-REHEAPIFY costs O(lg n) when called on a heap_size
of n keys. Total cost is:

T(n)=k,n +k,lg(n)1 + k,lg(n-1)T+ k,lg(n-2)1+ ... +1
<k,n +k,lg(n) + k,lg(n-1) + k,Ig(n-2) + ... + 1 + k,n
= 1+(k,+k,)n + k,lg(n!)
< 1+(k,tk,)n + k,(nlg n-n) (Stirling’s Approximation)
€ O(nlgn)

134

Sorting in Linear Time

Our previous sorting methods worked for any range and distribution of input data,
and achieved a sorted order by comparing elements against each other. These
are collectively known as comparison sorts and it can be shown that the
minimum number of comparisons required to sort n keys is Q(n Ig n).

If we know something about the input data, we can often do better.

1. Counting sort: n inputs in the range [0..k] where k € O(n)
2. Radix sort: sorting d-digit numbers
3. Bucket sort: sorting data that is uniformly distributed over [0,1)

135

COUNTING-SORT(A, B, k)

1 let C = new Array|[0..k]

Initialise

2 for 1 = 0 to k
} countsto 0

z {for 7 = 1 to A.length

C[A[3J]] = C[A[]J]]+1

C[i] = C[1] + C[1-1]
Update C to store where instances
of i should start in the output
Count instances of each value in A

8 for jJ = A.length downto 1
9 BIC[A[J]]] = A[]]
10 C[Aa[J]] = CIA[J]]1-1

Populate the output array: xx00x1xxx222xx3...
by filling in the values 0..k from the right.

A: input data
B: array into which to write the output
k: top limit of the range of values

C[i] holds the number of instances of

value i in the input array, A
136

Cost of COUNTING-SORT(A, B, k)

Initialising the C array takes O(k) time (lines 1,2,3).
Counting items in the A array takes ©(n) time, where n=A.length (lines 4,5).

Converting the count of key i to the index of the last instance of i in the output
takes O(k) time (lines 6,7).

Populating the output takes ©O(n) time (lines 8,9,10).

Overall ©(k+n).

137

RADIX-SORT(A, d)

1 for 1 = 1 to d

2 sort array A on digit 1 with any stable sort

Note: digit 1 1s the least significant digit.

138

Stable sorts

A stable sort is one that guarantees to preserve the order of inputs when their sort
keys are equal.

This is useful if you want a secondary sort key, e.g. sort exam results by mark
but if two people have the same mark then list them in alphabetical order.

- Sort by name first — any kind of sort will do
- Now use a stable sort to re-sort by mark

When we re-sort by mark, the order of people with equal marks will be preserved,
i.e. still in alphabetical order — as required.

139

RADIX-SORT(A, d) in operation

123 241 123
277 451 241
149 sort - 1235 sort - 148- sort -
148 -~ by d, - 277- by d, - 149- by d, -
241 148 451
451 149 277

The three numbers in bold are (one example of) relying on stable sorting. All three have 1 in their
most significant place so the third stage of sorting has no preference for which goes first. Itis
important that we defer the decision to whatever the second sort did: 123 before 148 and 149. In
turn, the second stage has no preference for which ‘4’ comes first and defers that decision to

whatever the first sorting stage did: 8<9 so 148 came before 149.

123
148
149
241
277

451

140

Cost of RADIX-SORT(A, d)

To sort n numbers of d digits each, where each digit can take on one of k different
values (0..k-1), RADIX-SORT(A, d) € O(d(n+k)).

Each stable sort is applied to n keys using a key-range of 0..k-1. COUNTING-SORT
is the obvious way to achieve that, taking @(n+k) time each.

141

BUCKET-SORT(A)

1 let n = A.length, B = new Array[0..n-1]

2 for 1 = 0 to n-1

3 B[1] = empty list
4 for 1 =1 ton
5 insert A[i1] into list B[floor (n*A[i1])]

o for 1 = 0 to n-1
7 INSERTION—-SORT (B[11])

8 concatenate B[0], B[1l], .. B[n-1] (in that order)

142

Cost of BUCKET-SORT(A)

All the steps are obviously linear in n except the calls to INSERTION-SORT, which
needs a closer look.

We know that INSERTION-SORT takes O(n?) time on inputs of length n. We have n
buckets with n. keys in each bucket 0 =i <n.

T(n) =0O(n) + ZO”'1 O(niz)
Unfortunately, you cover the maths required to solve this in Easter Term!

...and it turns out that T(n) = ©(n) + n O(2-1/n) = O(n).

143

Summary of Algorithms 1 so far [1]

Methods to solve recurrence relations:

- Guess and verify
- Substitute and spot pattern, including the tree method to help spot patterns
- The Master Theorem

Algorithm designs:

- Incremental
- Divide and Conquer
- More to come in the next part of Algorithms 1

144

Summary of Algorithms 1 so far [2]

Growth orders:

f(n) € o(g(n))
f(n) € O(g(n))
as”
f(n) € ©(g(n))
a(n)
f(n) € Q(g(n))
as”
f(n) € w(g(n))

f(n) has strictly less rapid growth than g(n)
f(n)'s growth is upper-bounded by g(n): “at most as fast

f(n) grows within a constant factor at the same rate as
f(n)'s growth is lower-bounded by g(n): “at least as fast

f(n) has strictly more rapid growth than g(n)

145

Summary of Algorithms 1 so far [3]

INSERTION-SORT O(n?) Tight loop, fast for small n
MERGE-SORT O(nlgn) O(nlgn) v ESini-nu_Elgﬂceerg(ag-(?c))r;poar; g/)vked
HEAP-SORT O(nlg n)

QUICKSORT O(n?) ©(n Ig n) expected

QUICKSORT (MoM) | ©(nIg n) O(nlg n) v

COUNTING-SORT O(k + n) O(k + n) v

RADIX-SORT O(d(n + k)) | ©(d(n + k)) v

BUCKET-SORT O(n?) ©(n) average v 146

Algorithms 1

Section 2: Strategies for Algorithm Design

¢ Reference: CLRS chapter 15

Dynamic Programming

Divide-and-Conquer split a problem into subproblems that did not overlap.

Dynamic Programming is useful when subproblems do overlap.

Note: ‘Programming’ does not refer to what we call ‘coding’ today! ‘Programming’
has another, historical meaning, referring to methods structured in some way
around a table that is progressively filled in.

148

Problems amenable to Dynamic Programming

Optimal substructure problems, usually minimising or maximising something.

Example: our problem is to minimise the total cost of a sequence that achieves
some goal. We may perform operations A, B and C, with costs 1, 2 and 3
respectively. We consider three subproblems to achieve three slightly reduced
goals (those where the only remaining step is A, B or C), and the optimal cost is
MIN(SUB, + 1, SUB; + 2, SUB + 3). Optimal substructure means that the
solution we want uses the optimal solution to one of SUB,, SUB,, SUBC.

Often there are many, equally good solutions and we seek any one: we want an
optimal solution, not the optimal solution.

149

Four steps of Dynamic Programming

We need to identify and exploit the optimal substructure.

Typically four steps:

Characterise the structure of an optimal solution

Recursively define the value of an optimal solution

Compute the value of an optimal solution, typically bottom-up

If required, construct an optimal solution from the computed information

LN~

150

Approaches to Dynamic Programming

Top-Down

Start with the problem you want to solve, divide
into subproblems and keep going until you reach
base cases.

Requires stack space for the recursive call tree.

Only solve subproblems that are required for the
original problem.

Avoid solving the same subproblem twice by
memoising results in a table.

Bottom-Up

Start with the base case(s) and solve every
problem that combines them in one step, putting
results into the memo table as you go.

Now solve two-step problems and add those to
the table. Carry on until the desired problem is
encountered and solved.

No recursive stack space required.

Solves subproblems that might not be useful.

151

Problems with Dynamic Programming Solutions

Longest Common Subsequence: a subsequence is a given sequence with zero
or more elements removed (not necessarily consecutively). LCS is the problem to
find the longest subsequence present in both of two input sequences. This is very
common in bioinformatics (See the Part |l Bioinformatics course).

Matrix Multiplication Chains: minimise the distinct scalar multiplications required
to multiply a chain of matrices (optimally exploit associativity).

Unweighted Shortest Path: find a path u ~ v consisting of the fewest edges.
Virtual Machine Hosting Problem (VMHP): (rod-cutting, thinly veiled...)

152

Example of Dynamic Programming: VMHP

This is a modern take on the “rod-cutting problem”.

You have a server with n CPU cores and wish to subdivide it into one or more
virtual machines. A table (example below) provides the value of virtual machines
with varying numbers of CPU cores up to n (‘value’ might be the amount
customers are prepared to pay for each size of virtual machine). Our task is to
maximise the value that can be achieved by subdividing our n CPU cores into
virtual machines.

