
Algebraic Techniques for Programming

Neel Krishnaswami

University of Cambridge

Lent 2026

Course Aims

1. Data and Codata:

• Develop mathematical foundations for recursion over (co)data

• Apply this theory to understand dynamic programming

2. Fixed point computations

• Use partial orders and lattices to formalize fixed point computations

• Apply categorical methods to incrementalize these computations

3. The Algebraic Path Problem

• Generically solve path problems over graphs with linear algebra

• Derive all-pairs shortest paths, convert DFAs to regular expressions, the Viterbi algorithm,

etc

1

Stuff, Structure, Property

• This course makes heavy use of algebraic structures

• But what are they?

2

Stuff, Structure, Property

An algebraic structure consists of:

• Stuff: One or more sets

• Structure: Some operations on those sets

• Properties: Some properties of those operations

3

Monoids: an Example

A monoid (𝑀, 1𝑀 , ⋅) is:

• A set 𝑀 (called the carrier)

• An element 1𝑀 ∈ 𝑀 (called the unit)

• An operation (⋅) : 𝑀 ×𝑀 →𝑀 (called the multiplication)

such that:

• for all 𝑚 ∈ 𝑀 , we have 1 ⋅ 𝑚 = 𝑚
• for all 𝑚 ∈ 𝑀 , we have 𝑚 ⋅ 1 = 𝑚
• for all 𝑚1,𝑚2,𝑚3 ∈ 𝑀 , we have (𝑚1 ⋅ 𝑚2) ⋅ 𝑚3 = 𝑚1 ⋅ (𝑚2 ⋅ 𝑚3)

4

What is a Monoid, Anyway?

• Note that a monoid is not a single thing

• In programming terms, it is an interface

• Multiple types can implement this interface

• Sometimes in multiple ways!

5

Examples of Our Example - 1

The natural numbers 𝑁 form a monoid:

• The unit is 1𝑁 = 0

• The multiplication is 𝑗 ⋅ 𝑘 = 𝑗 + 𝑘

• Note that 0 + 𝑗 = 𝑗 + 0 = 𝑗

• Also (𝑗 + 𝑘) + 𝑛 = 𝑗 + (𝑘 + 𝑛)

6

Examples of Our Example - 2

The natural numbers 𝑁 form a monoid:

• The unit is 1𝑁 = 0

• The multiplication is 𝑗 ⋅ 𝑘 = max(𝑗, 𝑘)

• Note that max(0, 𝑗) = max(𝑗, 0) = 𝑗

• Also max(𝑗,max(𝑘, 𝑛)) = max(max(𝑗, 𝑘), 𝑛)

7

Examples of Our Example - 3

The booleans 2 = {⊥,⊤} form a monoid:

• The unit is 1𝑁 = ⊥

• The multiplication is 𝑗 ⋅ 𝑘 = 𝑗 ∨ 𝑘

• Note that ⊥ ∨ 𝑗 = 𝑗 ∨ ⊥ = 𝑗

• Also (𝑗 ∨ 𝑘) ∨ 𝑛 = 𝑗 ∨ (𝑘 ∨ 𝑛)

8

Examples of Our Example - 4

The booleans 2 = {⊥,⊤} form a monoid:

• The unit is 1𝑁 = ⊤

• The multiplication is 𝑗 ⋅ 𝑘 = 𝑗 ∧ 𝑘

• Note that ⊤ ∧ 𝑗 = 𝑗 ∧ ⊤ = 𝑗

• Also (𝑗 ∧ 𝑘) ∧ 𝑛 = 𝑗 ∧ (𝑘 ∧ 𝑛)

9

Examples of Our Example - 3

Given a set 𝑋, the set of finite sequences (𝑥0, 𝑥1,…, 𝑥𝑛) form a monoid.