Cores 1 2 3 4 5 6 7 8 9 10

Value 1 6 7 9 9 10 11 16 18 25

153

Where to start?

If you cannot see where to start, working through a small example is often enough
to understand the choice your algorithm needs to make.

E.g. if we have n=4 CPU cores, we can divide in 8 ways:

4 (1 VM with 4 cores) 1,1,2
1,3 (1x 1-core VM + 1x 3-core VM) 1,2,1
2,2 (...) 21,1

3,1 1,1,1,1

154

Value of these 8 solutions

Cores 1 2 3 4 5 6 7 8 9 10
Value 1 6 7 9 9 10 11 16 18 25
4 9 1,1,2 1+1+6=8
1,3 1+7=8 1,2,1 1+6+1=8
2,2 6+6=12 << WINNER! 2,11 6+1+1=8

3,1 7+1=8 1,1,1,1 1+1+1+1=4

155

Recursive top-down: VMIFY(v, n) v: table of values

1 1f n == 0
¢ For our table of values, we can never ‘get stuck’
2 return 0O in a subdivision but if that were to be possible then
/ the -1 would be used (e.qg. if VMs of size 3 were not
3 q= -1 possible).
4 for 1 =1 ton
5 qg = max (g, v[i] + VMIFY (v, n-1i))

Given n remaining cores, we consider calving off a VM with size i, for each valid i, and finding the optimal
way to use the remaining n-i cores. The optimal way to use n cores is the max value of using 1+rest,
2+rest, 3+rest, ... 156

Recursive top-down: VMIFY(v, n) [2]

It is not hard to see that the running time of VMIFY(v, n) is exponential in n:
T(1)=1 and T(n)=1+ ZO”'1 T(i) = T(n) € O(2")

This means we can only practically solve the problem for CPUs with a small
number of cores. This is not so useful.

It is slow because sub-problems are solved over and over again. E.g. VMIFY(v, 2)
is solved as part of VMIFY(v, 4) with i=2 and as part of VMIFY(v, 3) with i=1.

Dynamic Programming to the rescue!

157

Recursive top-down: VMIFY(v, n) [3]

We introduce a memo table in which we write down the answer for every ‘n’ we
have evaluated. We initialise the table to -~ so we can distinguish values that we
have worked out from those we have not (in this problem, values are always
non-negative).

158

MEMO-VMIFY(v, n)

MVMIFY-AuUX(v, n, m)

1 let m[0..n] = new Array

2 for 1 = 0 to n

4 return MVMIFY-AUX (v, n, m)

¢ For our table of values, we can never ‘get stuck’

in a subdivision but if that were to be possible (e.g.
if VMs of size 3 were not possible) then the -1
would be used.

1 if m[n] =2 -1

2 return m[n]

3 1f n ==

4 q =0

5 else

6 q = -1

7 for 1 = 1 to n

8 q = max(q,
v[1i]+MVMIFY-AUX (V,n-1,m))

9 min] = g

10 return g

159

Bottom-Up Memoising VMIFY (v, n)

We can also demonstrate the bottom-up approach with our VMHP example.

If we work out the optimum value obtainable from 1 CPU, then 2 CPUs, etc. then,
when we come to larger values of n, all the smaller problems that it might ever
wish to refer to have already been solved.

We can do this with a FOR loop that increases from the smallest problems to the
value n we are interested in.

Notice that our table, v, ensures that all smaller problems will eventually be used
to solve larger problems. This is not guaranteed in general so we may waste work.

160

BoTtTOM-UP-VMIFY (v, n)

1 let m[0..n] = new Array

2 m[0] = O

¢ All smaller problems have already been
solved and memoised by the time we need
them to solve larger problems.

3 for j =1 ton

z q = -1

5 for 1 = 1 to j

6 g =max (g, v[i] + m[]J-1])
I m[j] = g

8 return m[n]

161

Summary of Dynamic Programming

e Useful for optimisation problems

e Requirements:
o Optimal substructure
o Overlapping subproblems

e Memoise previous results to avoid repeated recomputation
e Top-Down and Bottom-Up approaches

162

¢ Reference: CLRS chapter 16

Greedy Algorithms

Divide-and-Conquer split a problem into subproblems that did not overlap.

Dynamic Programming is useful when subproblems do overlap but we have to
evaluate many/all options to identify an optimal solution.

Greedy Algorithms are useful when we can choose between the subproblems
without having to evaluate all of them, usually based on a static analysis of the
problem that feeds into the algorithm design, making it more efficient.

163

Robbing the cake shop [1]

Consider two problems.

1.

A cake shop sells pre-made cakes, packaged into cardboard boxes of certain
sizes. Different types of cake have different price tags. You have a bag with
dimensions w x h x d in which to carry away your swag. Which boxed cakes
should you steal in order to maximise the value of cakes you obtain?

The shop also sells flour, sugar and other cake-making ingredients. Each
ingredient is sold and priced by gramme and has a certain density (grammes
per unit volume). You have the same w x h x d bag available. How much of
each ingredient should you steal to maximise your take-away value?

164

Robbing the cake shop [2]

Problem 2 is easy to solve with a greedy approach.

For each ingredient, multiply its price-per-gramme by its density to obtain its
price-per-volume.

Sort (descending) by price-per-volume

Start filling the bag with the top-ranked ingredient, stopping only when the bag
is full or no more of that ingredient remains, whichever happens first.

If there is still space in the bag, continue taking the second most valuable
ingredient (by volume).

Repeat until the bag is full or none of any ingredient remains.

¢ This works because we never regret leaving some volume of ingredients behind because the same
volume of our bag was taken up by a more valuable alternative, due to the sort. 165

Robbing the cake shop [3]

Problem 1 is notoriously difficult and does not admit a greedy solution.

We could use a dynamic programming technique to solve it.

166

Remember this?

Cores 1 2 3 4 5 6 7 8 9 10

Value 1 6 7 9 9 10 11 16 18 25

We studied n=4 in the previous lecture. At the first step, we could make a virtual
machine with 1, 2, 3 or 4 cores, earning 1, 6, 7 or 9 points of value. A greedy
approach might choose a 4-core machine to maximise the value (9 points) at this
choice point (the locally optimal choice).

We know this is not optimal overall because the winning combination was 2+2.
This problem also does not admit a greedy solution.

167

What do Greedy Algorithms need?

Work out whether the problem admits a greedy solution.

1.

Look at your task as an optimisation problem in which we can select one
move as being the locally best (greedy) option = one subproblem remains.
Prove that there is always an optimal solution to the original problem
(remembering there could be more than one) if we eagerly commit to the first
move being the greedily chosen one.

Prove the optimal substructure problem, that is, if we combine the greedy
choice with an optimal solution to the subproblem that remains, we get an
optimal solution to the original problem.

168

Famous problems with Greedy Solutions

Minimum spanning tree: we will encounter this in Algorithms 2

Huffman coding: a data compression/decompression system, widely used,
including in fax machines

Matroid problems: finding a maximum-weight independent subset in a weighted
matroid = see CLRS chapter 16 section 4.

Calculating change using coins of particular denominations

Various scheduling problems, e.g. minimising average CPU completion time.
Let’s consider one such now.

169

The Activity Selection Problem

Given a set of activities that wish to use a shared resource, find a maximum-size
subset of compatible activities.

Two activities are compatible if they do not wish to use the shared resource at the
same time. Activities run in the interval [s, f), i.e. another can begin at the instant
a previous activity finishes.

Activity, | 1 2 3 4
Start, s, 08:00 09:00 10:00 10:45
Finish, f 08:30 11:30 11:00 12:00

170

Solving The Activity Selection Problem [1]

Sort the activities by finish time.

Step 1: look at our task as an optimisation problem. We must maximise the
cardinality of the set of activities we choose.

We start with the whole day available; denote this S(00:00, 23:59) and let its value
be a maximum size set of activities that can be scheduled within those times.

Activity, | 1 3 2 4
Start, s, 08:00 10:00 09:00 10:45
Finish, f 08:30 11:00 11:30 12:00

171

Solving The Activity Selection Problem [2]

If we are solving S(i, k) with some set A of activities available to choose from, we
pick an activity, a, € A and note the number of activities this would yield is

1+ | S(, saj) | + | S(faj, K) | |...| means set cardinality

where the two recursive calls have a filtered subset of A containing only those
activities that are compatible with a (i.e. do not overlap in time with aj).

S(i, k) = ARGMAXJ. {aj} U S(i, saj) U S(faj, K) < use dynamic programming!

Activity, | 1 3 2 4

Start, s, 08:00 10:00 09:00 10:45

Finish, f 08:30 11:00 11:30 12:00

172

¢ If this doesn’t make sense, you're probably trying to maximise the
in-use hours of the room, not the number of activities scheduled!

Solving The Activity Selection Problem Greedily

It turns out that we do not need to try each activity in A in turn and take the max.

If we pick the activity with the earliest finish time, we leave the greatest amount of
time for other activities to use the resource.

We never regret choosing this activity because any other would have finished later
and could only have reduced the total number of activities we can schedule.

= Solutions in this example are {1, 3}, {1, 2}, {1, 4}, all optimal (size 2).

Activity, | 1 3 2 4

Start, s, 08:00 10:00 09:00 10:45

Finish, f 08:30 11:00 11:30 12:00 i

Summary of Greedy Algorithms

e Not all problems can be solved greedily
e Greedy algorithms offer efficient solutions where they are possible

e Greedy algorithms solve optimisation problems where...

o The locally optimal choice definitely does still allow an optimal solution to be reached
o The combination of the locally optimal choice and an optimal solution to the subproblem that
results from making the locally optimal first move, is optimal overall.

e Often, you need to think about what the ‘greedy’ choice is
o E.g. choosing the earliest finishing time to allow the greatest cardinality set of activities overall

174

Summary of Algorithms 1 so far [updated]

Algorithm designs:

Incremental

Divide and Conquer
Dynamic Programming
Greedy Algorithms

Coming next: Data Structures

175

Algorithms 1

Section 3: Data Structures

¢ Reference: CLRS chapter 10

Pointers

As our algorithms use integers, strings, arrays, and other objects, so our computer
memory fills up. Each item begins at some point in the memory, known as the
object’s base address.

Some programming languages allow us to access base addresses and to store
them in variables of pointer type.

Pointers allow our programs to have some dynamic behaviour: we can write our
code to process a value, which value is not known until runtime.

NIL is a reserved pointer value that does not refer to any object.

177

¢ Reference: CLRS chapter 10

Stacks

Stacks are last-in first-out (LIFO) data structures.
The insert operation is called PUSH(item).
The delete operation is called POP() (you cannot choose which item to delete).

To build a stack with a fixed maximum capacity, we can use an array. Stacks with
unbounded capacity can be built using a linked list, or arrays provided our code is
written to copy items to a larger array if necessary.

Both operations have worst case running time in O(1) for linked lists (and
amortised O(1) for arrays, as we will define and prove in Algorithms 2!).

178

Stacks in arrays

Maintain a variable, top, recording which array index is the top of the stack, either

1. The index of the item that is the current top of stack (or O to signify empty);
OR
2. The index of the first blank space above the top (1 signifies empty).

With option 1, PUSH must increment top before storing into the array, and POP
must decrement top after reading out of the array. Option 2 is the opposite.

1 2 3 4 5 6 7 8
S |17 6 | 2 | 9 | 44 This stack uses option 1.

S.top

179

(Trivial) Stack Algorithms

STACK—-EMPTY (S) STACK—POP (S)

1 return S.top == 1 1f STACK-EMPTY (S)
STACK—-PUSH (S, 1) 2 error (“empty”)

1 1f S.top == S.length 3 else

2 error (“full”) z S.top = S.top - 1
3 else 5 return S[S.top+1]
z S.top = S.top + 1

5 S[S.top] = 1

180

Stack Coding Challenge

Design a stack to store integers that supports three operations:

- PUSH(S, i): as before, this must push i onto the top of the stack
- POP(S, i): as before, this must return the top of the stack and remove it
- AVERAGE(S): this must return the average of the values in the stack

All three must run in O(1) time (worst case). Hint: O(1) extra space is all you need!
¢ Remember that the operations must ‘work’ when invoked in any order!
Can you add MIN(S), also running in O(1) time, which returns the minimum of the

elements currently in the stack?

181

¢ Reference: CLRS chapter 10

Queues

Queues are first-in first-out (FIFO) data structures.
The insert operation is called ENQUEUE(item).

The delete operation is called DEQUEUE() (you cannot choose which item to
delete).

To build a queue with a fixed maximum capacity, we can use an array. Queues
with unbounded capacity can be built using a linked list, or arrays provided our
code is written to copy items to a larger array if necessary.

Both operations have worst case running time in O(1).

182

Queues in arrays [1]

Maintain two variables, head and tail: enqueue at the tail, dequeue from the head.

1. Tail holds the index of the last item;

OR

2. Tail holds the first blank space after the last item.

With option 1, ENQUEUE must increment tail before storing into the array. Option 2
increments tail before storing into the array.

1 2 3 4 5 6 7 8
Q 6 2 9 44
Q.head Q. tail

¢ This is also known as a circular buffer. You will see these in Operating Systems (Kernel Pipes).

This queue uses option 2.

183

Queues in arrays [2]

When tail and head reach the end, wrap back around to the start.

1 2 3 4 5 6 / 8 ¢ In programming languages with

Wra(gped 44 6 2 9 0-based arrays, we can say that
_ head == (tail+l) % Q.length
Q.tail Q.head signifies a full queue.

Initially head = tail = 1. The queue is empty when head == tail.

The queue is “full” when

| 1 3 4 5 6 7 8
- head ==tail + 1; OR FulQ | 44 | 13 | -8 | 16 6
- head ==1 && tail == Q'Gﬂgth Q.tail Q.head

¢ With only Q.length different values that head and tail can take, and given that we need to represent
empty (0 items), there are only enough values to distinguish 0, 1, 2, ... Q.length-1 items in the queue. 184

(Trivial) Queue Algorithms

QUEUE-EMPTY (Q) QUEUE-DEQUEUE (Q)

1 return Q.head == Q.tail 1 1f QUEUE-EMPTY (Q)
QUEUE-ENQUEUE (Q, 1) 2 error (“empty”)

1 1f QUEUE-FULL (Q) 3 else

2 error (“full”) 4 1 = Q[Q.head]

3 else 5 Q.head = inc(Q.head)
z Q[Q.tai1l] = 1 6 return 1

5 Q.tail = inc(Q.tail) inc(x)=(x==Q.length) ? 1 : x+1

185

¢ Reference: CLRS chapter 10

Linked Lists (Single Linking)

A singly linked list uses an external pointer-typed variable (conventionally called
‘head’) that refers to the first list cell, or is a NIL value if the list is empty. Itis
sometimes helpful to keep an additional pointer to the last cell in the list.

List cells are records (tuples) consisting of the data we wish to store and a pointer
to the next cell (conventionally called ‘next’).

head1 1 2 3 3
head2 -10 420 30]

—— let tmp = [76;37;94];
let head3 = [5 0; 7] @ tmp; ;
head3 7
Eﬂ:] Bi[] let head4 = [- ;121 @ tmp;;

head4 -3 8 12 76 37 94 &

186

Traversing an acyclic List

LIST-SEARCH (L, k)

1
2
3

c = L.head
while ¢ != NIL && c.key != k
C = Cc.next

return c;

187

Linked Lists (Double Linking)

A doubly linked list uses an external pointer-typed variable (conventionally called
‘head’) that refers to the first list cell, or is a NIL value if the list is empty. Itis
sometimes helpful to keep an additional pointer to the last cell in the list.

List cells are records (tuples) consisting of the data we wish to store and 2
pointers to the next and previous cells (conventionally called ‘next’ and ‘prev’).

neadt g [1[F—L [2[F—L [s]
~
nead2 ——[1] [o[L [3[7.

¢ Doubly linked cyclic lists cannot be lollypop-shape.

¢ We cannot have converging doubly linked lists. 188

DLL-INSERT-HEAD(L, i)

1 x = new DLLCell

¢ Henceforth, we shall abbreviate lines 14
x = new DLLCell (prev=NIL, key=i,
next=L.head)

2 XxX.key =1

3 x.next = L.head
4 x.prev = NIL

5 1f L.head != NIL

6 L.head.prev = x

189

DLL-INSERT-AFTER(L, i, k)

t = L.head
while t != NIL
if t.key ==
x = new DLLCell (prev=t, key=1i, next=t.next)

t.next.prev = x
t.next = x

1

2

3

4

5 if (t.next != NIL)
6

7

8 return

9

T = t.next

190

DLL-DELETE-HEAD(L)

1 if L..head != NIL
2 L.head = L.head.next
3 if (L.head !'= NIL)

z L.head.prev = NIL

191

DLL-DELETE-KEY(L, K)

1 t = L.head

2 while t != NIL && t.key != k

3 t = t.next

4 if t !'= NIL

5 if (t.prev == NIL) L.head = t.next
6 else t.prev.next = t.next

o if (t.next != NIL)

7 t.next.prev = t.prev

192

Implementing the Heap: Doug Lea’s malloc algorithm

A program’s memory (the “virtual address space” — when you encounter that in
Operating Systems) contains the machine code, the stack, and a very large area
known as the heap (and often a few other regions).