• The unit is 1𝑁 = ()

• The multiplication is concatenation (𝑥0,…) ⋅ (𝑦0,…) = (𝑥0,…, 𝑦𝑜,…)

• Note that () + ⃗𝑥 = ⃗𝑥 + () = ⃗𝑥

• Also (⃗𝑥 ⋅ ⃗𝑦) ⋅ ⃗𝑧 = ⃗𝑥 ⋅ (⃗𝑦 ⋅ ⃗𝑧)

10

Examples of Our Example - 4

Given a finite set 𝑋, the powerset 𝒫︀(𝑋) forms a monoid:

• The unit is 1𝑁 = ∅

• The multiplication is 𝑆 ⋅ 𝑇 = 𝑆 ∪ 𝑇

• Note that ∅ ∪ 𝑆 = 𝑆 ∪ ∅ = 𝑆

• Also (𝑆 ∪ 𝑇) ∪ 𝑈 = 𝑆 ∪ (𝑇 ∪ 𝑈)

11

Examples of Our Example - 5

Given a finite set 𝑋, the powerset 𝒫︀(𝑋) forms a monoid another way:

• The unit is 1𝑁 = 𝑋

• The multiplication is 𝑆 ⋅ 𝑇 = 𝑆 ∩ 𝑇

• Note that 𝑋 ∩ 𝑆 = 𝑆 ∩𝑋 = 𝑆

• Also (𝑆 ∩ 𝑇) ∩ 𝑈 = 𝑆 ∩ (𝑇 ∩ 𝑈)

12

Warning!

A monoid is its carrier plus its operations:

(𝑁, 0,+) and (𝑁, 0,max) are two different monoids!

(2,⊥, ∨) and (2,⊤, ∧) are two different monoids!

(𝒫︀(𝑋), ∅, ∪) and (𝒫︀(𝑋),𝑋,∩) are two different monoids!

13

Monoid Homomorphisms

Given a monoid (𝑀, 0,+) and a monoid (𝑁, 1,×), a monoid homomorphism is:

A function 𝑓 : 𝑀 → 𝑁 such that:

• f(0) = 1

• for all 𝑚1,𝑚2 ∈ 𝑀 , we have 𝑓(𝑚1 +𝑚2) = 𝑓(𝑚1) × 𝑓(𝑚2)

14

Monoid Homomorphisms

Suppose we have (𝒫︀(𝑋), ∅, ∪) and (2,⊥,⊤)

Let inhabited : 𝒫︀(𝑋) → 2 return ⊥ if it is empty, and ⊤ if it is nonempty

Then inhabited is a monoid homomorphism.

15

Monoid Homomorphisms

Suppose we have (2,⊥, ∨) and (𝑁, 0,max)

Define 𝑓 : 2 → 𝑁 as follows:

𝑓(⊤) = 1
𝑓(⊥) = 0

Then 𝑓 is a monoid homomorphism, since 𝑓(⊥) = 0 and 𝑓(𝑥 ∨ 𝑦) = max(𝑓(𝑥), 𝑓(𝑦))

16

Monoid Homomorphisms

Suppose we have (𝑁, 0,+) and (𝒫︀(𝑋), ∅, ∪)

Class question: what are some monoid homomorphisms 𝑓 : 𝑁 → 𝒫︀(𝑋)?

17

Categories

A category ℂ consists of:

• A set of objects Obj(ℂ)
• For each 𝐴,𝐵 ∈ Obj(ℂ), a set of morphisms Hom(A,B)
• For each 𝐴 ∈ Obj(ℂ) an identity morphism idA ∈ Hom(A,B)
• For all 𝐴,𝐵,𝐶 , a composition operator (;) : Hom(A,B) × Hom(B,C) → Hom(A,C)

such that for all 𝑓 : 𝐴 → 𝐵, 𝑔 : 𝐵 → 𝐶, and ℎ : 𝐶 → 𝐷,

• idA; 𝑓 = 𝑓
• 𝑓; idB = 𝑓
• (𝑓; 𝑔); ℎ = 𝑓; (𝑔; ℎ)

(This is an algebraic structure!)