We wish to allocate and deallocate objects within the heap, in any order. Notice
that stacks and queues solved the same problem but, in both cases, the job was
made easier by the known order of allocation and deallocation.

193

Implementing the Heap: challenges of Malloc

We might allocate a large number of small objects on the heap, or a small number
of large objects. Where should we keep the metadata about each object?

Arrays are not appropriate because we would either run out of slots or waste lots
of memory on vastly more slots than we require (filesystems typically do this).

We need to be able to add space for more metadata as we add more objects.

Doug Lea taught us to how solve the problem of tracking free and busy regions in
the general case, using a doubly linked list.

194

The Heap

The big idea is to represent free and busy chunks, in the order they are found in
memory, in a linked list.

To allocate, we search the list for a free chunk that is at least big enough and we
split it into the amount we want and the remaining free space. The first is marked
as busy and the second is free.

To deallocate, we mark a busy chunk as free then merge it with either or both
neighbours if they are also free. This serves to coagulate free space so we can
allocate single, large objects in the space that was once used in separate pieces.

195

The free/busy list

The doubly linked list cells are interleaved with the free/busy chunks in the heap.

The data stored in each list cell is a single free/busy bit. A sentinel node sits at
the end.

Initially, the heap is represented as a single ‘free’ chunk.

heap (base address)

: f
‘ f free J

196

First MALLOC call

p = malloc(1000)

This should set p to the base address of 1000 bytes of free space on the heap,
and update the list to mark these bytes as busy. If there is not enough space
anywhere in the heap, return NIL.

p
heap

/ e

‘/b 1000 \gf free 3

197

Several MALLOC calls later...

pl = malloc (1000)
p2 = malloc (2000)

p3 = malloc (980)

‘ / b| 1000 \ b 2000 ‘ bl 980 \ f free

[—

Freeing up memory: FREE(p) [1]

free (p2)

We provide the pointer p2. FREE subtracts the size of a DLLCell to get the base
address of the DLLCell immediately before it. It marks this chunk as free.

pl p3
heap
/ e //Lﬂ . O
‘ /b 1000 \\ f free \[b| 980 \\ f free ‘

Freeing up memory: FREE(p) [2]

free (pl) FREE also checks whether the previous and next chunks (if they
exist) are free. Goal: never have 2 consecutive free chunks.

- prev is free, next is busy — delete this DLLCell from the list

- prev is busy, next is free — delete next DLLCell from the list

- prev and next are both free — delete this DLLCell and next DLLCell

P3
heap
i I
\ f free [bl 980 \ f free
| \ \ |
-

Space Optimisation

Many implementations round up requests for memory to the next multiple of 4
bytes. This is more efficient for many CPUs and memory chips to handle than
when there is a remainder modulo-4.

Now we know that each pointer will point to a multiple of 4, we know that the least
significant 2 bits of each pointer must be zeros.

We store the free/busy bit in one of them! This avoids the need for an extra
variable in the linked list nodes and reduces the overhead of tracking memory in
this way. Before we use the value as a pointer, we bitwise AND with ~3 to zero
out the bottom bits.

¢ 31is 00..011 in binary. ~3 is the bitwise inverse: 11..100. ANDing with this zeros the 2 least sig bits.

201

[Non Examinable] Mark and Sweep Garbage Collection

Doug Lea’s malloc algorithm underpins the C, C++, C#, OCaml, Python, Java, ...
memory allocators on Linux, Windows and MacOS. It is (arguably) the most
executed algorithm since programmable computers were invented!

Remembering to call FREE (and not use use memory after calling FREE!) is a
notorious source of bugs.

Garbage collection starts with our global variables, stack-allocated variables (and
thread local storage). If any points to a heap location, we mark that location as
in-use, and follow any pointers that might exist in the data stored there, recursively
marking every reachable location. Now call FREE on unmarked locations.

202

Summary of fundamental data structures

We looked into the details of ...

Pointers

Stacks, stacks with additional operations (average, minimum/maximum)
Queues

Singly linked lists, cyclic singly linked lists

Doubly linked lists, cyclic doubly linked lists

Use in Doug Lea’s malloc algorithm

203

¢ Reference: CLRS chapter 10, 12

Rooted Trees

A rooted tree is a data structure with a single entry point: the root. Some types of
tree insist that all operations begin at the root; others allow programs to keep
pointers directly to nodes within the tree structure, allowing their algorithms to start

from those places (in addition to the root).

The simplest type of rooted tree is the binary tree...

204

Binary Trees

In each node, a binary tree holds one data item, pointers to two children, and
optionally a pointer to the parent node (if your algorithm needs it).

¢ | data | -

N

data &3

e

&3

I\ Trees are never cyclic and cannot
have multiple paths to any node!

This tree has...
Parent pointers

~—~——

data

/

data

&

&3

2 Children
)
NIL if no child in

this position (leaf)

205

A Non-Tree [1]

/ root

data

data &3

I\ Invalid: this edge would
create a cycle

data

206

A Non-Tree [2]

/ root

data

I\ Invalid: there are two paths from
the root to the middle-left node.

%

data &3

data

data

207

Unbounded branching

Sometimes we need to add and remove children from our tree nodes while an
algorithm runs. We cannot have a fixed number of child pointers and are forced to
use a list of children: single or double, cyclic or not, as required. We can either

use parent pointers, or not, as required. This tree has. ..

root X Parent pointers
o0 Children
data X SLL Sibling list
/ X Cyclic siblings
data / ~ data / ~ data / &

208

: 7 7

Binary Search Trees (BSTs)

BSTs are a specific use of binary trees (i.e. each node has at most two children).

e The data is a (key, payload) tuple.
e Subject to the binary search tree property:

o the key in node i is (strictly) greater than all the keys in its left subtree; and
o the key in node i is (strictly) less than all the keys in its right subtree.

Any kind of “search tree” does not allow duplicate keys. This is necessary to
ensure good asymptotic running times.

BSTs support INSERT, DELETE, SEARCH, PREDECESSOR, SUCCESSOR, MINIMUM,
MAXIMUM — all in O(lg n) time.

209

Example BST

We usually draw BSTs like this. (6)

Each node still needs two child pointers
but we reduce clutter by understanding e °
that they will be present without drawing

them. 0 a e

210

BST-SEARCH(p, k): search k, start at node pointed to by p

1 if p == NIL

2 return NIL

3 if p.key == ¢ You might return p.payload if you just want the payload
/rather than a pointer to the node containing the search key.

z return p

5 1f k < p.key
6 return BST-SEARCH (p.left, k)
7 else

8 return BST-SEARCH (p.right, k)

211

BST-SEARCH(p, k): iteratively

1 while p != NIL && p.key =k
2 if k < p.key

3 p = p.left

4 else

5 P = p.right

© return p

212

BST-MINIMUM(P) BST-MAXIMUM(p)

1 if p == NIL 1 if p == NIL

2 return NIL 2 return NIL

3 while p.left != NIL 3 while p.right != NIL
z p = p.left z p = p.right

5 return p 5 return p

213

BST-PREDECESSOR(p) BST-SUCCESSOR(p)

1 1f p.left !'= NIL 1 1f p.right != NIL

2 return BST-MAXIMUM (p.left) 2 return BST-MINIMUM (p.right)

3 y = p.parent 3 y = p.parent
4 while y != NIL && 4 while y != NIL &&
p == y.left p == y.right
5 P =V S p =Y
6 y = y.parent 6 y = y.parent
7 return y 7 return y

I Note that these two algorithms require parent pointers! 214

INSERT(bst, Kk, v)

1 X = new BSTCell (k,v, NIL,NIL) 12 else if k == p.key

2 if (bst.root==NIL) bst.root = x 13 p.payload = v

3 else 14 return

4 p = bst.root 15 else

5 while true 16 if p.right == NIL
6 if k < p.key 17 p.right = x
7 if p.left == NIL 18 return

8 p.left = x 19 else

9 return 20 p = p.right
10 else

11 p = p.left

215

DELETE(bst, k)

Steps:

1. Find the node, d, containing k. If NIL then return as k is not present.
2. If d has no children, remove it from its parent.

3. If d has one child, make d’s parent point to d’s child instead of d.

4. If d has two children then replace d’s (key, payload) with that of d’'s

predecessor, then delete the predecessor node (which can have at most one
child).

Implement this algorithm and prove that what remains is definitely a valid BST.

216

Summary of Rooted and Binary Search Trees

Varieties of rooted trees: with/out parent pointers, fixed/varying child count.
Search trees don'’t allow duplicate keys!

BSTs support a rich set of operations with expected runtime O(Ig n)

Simple logic in the operations — simple to code and small constant factors
But O(n) worst case performance might leave algorithms using BSTs
vulnerable to very bad worst case performance (exponentially worse than the
average running time, of course: n is exponential in Ig n).

Memory overhead of 2 pointers per (key,value) pair might be significant (3
points if you need parent pointers).

217

¢ Reference: CLRS chapter 18

Balanced Trees: B-Trees

BSTs achieved average-case O(lg n) performance but the worst case is O(n)
(when every tree node has exactly one child).

To achieve O(Ig n) in the worst case, we need to ensure that our trees remain
balanced, regardless of the order in which keys are inserted or deleted.

This is especially important for data structures held on disk. The costs change!

~

Follow Pointer — disk operation — 2,000,000 CPU cycles E.g. the file system
CPU operations still use 1 cycle each! on your hard disk!

We need to minimise the number of pointers we need to follow!

218

B-Trees<T>

B-Trees are made of leaf nodes and internal nodes. Leaf nodes hold no keys or
payloads. Internal nodes hold varying numbers of keys and payloads.

A B-Tree of minimum degree T, has five defining characteristics:

Internal nodes must hold at least T-1 keys and payloads (except the root)
Internal nodes can hold at most 2T-1 keys and payloads (including the root)
A node with t keys must have t+1 children

Keyless leaves all exist at the same depth below the root

The keys in any internal node divide the ranges of keys in their children
(generalising the binary search tree property).

219

B-Tree keys and children

The children contain keys between the separator keys in their parent.

¢ The keys are held in sorted order.

Keys |k, |k, |k, |3
Payloads
Children
Keys less than k. Keys greater than k, Keys greater than k, Keys greater than k,

and less than k2 and less than k3

220

Example B-Tree<2>

T=2 so internal nodes contain 1-3 keys and 2—4 children. Internal nodes contain
an array large enough for the max, and its current key-count in an integer.

/

J

\Y

2 %1 keyless leaf

The root is at depth 0.
This tree has height 2.

O/

221

Height of a B-Tree<T> with N keys

Because tree algorithms depend on the height of a tree, we want an upper bound
on the height of a B-Tree<T> with N keys.

The root must have at least 1 key. In subsequent levels, there must be at least
T-1 keys (T children).

At least 1 key at the root level. At least 2(T-1) keys at the first level. At least
2T(T-1) keys at the second level. 2T?%(T-1) at the third level, etc.

Summing this geometric progression and rearranging, we find that the number of
levels required to hold N keys is at most log((N+1)/2) = we expect O(lg N) time!

222

Pointers to nodes

It is NOT permitted to maintain pointers to any internal nodes (or leaf nodes).

The only pointer into a B-Tree is the root pointer. All algorithms start at the root.

Why?

Algorithms are going to move keys around to maintain the balance. If you kept a
pointer to an internal node, perhaps believing it to contain a particular key, it might
not contain that key by the time you come to use the pointer! Inserting or deleting
other, unrelated keys, even far away in the key space, can restructure the tree!

223

BT-SEARCH(n, k): top-level call uses n=root

1 1f n == BT-LEAF
2 return NIL // k 1is not present
2 1 =1

3 while i = n.keycount && k > n.key[i] § We mightuse binary search
instead: O(Ig T) rather than O(T)

4 i=1+1 search time, but both are O(1).

_ . . However, this makes search O(lg n)
5 4if i £ n.keycount && k == n.key[i] even if you make T a function of n.
6 return n.payload[i] // or return pointer to node n

7 else return BT-SEARCH(n.child[1i], k)

224

BT-INSERT(n, k, p)

Start at the root. If root == BT-Leaf, set root = new BT-Node(k,p) and return.

Walk down the tree, searching for key k.

If k is found, replace the payload and return.

If you reach the bottom level of internal nodes (children are keyless leaves)

then insert into this node, increasing this node’s keycount by 1.

e BUT, if that bottom node is already full (2T-1 keys already) then spilit it about
its median key into two nodes of T-1 keys + the median. Insert the median
into the parent node, conveniently allowing the parent to take second half as
another child.

e If the parent is full, recurse back up. If the root splits, update the root pointer!

¢ B-Trees only increase in height when the root splits, preserving the height-balance property! 225

Improved BT-INSERT(n, k, p)

Start at the root. If root == BT-Leaf, set root = new BT-Node(k,p) and return.
Walk down the tree, searching for key k. If a full node is encountered, split it.
If k is found, replace the payload and return.

If you reach the bottom level of internal nodes (children are keyless leaves)

then insert into this node, increasing this node’s keycount by 1.

e BUT, if that bottom node is already full (2T-1 keys already) then split it about
its median key into two nodes of T-1 keys + the median. Insert the median
into the parent node, conveniently allowing the parent to take second half as
another child.

e The parent cannot be full (would have been split), avoiding recursion back up.

¢ Remembering that the nodes are on disk, this avoids seeking to nodes we have been to before. 226

Examples of BT-INSERT

e Insert CAMBRIDGEX into an initially empty B-Tree of minimum degree 2.
<leaf> — C — AC — ACM —

When we insert B, we find the root is full and split it. Splits happen at D, E, and X.

C R C R C R C S CM R
pl
A M AB M AB MR AB IMR|mRr| 2B DI R

CM B CGM < G = G
|
AB DGI R AB DE I R| mmt| C M C M

AB DE I R AB DE I RX

227

BT-DELETE(n, k) [1]

Start at the root.

Walk down the tree, searching for key k.

If kK is not found, then return.

If k is the only key in the root, replace root with a BT-Leaf node and return.
If k is found but not at the bottom level, swap k with its predecessor (which
must be at the bottom level).

— At this point, the key to be deleted is at the bottom level. —

e |[f the node is not minimum size, remove k from the node and decrease
n.keycount.

¢ Successor is equally acceptable to predecessor. Both must exist and be bottom-level keys. 228

BT-DELETE(n, k) [2]

e If the node containing k is minimum size but its left or right sibling (if exists) is
not minimum size, then redistribute one/more keys from the sibling into this
node (incl. separator key in the parent), then delete k and decrease keycount.

e If both siblings are minimum size or don’t exist (we’re the first/last child) then
merge this node (T-1 keys) with the sibling (T-1) keys and ‘steal’ the separator
key from the parent. This makes a full node (2T-1 keys), from which we
delete k and decrease keycount.

e [f the parent is minimum size and cannot give us a key, recursively
redistribute or merge it with its siblings first.

e |[f the root’s last key is stolen by its merging children, update the root pointer!

¢ Remembering that the nodes are on disk, this avoids seeking to nodes we have been to before. 229

Examples of BT-DELETE [1]

Delete E from this B-Tree<2>:

G
C M
AB DE I RX

Start at the root. Find E at the bottom level. Node is not minimum size. Delete E.

AB D. I RX

230

Examples of BT-DELETE [2]

Delete C from this B-Tree<2>:

AB

Start at the root. Find C not at the bottom level.

C

D

G

I

M

RX

Swap with predecessor, B.

¢ There are no keys between k and its
predecessor so swapping them only
“‘messes up” the ordering for those two,
and it is resolved when we delete k!

231

Examples of BT-DELETE [3]

Delete | from this B-Tree<2>:
G

M

A D T RX ¢ Redistributing moves M down to join |, and R up to replace M.

Start at the root. Find | at the bottom level. Redistribute, then delete.

G G ¢ We only need to move 1 key but for a
B-Tree with larger T we would balance the
size of the two nodes to reduce the chance
A D IMX A D M X of needing to split/merge again soon.

232

Examples of BT-DELETE [4]

Delete X from this B-Tree<2>:

¢ Some authors suggest performing these operations in another
G order, e.g. merge MRX, temporarily leaving ‘R’ with too few keys.
B R This will fail if your algorithm is interrupted (e.g. power cut), leaving a
corrupted tree on the disk. Proving correctness is also harder
A D M X because existing proofs do not apply when the “tree” is not valid!

Start at the root. Find X at the bottom level. Merge parent, merge then delete.

B R — BGR — BG > BG
A D M X A DMX A D MRX A D MR

233

Recommended exercises

1. Past exam question: y2007 p11 q9 (link)

2. Prove that, if BT-INSERT is executed on a valid B-Tree with minimum degree T
then what results also satisfies the 5 defining characteristics of a B-Tree.

3. Prove that, if BT-DELETE is executed on a valid B-Tree with minimum degree
T then what results also satisfies the 5 defining characteristics of a B-Tree.