18

Examples of Categories: Set

The category of sets consists of

• The objects are sets

• Hom(A,B) are the functions from 𝐴 to 𝐵
• idA is the identity function

• 𝑓; 𝑔 is (reversed) function composition 𝑔 ○ 𝑓

19

The Category of Monoids

Monoids form a category Mon:

• The objects of Mon are monoids (𝑋, 1, ⋅)

• The hom-sets are given by:

HomMon((𝑋, 1, ⋅), (𝑌 , 0,+)) = {𝑓 : 𝑋 → 𝑌 | 𝑓 is a monoid homomorphism}

20

Examples of Categories: Matrices

The category of matrices consists of:

• The objects are natural numbers ℕ
• Hom(𝑚, 𝑛) is the set of 𝑚× 𝑛 ℝ-valued matrices

• idn is the 𝑛 × 𝑛 identity matrix

• 𝑓; 𝑔 is matrix multiplication

Note that objects do not have to be sets: here they are the dimensions of the matrices.

21

Examples of Categories: Relations

The category of relations consists of:

• The objects are sets

• Hom(𝐴,𝐵) is 𝒫︀(𝐴 × 𝐵), the relations between 𝐴 and 𝐵:

• id𝐴 is the identity relation on 𝐴: {(𝑎, 𝑎) | 𝑎 ∈ 𝐴}
• 𝑓; 𝑔 is relational composition:

𝑓; 𝑔 = {(𝑎, 𝑐) | ∃𝑏.(𝑎, 𝑏) ∈ 𝑓 ∧ (𝑏, 𝑐) ∈ 𝑔}

Note that morphisms do not have to be functions: here, they are relations.

22

Functors: Homomorphisms of Categories

Give categories ℂ and 𝔻, a functor 𝐹 : ℂ → 𝔻 is

• 𝐹Obj : Obj(ℂ) → Obj(𝔻)
• 𝐹Hom : ℂ(𝐴,𝐵) → 𝔻(𝐹(𝐴), 𝐹(𝐵))

such that

• 𝐹(id𝐴) = id𝐹(𝐴)
• 𝐹(𝑓; 𝑔) = 𝐹(𝑓); 𝐹 (𝑔)

23

Examples of Functors: The Forgetful Functor

There is a functor 𝑈 : Mon → Set:

𝑈(𝑀, 1,×) = 𝑈
𝑈(𝑓 : (𝑀, 1,×) → (𝑁, 0,+)) = 𝑓

This is a forgetful functor: it “forgets” the monoid structure on its argument.

24

Examples of Functors: The Forgetful Functor

There is a functor 𝐹 : Set → Mon:

• 𝐹(𝑋) = 𝑋∗ (the set of sequences on 𝑋)

• 𝐹(𝑓 : 𝑋 → 𝑌) : 𝑋∗ → 𝑌 ∗ = (𝑥0,…, 𝑥𝑛) ↦ (𝑓(𝑥0),…, 𝑓(𝑥𝑛))

This functor maps each set 𝑋 to the monoid of sequences of elements of 𝑋. The action of the

functor on a function 𝑓 , takes a sequence of 𝑋-elements, and maps 𝑓 over each element.

25

Structures on Categories: Products

Suppose we have objects 𝐴 and 𝐵. Then the triple (𝐴 × 𝐵, 𝜋1, 𝜋2) is a product, when

↑ 𝜋1 ↑𝜋2

↑
𝑓

↑
𝑔

↑

⟨𝑓, 𝑔⟩

𝐴 𝐵

𝑋

𝐴×𝐵

∀𝑓 : 𝑋 → 𝐴, 𝑔 : 𝑋 → 𝐵, ∃!ℎ : 𝑋 → 𝐴×𝐵, (ℎ; 𝜋1 = 𝑓) ∧ (ℎ; 𝜋2 = 𝑔)

26

Products: Sets

Given sets 𝑋 and 𝑌 , the product 𝑋 × 𝑌 is the Cartesian product:

𝑋 × 𝑌 = {(𝑥, 𝑦) | 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 }

The projections are given by:

• 𝜋1 : 𝑋 × 𝑌 → 𝑋 = (𝑥, 𝑦) ↦ 𝑥
• 𝜋2 : 𝑋 × 𝑌 → 𝑌 = (𝑥, 𝑦) ↦ 𝑦

The universal map (𝑓, 𝑔) is defined as:

⟨𝑓, 𝑔⟩(𝑥) = (𝑓𝑥, 𝑔𝑥)