4. We improved BT-INSERT by preemptively splitting on the way down but did not
recommend preemptively merging on the way down for BT-DELETE. Did we
miss a trick?

5. Show that there is no way to guarantee O(Ig n) performance if duplicate keys
are permitted.

234

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p11q9.pdf

¢ Reference: CLRS chapter 13

Red-Black Trees (RBTs)

Red-Black trees are binary search trees where each node has an additional colour
attribute.

The colour is used by modified INSERT and DELETE algorithms to maintain
approximate balance.

Approximate balance means that the longest path from the root to a leaf is no
more than twice as long as the shortest such path.

235

Red-Black Tree Properties

A red-black tree is a binary search tree that satisfies the following additional
constraints:

Every node is either red or black.

The root is black.

The leaves are black and contain no keys or payloads.

Both children of a red node are black.

For each node, all simple paths to descendant leaves contain the same

number of black nodes.

abkrowbh-~

#5 is often phrased as “the tree is black-height balanced”.

236

Black-Height of a node

> DO NOT count the node you start from.
> DO count black nodes below.
> DO count the black leaves.

237

Range of tree sizes

Suppose a black node, x, has black height bh(x) =y. What are the minimum and
maximum numbers of internal nodes (non-leaves) in the subtree rooted at x?

Minimum: all the nodes are black. The tree must be a complete binary tree, by
RBT Property 5. Since the black height includes the leaves but not node x, the
number of internal nodes is the size of tree excluding the leaf level: 2°"®) - 1.

Maximum: every black node has 2 red children. The subtree rooted at x has
internal nodes for 2 bh(x) levels, plus leaves below that. The number of internal
nodes is 22°h) - 1,

¢ You can prove either by induction: leaves are height 0 and formula is correct; inductive case combines
two subtrees (which are definitely smaller) and 1 extra node. 238

Logarithmic running time

Lemma: A red-black tree with n internal nodes (not counting leaves) has at most 2
lg(n+1) levels.

This is the basis of proofs that operations on red-black trees will have O(Ig n)
worst case running time.

Let’s look at how to prove the lemma.

239

Proof of lemma

Consider an arbitrary black node, x. The subtree rooted at x has at least 2°"*) - 1
internal nodes.

Let the height of the (whole) tree be h. At least half of the nodes on a path of
length h from the root to a leaf are black (RBT Property 4). The black height of the
root must be at least h/2.

The number of nodes, n, in a tree with black height h/2: n = 2"2 - 1.

Hence n + 1 2 2"2 and so Ig(n+1) 2 h/2, and finally h < 2Ig(n+1), as required.

240

Isomorphism with B-Tree<2> (2-3-4 Trees)

A B-Tree with minimum degree T=2, also known as a 2-3-4 Tree, is made from:

Leaves

Internal nodes with 1 key / 2 children
Internal nodes with 2 keys / 3 children
Internal nodes with 3 keys / 4 children

We can map these data structures and the algorithms that operate on them to
red-black trees. We can convert in either direction, perform some operations,
convert back, and obtain the same as if we had performed the operations on the
original.

241

Isomorphic twins [1]

2-3-4 Tree Red-Black Tree
$3 BT-Leaf P4 Leaf (Black)
|
k 1 [Pl A single black node
1

Internal node with 1 key
and 2 children

Parent is the isomorphic
mapping of P. Children are the
[[e]] Bl mappings of a and .

242

Isomorphic twins [2]

2-3-4 Tree Red-Black Tree
[P1] Left-handed isomer.

A black node with one red child.
Parent is the isomorphic

P [v1l mapping of P. Children are the

| mappings of a, B and ¥.

o
k1 k2 2 Internal node with 2 keys o] E]
and 3 children

l \ \ [[P1] Right-handed isomer.
A black node with one red child.

Parent is the isomorphic
mapping of P. Children are the
[[ed]] mappings of a, B and ¥.

[[B]] [[v]l

243

Isomorphic twins [3]

2-3-4 Tree Red-Black Tree
= gl A black node with two red
J children.
k1 k2 k3 3 Internal node with 3 keys
and 4 children

[[e]] (e (vl [[a]
BAYANAN
o B 0% o

244

Tree rotations

A tree rotation is a local restructuring that preserves the global ordering property.

Tree-rotations can be applied to BSTs and red-black trees (with additional
restrictions on node colours and rules to recolour the nodes correctly).

LEFT-ROTATE(T, k,) /@b\

o B RIGHT-ROTATE(T, k) B / \

245

Exercises

e Figure out when rotations can be applied to red-black tree clusters (e.g. does
the top node have to be black? Can one be red and one black? ...)

e Figure out the rules for recolouring nodes when rotations are applied to
red-black trees.

e Convert BT-INSERT and BT-DELETE to RB-INSERT and RB-DELETE.

e Prove that RB-INSERT and RB-DELETE have O(Ig n) running time.

¢ Answers are in CLRS chapter 13.

246

Priority Queues

A max priority queue provides INSERT(PQ, k), MAXIMUM(PQ), EXTRACT-MAX(PQ),
and INCREASE-KEY(PQ, p, k) operations.

Max PQs are useful for schedulers to select the most important job to run next.

A min priority queue provides INSERT(PQ, k), MINIMUM(PQ), EXTRACT-MIN(PQ),
and DECREASE-KEY(PQ, p, k) operations.

Min PQs are useful for ordering work items to run in a particular order.

247

Implementation using a heap

Using a max-heap or min-heap, which we saw in heapsort, we can build a
Max-PQ or Min-PQ.

Let’'s implement a Min-PQ using a min-heap.

Peeking at the minimum, without extracting it, is as simple as looking at the root of
the min-heap:

PQO-MINIMUM (pq)
1 if (pg.heap size == 0) error (“Empty Priority Queue”)

2 return pqgll]

248

PQ-EXTRACT-MIN(pQ)

1 1if (pg.heap size == 0) error (“Empty Priority Queue”)
2 min = pqgqll]

3 pall]l = pglpg.heap size]

4 pg.heap size = pg.heap size - 1

5 MIN-REHEAPIFY (pg, 1)

o return min

249

PQ-DECREASE-KEY(pq, idx, k)

1 i1f (pglidx] < k) error (“Key already smaller than ” + k)
2 pglidx] =k

3 while 1dx > 1 && pg[PARENT (1dx)] > pglidx]

4 swap (pg[1dx], pPg[PARENT (1dx)])

5 1dx = PARENT (1dx)

250

PQ-INSERT(pq, k)

1 pg.heap size = pg.heap size + 1

2 pglpg.heap size] =

3 PQO-DECREASE-KEY (pg, pg.heap size, k)

251

Implementation using a red-black tree

We can implement the priority queue ADT using a red-black tree. Let’s do that!

Peeking at the minimum, without extracting it, is as simple as getting the Minimum
of the red-black tree:

PQ-MINIMUM (pq)

if (pg.root == NIL) error (“Empty Priority Queue”)
X = pg.root
while (x.left != NIL) x = x.left

return x.key

= w NN

252

PQ-EXTRACT-MIN(pQ)

1 min = PQ-MINIMUM (pq) // Could be combined to avoid two
2 RB-DELETE (pg, min) // walks down the tree.

3 return min

253

PQ-DECREASE-KEY(pq, oldk, k) PQ-INSERT(pq, k)

1 RB-DELETE (pqg, oldk) 1 RB-INSERT (pg, k)

2 RB-INSERT (pg, k)

254

Cost of operations

/ Linux Kernel task scheduler

Heap Implementation

Red-Black Tree
Implementation

PQ-MINIMUM Oo(1) O(lg n)
PQ-EXTRACT-MINIMUM O(lg n) O(lg n)
PQ-DECREASE-KEY O(lg n) O(lg n)
PQ-INSERT O(lg n) O(lg n)

¢ In Algorithms 2, we will achieve O(1), O(lg n), O(1), O(1) — albeit with a large constant factor.

255

Summary of Priority Queues

e \We have seen two ways to implement the priority queue ADT.
o We will see another in Algorithms 2

e Implementing a priority queue was little more than using a heap or red-black
tree.

256

¢ Reference: CLRS chapter 11

Hash Tables

Hash Tables implement the dictionary interface operations:

- Insert
- Search
- Delete

Under certain (reasonable) assumptions, hash tables provide O(1) performance
for all three operations.

I\ Hash tables number slots from 0, not from 1. This lecture uses the notation T[..] with 0-based indexing
to distinguish from A[..] with 1-based indexing elsewhere in the course. 257

Use cases for hash tables

Sparse arrays: the keys are integers but only a very small number of keys will
ever be in use at once. E.g. the keys might be 128-bit integers (UUIDs): even if
we want to store 1 bit to record which UUIDs we have seen, direct addressing
(as used by arrays) with 2128 slots would use 4x10%® GB of RAM, which is
infeasible with today’s technology. Hashed addressing is a feasible alternative.

Non-integer keys: if the keys are not integers (e.g. are strings), the direct
addressing scheme of an array cannot be used.

258

Direct addressing

CPUs can LOAD data from memory and STORE data to memory but those two
machine code instructions need the memory address (in bytes) to access.

The data type of array elements is fixed and known in advance. This tells us the
size, X, in bytes of each entry.

Direct addressing translates programming language syntax such as “T[i]” into a
CPU LOAD or STORE instruction, like this:

LOAD X bytes from (beginning + 1 * size) into register <r>

This is for zero-based hash tables; it would be (i-1)*size for 1-based arrays.

259

Hashed addressing

To support another data type, t, as the key we use a hash function, h: t — int.
E.g. to support T[*Cambridge”] we would need a string — int hash function.

The input to h is called the hash key and the output is called the hash value.
A naive interpreter or compiler might convert T[*Cambridge”] = 42 into:

idx = hﬁRDm(“Cambridge”)

T[idx] = 42
...and then into a LOAD or STORE instruction using beginning + idx * size.

idx is short for ‘index’ and is the table index that “Cambridge” maps to.

260

Problems with hashed addressing [1]

Problem 1: Range. The integer output (hash value) of the hash function is used
as a table index. However, we often wish to change the size of our hash tables as
our data grows and do not wish to have a great many different hash functions, one
for each size of table.

The solution is to require that, taken across all possible inputs, a hash function
must output a uniformly distributed unsigned integer in some range, e.g. [0..2°2-1].

We use range reduction to convert to a table index, perhaps as remainder after
division by the table size. E.g. if h("*Cambridge”) = 34, and the table size is 10, we
use index 34 MOD 10 =34 % 10 = 4. ¢ “%" is MOD in many prog.langs.

I\ This will not (quite) give a uniform distribution of table indices! 201

Problems with hashed addressing [2]

Problem 2: Performance. It is extremely difficult to take arbitrary input data and
yield a uniformly distributed output, especially when you know nothing about the
inputs that a particular program might use as hash keys.

Real-world hash functions are very complex, slow-running functions.

E.g. the input might be DNS hostnames or words in a natural language spelled
with ASCII characters so some byte values never appear in the input!

E.g. if it's Australian, British or US English, the relative frequencies of “S™ and “Z”
will differ... and other languages have totally different letter distributions.

I\ Hash tables are asymptotically fast but that might hide huge constant factors!

262

Problems with hashed addressing [2]

Problem 3: Collisions. If we are mapping strings of any length into 32-bit
integers, there are necessarily collisions, by the pigeonhole principle: we have
more possible hash keys than possible hash values so at least one hash value
must be used at least twice — a collision.

T [“Cambridge”] = 1209 I\ This shows what must NOT happen in
T[“Oxford”] = 1096 our implementations of a hash table!
Print T[“Cambridge”] — runs to give 1096 ?2!?2!7?

The hash values collided and the Oxford data over-wrote the Cambridge data.
Resolving this is central to using hash tables well in our algorithms.

263

Problems with hashed addressing [3]

Problem 4: Entropy. If our keys are short or very similar, there is not enough
entropy to map them to different places in the table.

E.g. similar keys might be mapped to a smaller number of distinct hash values:
ROT, TOT, POT, DOT, GOT, HOT, JOT, LOT, COT, BOT, NOT.

E.g. if the keys are single letters of the alphabet, there are only 26 possible inputs
to a hash function, hence at most 26 different outputs in the best case. That will
not be a uniform distribution across the range [0..23?-1] !!

If you're going to use low-entropy inputs, choose your hash function wisely!

¢ See CLRS chapter 11 for ideas.

264

Collision resolution by Chaining

The entries in the hash table, T, are pointers to linked lists, initially NIL pointers.

List cells are (Key, Payload, Ptr) tuples, where Ptr is the pointer to the next cell.

There are still lots of variants!

INSERT(“Oxford”, 1096)
h(“Oxford”) — 3

NO Ok~ WN-O0

— 8

(Cambridge, 1209)

— &3

—| (StAndrew’s, 1413)

(Oxford, 1096)

— &3

(Edinburgh, 1583)

_>€3

— &3

265

Chaining Variant 1

INSERT(T, key, payload): let k=h(key). Walk down the list at T[k] looking for an
existing cell with the same key. If found, replace the payload; if no match, append
a new cell on the end of the list.

SEARCH(T, key): let k=h(key). Walk down the list at T[k] looking for an existing cell
with the same key. If found, return the payload; if no match, return NIL.

DELETE(T, key): let k=h(key). Walk down the list at T[k] looking for an existing cell
with the same key. If found, remove cell from list. NO-OP if not found.

¢ Insert means “ensure future searches this payload under this key”.
¢ Delete means “ensure future searches do not find this key”.

266

Performance of Chaining Variant 1 [1]

INSERT(T, key, payload): if the hash function is good, the keys will be spread
evenly across the hash table. We expect each list to hold a=n/T.size, where n is
the number of live keys stored in the table. o is called the load factor.

Provided we resize when n = T.size, the expected runtime for insert is O(1), in
general O(1+a). The worst case time for insert is ©(n), if the hash function is poor,
or the data is pathological or malicious.

If we insert keys randomly, the average time to insert a key that is already present
(known as rebinding the key to a new payload) is one half of the time to insert a
new key — because existing keys are found, on average, half way along the list.

267

Performance of Chaining Variant 1 [2]

SEARCH(T, key): searching has expected cost O(1+a), worse case O(n), for the
same reasons as INSERT.

Searching for keys that are present takes, on average, half the time to search for a
key that is not present. This is not a good variant to use as a negative cache
(holding a list of ‘bad’ items that you need to check against but will rarely match).

DELETE(T, key): same as SEARCH, including that attempts to delete keys are not
present takes twice as long, on average, as deletes for keys that are present.

268

Chaining Variant 2: keep lists sorted by key

INSERT(T, key, payload): let k=h(key). Walk down the list at T[k] looking for an
existing cell with the same key. If found, replace the payload; at the end or if the
next key is greater than the insert key, insert into the list here (INSERTION-SORT).

SEARCH(T, key): let k=h(key). Walk down the list at T[k] looking for an existing cell
with the same key. If found, return the payload; stop if next key > search key.

DELETE(T, key): let k=h(key). Walk down the list at T[k] looking for an existing cell
with the same key. If found, remove cell from list. Stop if next key > search key.

¢ Insert means “ensure future searches this payload under this key”.

¢ Delete means “ensure future searches do not find this key”.

I\ This additionally requires that the keys are comparable: we are sorting keys (not hash values, since in
any list, all keys have the same hash value!). 269

Performance of Chaining Variant 2

INSERT(T, key, payload): expected O(1+a); worst ©(n). Rebind and fresh inserts
take the same time, on average, since both stop searching on average half way
down the list when a larger key is encountered.

SEARCH(T, key): same as INSERT.

DELETE(T, key): same as INSERT.

270

Chaining Variant 3: push on the head

INSERT(T, key, payload): let k=h(key). Insert a new list cell on the head of list T[K].
The list may contain the same key repeatedly.

SEARCH(T, key): let k=h(key). Walk down the list at T[k] looking for the first cell
with the same key. If found, return the payload; at end of list, return NIL.

DELETE(T, key): let k=h(key). Insert a new list cell on the head of list T[k] with the
key to be deleted and NIL as the payload.

¢ Insert means “ensure future searches this payload under this key”.
¢ Delete means “ensure future searches do not find this key”. 271

Performance of Chaining Variant 3

INSERT(T, key, payload) and DELETE(T, key): ©(1), always.

SEARCH(T, key): O(I+D), where | and D are the number of times we have called
INSERT and DELETE respectively. Grows over time: best for read-only tables!

I\, SEARCH € O(n) is not a useful statement because ‘n’ would need to be the
length of the list in slot T[k] but there is no way that any user of the hash table
could know that value. That makes the statement meaningless to them!

¢ We must express running times as functions of values that an external user
can reasonably know, such as the number of times they have invoked the
operations.

272

Chaining Variant 4: push on the head, delete from list

INSERT(T, key, payload): let k=h(key). Insert a new list cell on the head of list T[K].

The list may contain the same key repeatedly.

SEARCH(T, key): let k=h(key). Walk down the list at T[k] looking for the first cell
with the same key. If found, return the payload; at end of list, return NIL.

DELETE(T, key): let k=h(key). Walk down the list at T[k] looking for the first cell
with the same key. If found, remove it from the list. NO-OP if not found.

¢ Insert means “ensure future searches this payload under this key”.
¢ Delete means “undo the most recent insert for this key”.

273

Performance of Chaining Variant 4

INSERT(T, key, payload): ©(1), always.

SEARCH(T, key): O(l), where | is the number of times we have called INSERT. If we
change DELETE to indicate whether it found they key to be deleted, we can say
O(I-D), where D is the number of times we have called DELETE.

DELETE(T, key): same as SEARCH.

Notice that when we delete, the previous binding for that key “comes back to life”.
The hash table now offers stack-like behaviour for each key.

274

Collision resolution by Open Addressing

Keep (key, payload) tuples in the slots of table, T. Initialise all table slots to NIL.

If your slot is full, use another one ... but how to pick a different slot?

INSERT(“Oxford”, 1096)
h(“Oxford”) — 3

NO Ok~ WN-O0

T
&3

Cambridge, 1209

&3

St Andrew’s, 1413

Oxford, 1096

Edinburgh, 1583

&3

&3

275

Open Addressing

INSERT(T, key, payload): let k=h(key). If T[k] == NIL then insert in position kK,
otherwise use the probe sequence to find another empty slot.

Linear Probing is a probe sequence that tries slot (k+1)%T.size, (k+2)%T.size, ...
until a NIL slot is found; or if we wrap back around to slot k, fail as the table is full.

SEARCH(T, key): start from slot k=h(key) and use the same probe sequence if key
is not found straight away. If the probe sequence reaches a NIL slot or gets back
to slot k, return NIL (not found).

276

Linear Probing

Open addressing reduces the selectivity of the hash function: when we search for
a key, we end up having to compare the search key to keys that do not even have
the same hash value. This is as if the chains in the previous method had got
jumbled up! Linear probing is more vulnerable than other probe sequences.

The build-up of long probe sequences that do not even contain keys with the
same hash value is called primary clustering.

Using a step size of 2 (or any other value) will not help. That just changes where
the clustering appears, and might reduce the number of values that can be stored
if the step size is not coprime with the table size.

¢ Selectivity is how small is the subset of keys present in T that we must compare using key equality.

277

Quadratic Probing

Instead of k, k+1, k+2, ... we use this sequence for the i" probe position:
probe(T, key, i) = (h(key) + ai + b i?) % T.size for constants a, b

This hits every position 0..T.size-1 in some order for i=0..T.size-1 provided at least
one of a,b is non-zero, and a,b are strictly less than T.size, which is prime.

Crucially, the order is different for each h(key), which solves primary clustering.
E.g. a=1, b=1: Starting at 4: 4, 6, 10, 16, ... Startingat 3: 3,5, 9, 15, ... Startingat2: 2, 4,9, 14

Quadratic probing is prone to secondary clustering (a lesser problem): keys that
hash to the same value will collide with each other at every probe position.

¢ CLRS point out that a=1, b=0, T.size=2* for some integer x also works. 278

Double Hashing

Double hashing solves primary clustering and secondary clustering.
probe(T, key, i) = (h,(key) + i h,(key)) % T.size

Now keys that collide under h, almost surely do not also collide under h,, so their
probe sequences step apart.

To avoid pathological values of h, (e.g. 0, or any multiple of table size), we can
use h,(key) = (h',(key) % (T.size - 1)) + 1

Notice the additional computation cost of using a second hash function.

279

Deleting with Open Addressing

You cannot simply remove keys: that would break the probe sequence!

Leave a marker behind: markers are full and non-matching when SEARCHing
(never what you seek but don’t stop the search, unlike a NIL slot) and are empty
when INSERTIng (can be overwritten, like a NIL slot).

&3

Cambridge, 1209

&3

St Andrew’s, 1413

Oxford, 1096

Edinburgh, 1583

&3

N~No oahr~,WDN-O0

&3

DELETE(“St Andrew’s”)
h(“St Andrew’s”) — 3

0

NO O, WN -

&3

Cambridge, 1209

&

Oxford, 1096

Edinburgh, 1583

SEARCH(“Oxford”)
h(“Oxford”) — 3
Returns 1096.

280

Resizing with Open Addressing

To avoid overloading the table, maintain counters tracking:

- The number of keys, nk

- The number of markers, nm . .
— THRESHOLD Mightbe 0.5 x T.size

if nk+nm > THRESHOLD then
if nk >> nm then rehash into a larger table
else if nk = nm then rehash into a table of same size (remove markers)

else rehash into a smaller table

Some implementations use an array of primes to use as larger/smaller table sizes.

281

Software Engineering considerations

Hash tables can be difficult to test because the technical challenge is in the
non-functional requirements of a hash function.

Functional requirements: must have type String->int — easily checked

Non-functional requirements: must output a (reasonably) uniform spread of
hash values when given all the keys that my program is going to use it with.

If the hash function always returned 0, or the resize logic was broken (especially
for chaining), your unit tests might not notice. Your users will when they enter their
much larger data set! Hash tables are banned in some industry sectors.

282

Summary of Hash Tables

e Expected O(1+a) time for many variants, which can be O(1) if we manage the
load factor carefully by resizing when the table is too full for the hash
selectivity to remain performant.

e Collisions need to be managed carefully.

e Don’t overlook the time required to run the hash function. It could dominate
the expected runtime of a hash table.

e Software engineering considerations

e Need to perform equality checks on keys (during collision resolution), which
might also be slow.

283

Revision Guide / Summary of Algorithms 1 [1]

Methods to solve recurrence relations:

- Guess and verify
- Substitute and spot pattern, including the tree method to help spot patterns
- The Master Theorem

284

Revision Guide / Summary of Algorithms 1 [2]

Growth orders:

f(n) € o(g(n))
f(n) € O(g(n))
as”
f(n) € ©(g(n))
a(n)
f(n) € Q(g(n))
as”
f(n) € w(g(n))

f(n) has strictly less rapid growth than g(n)
f(n)'s growth is upper-bounded by g(n): “at most as fast

f(n) grows within a constant factor at the same rate as
f(n)'s growth is lower-bounded by g(n): “at least as fast

f(n) has strictly more rapid growth than g(n)

285

Revision Guide / Summary of Algorithms 1 [3]

Algorithm designs:

- Incremental

- Divide and Conquer: non-overlapping subproblems
- Semi-structures

- Dynamic Programming

- Greedy Algorithms

286

Revision Guide / Summary of Algorithms 1 [4]

Dynamic Programming

e Useful for optimisation problems

e Requirements:

o Optimal substructure
o Overlapping subproblems

e Memoise previous results to avoid repeated recomputation
e Top-Down and Bottom-Up approaches

287

Revision Guide / Summary of Algorithms 1 [5]

Greedy Algorithms

e Not all problems can be solved greedily
e Greedy algorithms offer efficient solutions where they are possible

e Greedy algorithms solve optimisation problems where...
o The locally optimal choice definitely does still allow an optimal solution to be reached
o The combination of the locally optimal choice and an optimal solution to the subproblem that
results from making the locally optimal first move, is optimal overall.

e Often, you need to think about what the ‘greedy’ choice is
o E.g. choosing the earliest finishing time to allow the greatest cardinality set of activities overall

288

Revision Guide / Summary of Algorithms 1 [6]

We looked into the details of several data structures...

Pointers

Stacks, stacks with additional operations (average, minimum/maximum)
Queues

Singly linked lists, cyclic singly linked lists

Doubly linked lists, cyclic doubly linked lists

Use in Doug Lea’s malloc algorithm

Priority Queues

Hash Tables: chaining, open addressing, primary and secondary clustering

289

Revision Guide / Summary of Algorithms 1 [7]

Rooted Trees

Varieties of rooted trees: with/out parent pointers, fixed/varying child count.
Search trees don'’t allow duplicate keys!

BSTs support a rich set of operations with expected runtime O(Ig n)
Simple logic in the operations — simple to code and small constant factors
But O(n) worst case performance might leave algorithms using BSTs
vulnerable to very bad worst case performance

Memory overhead of 2 pointers per (key,value) pair might be significant (3
points if you need parent pointers).

B-Trees, 2-3-4 Trees, Red-Black Trees, and their isomorphisms

290

Revision Guide / Summary of Algorithms 1 [8]

INSERTION-SORT O(n?) Tight loop, fast for small n
MERGE-SORT O(nlgn) O(nlgn) v Bottom-up Merge-Sort is in-place
HEAP-SORT O(nlg n) v

QUICKSORT O(n?) ©(n Ig n) expected v

QUICKSORT (MoM) | ©(n Ig n) O(nlg n) v

COUNTING-SORT O(k + n) O(k + n) v

RADIX-SORT O(d(n + k)) O(d(n + k)) v

BUCKET-SORT O(n?) O(n) average v
291