27

Products: Monoids

Given a monoid (𝑀, 0,+) and a monoid (𝑁, 1,×), their product object is:

• The carrier 𝑀 ×𝑁
• The unit is 1𝑀×𝑁 = (0, 1)
• The multiplication is: (𝑚1, 𝑛1) ⋅ (𝑚2, 𝑛2) = (𝑚1 +𝑚2, 𝑛1 × 𝑛2)

The projections are given by:

• 𝜋1 : 𝑀 ×𝑁 → 𝑀 = (𝑚,𝑛) ↦ 𝑚
• 𝜋2 : 𝑀 ×𝑁 → 𝑁 = (𝑚, 𝑛) ↦ 𝑛

28

Products: Matrices

In the category of matrices, the product 𝑚× 𝑛 is the number 𝑚+ 𝑛.

The projections are given by:

• 𝜋1 : (𝑚 + 𝑛) → 𝑚 = (𝐼𝑚×𝑚
0𝑛×𝑚

)

• 𝜋2 : (𝑚 + 𝑛) → 𝑛 = (0𝑚×𝑛
𝐼𝑛×𝑛

)

So if 𝑚 = 3 and 𝑛 = 2, then:

𝜋1 : 5 → 3 =

(

1
0
0
0
0

0
1
0
0
0

0
0
1
0
0)

𝜋2 : 5 → 2 =

(

0
0
0
1
0

0
0
0
0
1)

29

Structures on Categories: Coproducts

Suppose we have objects 𝐴 and 𝐵. Then the triple (𝐴 + 𝐵, 𝜄1, 𝜄2) is a coproduct, when

↑

𝜄1

↑

𝜄2

↑

𝑓

↑

𝑔

↑

[𝑓, 𝑔]

𝐴 𝐵

𝑋

𝐴+𝐵

∀𝑓 : 𝐴 → 𝑋, 𝑔 : 𝐵 → 𝑋, ∃!ℎ : 𝐴 + 𝐵 → 𝑋, (𝜄1; ℎ = 𝑓) ∧ (𝜄2; ℎ = 𝑔)

30

Coproducts: Sets

Given sets 𝑋 and 𝑌 , the coproduct 𝑋 × 𝑌 is the disjoint union:

𝑋 + 𝑌 = {(0, 𝑥) | 𝑥 ∈ 𝑋} ∪ {(1, 𝑦) | 𝑦 ∈ 𝑌 }

The injections are given by:

• 𝜄1 : 𝑋 → 𝑋 + 𝑌 = 𝑥 ↦ (0, 𝑥)
• 𝜄2 : 𝑌 → 𝑋 + 𝑌 = 𝑦 ↦ (1, 𝑦)

The universal map is given by:

[𝑓1, 𝑓2] = (𝑖, 𝑣) ↦ 𝑓𝑖(𝑣)

31

Coproducts: Matrices

In the category of matrices, the coproduct 𝑚+ 𝑛 is the number 𝑚+ 𝑛.

The injections are given by:

• 𝜄1 : 𝑚 → (𝑚+ 𝑛) = (𝐼𝑚×𝑚 0𝑚×𝑛)

• 𝜄2 : 𝑛 → (𝑚+ 𝑛) = (0𝑛×𝑚 𝐼𝑛×𝑛)

So if 𝑚 = 3 and 𝑛 = 2, then:

𝜄1 : 3 → 5 =
(

1
0
0

0
1
0

0
0
1

0
0
0

0
0
0)

 𝜄2 : 2 → 5 = (00

0
0
0
0
1
0
0
1)

32

Matrix coproduct example

An example of composing with 𝜄1:

(1 2 3) ·
(

1
0
0

0
1
0

0
0
1

0
0
0

0
0
0)

 = (1 2 3 0 0)

An example of composing with 𝜄2:

(4 5) · (00
0
0
0
0
1
0
0
1) = (0 0 0 4 5)

33

Coproducts: Monoids

Given monoids (𝑀, 0,+) and (𝑁, 1, ⋅), we can construct the coproduct as follows:

1. Define X to the set of sequences of elements of 𝑀 and 𝑁 (eg, (𝑚0 𝑚1 𝑛2 𝑛3 𝑛4 … 𝑚𝑛))
2. Define an equivalence relation ≈ such that

• (𝑥⃗ 0 𝑥′) ≈ (𝑥⃗ 𝑥′)
• (𝑥⃗ 1 𝑥′) ≈ (𝑥⃗ 𝑥′)
• (𝑥⃗ 𝑚 𝑚′ 𝑥′) ≈ (𝑥⃗ 𝑚+𝑚′ 𝑥′)
• (𝑥⃗ 𝑛 𝑛′ 𝑥′) ≈ (𝑥⃗ 𝑛+𝑛′ 𝑥′)

3. Let the carrier be the quotient set 𝑋/≈.

Then the injections are:

• 𝜄1 : 𝑀 → 𝑀 +𝑁 = 𝑚 ↦ [(𝑚)]
• 𝜄2 : 𝑀 → 𝑀 +𝑁 = 𝑛 ↦ [(𝑛)]

34

Inductive Types

Datatypes

Consider an OCaml datatype definition like:

type tree =

 | Num : int -> tree

 | Plus : tree * tree -> tree

 | Times : tree * tree -> tree

We can define recursive functions like:

(* eval : tree -> int *)

let rec eval = function

 | Num n -> n

 | Plus(l, r) -> eval l + eval r

 | Times(l, r) -> eval l * eval r

35

Defining a Fold

Now, let’s try to define a fold function for this datatype:

(* (int -> 'a) -> ('a * 'a -> 'a) -> ('a * 'a -> 'a) -> tree -> 'a *)

let rec fold0 num plus times = function

 | Num n -> num n

 | Plus(l, r) -> plus (fold0 num plus times l.

 fold0 num plus times l)

 | Times(l, r) -> times (fold0 num plus times l,

 fold0 num plus times l)

(* eval : tree -> int *)

let eval = fold0 (fun n -> n) (fun (n,m) -> n + m) (fun (n,m) -> n * m)

There is one argument per constructor. But The OCaml AST datatype has 192 entries…!

36

Untying the Knot

Define a new datatype 'a treeF:

type 'a treeF =

 | Num : int -> 'a treeF

 | Plus : 'a * 'a -> 'a treeF

 | Times : 'a * 'a -> 'a treeF

This supports a map function:

(* map : ('a -> 'b) -> 'a treeF -> 'b treeF *)

let map f = function

 | Num n -> Num n

 | Plus (a1, a2) -> Plus(f a1, f a2)

 | Times (a1, a2) -> Times(f a1, f a2)

So 𝑇 (𝐴) = ℤ + (𝐴 × 𝐴) + (𝐴 × 𝐴) and map sends 𝐴 → 𝐵 to 𝑇 (𝐴) → 𝑇(𝐵)

37

Tying the Knot

Now, we can separately do the type recursion:

type tree =

 | In : tree treeF -> tree

which yields an obvious isomorphism:

(* into : : tree treeF -> tree *)

let into x = In x

(* out : tree -> tree treeF *)

let out (In x) = x

38

Redefining eval

We can still define the eval function, almost as before:

(* eval : tree -> int *)

let rec eval (In x) =

 match x with

 | Num n -> n

 | Plus(l, r) -> eval l + eval r

 | Times(l, r) -> eval l * eval r

39

Typing fold anew

Now, let’s define a new fold function:

(* fold : ('a treeF -> 'a) -> tree -> 'a *)

let rec fold falg x =

 falg (map (fold falg) (out x))

40

Typing fold anew

Now, let’s define a new fold function, more legibly:

(* fold : ('a treeF -> 'a) -> tree -> 'a *)

let rec fold (falg : 'a treeF -> 'a) (x : tree) =

 let o : tree treeF = out x in

 let fa : 'a treeF = map (fold falg) o in

 let result : 'a = falg fa in

 result

41

Defining eval via fold

Now, let’s define an algebra for treeF:

(* eval_alg : int treeF -> int *)

let eval_alg = function

 | Num n -> n

 | Plus(n, m) -> n + m

 | Times(n, m) -> n * m

This can be used to define eval as a fold:

(* eval : tree -> int *)

let eval = fold eval_alg

42

Relating fold0 and fold

Starting with the type of fold0:

(ℤ → 𝐴) → (𝐴 × 𝐴 → 𝐴) → (𝐴 × 𝐴 → 𝐴) → 𝐴
≅ ((ℤ → 𝐴) × (𝐴 × 𝐴 → 𝐴) × (𝐴 × 𝐴 → 𝐴)) → 𝐴
≅ ((ℤ + (𝐴 × 𝐴) → 𝐴)) × (𝐴 × 𝐴 → 𝐴) → 𝐴
≅ ((ℤ + (𝐴 × 𝐴) + (𝐴 × 𝐴)) → 𝐴) → 𝐴
≅ (𝑇 (𝐴) → 𝐴) → 𝐴

We finish with the type of fold!

43

The Polynomial Functors

Let us consider some functors on 𝖲𝖾𝗍. Suppose 𝐹,𝐺 : 𝖲𝖾𝗍 → 𝖲𝖾𝗍.

• The constant functor:

𝐴(𝑋) = 𝐴
𝐴(𝑓) = id𝐴

• The identity functor:

𝖨𝖽(𝑋) = 𝑋
𝖨𝖽(𝑓) = 𝑓

• The product functor:

(𝐹 ⊗ 𝐺)(𝑋) = 𝐹(𝑋) × 𝐺(𝑋)
(𝐹 ⊗ 𝐺(𝑓) = 𝐹(𝑓) × 𝐺(𝑓)

• The sum functor:

(𝐹 ⊕ 𝐺)(𝑋) = 𝐹(𝑋) + 𝐺(𝑋)
(𝐹 ⊕ 𝐺)(𝑓) = 𝐹(𝑓) + 𝐺(𝑓)

44

Shapes of Datatypes

The polynomial functors let us model a datatype shape of the form

 type 'a shape =

 | C1 : (a1 * ... * an)

 ...

 | Cn : (b1 * ... * bk)

This is modelled as a sum of products:

• Each alternative is separated by an ⊕
• Each * is separated by an ⊗
• Occurences of 'a are mapped to 𝖨𝖽

• Occurences of types like int are mapped to ℤ

45

Shapes of Datatypes

The polynomial functors let us model a datatype shape of the form

 type 'a intlist_f

 | Nil : 'a intlist_f

 | Cons : int * 'a -> 'a intlist_f

This is modelled as 𝐹List = 1 ⊕ (ℤ ⊗ 𝖨𝖽). The functorial action of 𝐹List is the map on the shapes:

(* map : ('a -> 'b) -> 'a intlist_f -> 'b intlist_f *)

let map f = function

 | Nil -> Nil

 | Cons(n, a) -> Cons(n, f a)

46

Datatypes as Fixed Points of Functors

The recursive type definition gives rise to an isomorphism:

 type intlist = In of intlist intlist_f

 let into x = (In x) (* intlist intlist_f -> intlist *)

 let out (In x) = x (* intlist -> intlist intlist_f *)

This suggests we want to model lists as the fixed point of a functor:

List ≅ 𝐹List(List)

47

Properties of Folds

Recall the definition of fold:

let rec fold falg x =

 falg (map (fold falg) (out x))

Witing (|𝑓|) for the fold, our recursive definition tells us fold satisfy:

(|𝑓|) = 𝑓 ∘ 𝐹List(|𝑓|) ∘ out
= out; 𝐹List(|𝑓|); 𝑓

Note that this is not obviously a definition in 𝖲𝖾𝗍! We need to show that it is well-founded and

that there is a unique solution.

48

The category of 𝐹 -algebras

Suppose 𝐹 is a endofunctor on 𝖲𝖾𝗍.

The category of 𝐹 -algebras is defined as:

• Objects are pairs, (𝐴 ∈ 𝖲𝖾𝗍, 𝛼 : 𝐹(𝐴) → 𝐴).
• Morphisms 𝑓 : (𝐴, 𝛼) → (𝐵, 𝛽) are functions 𝑓 : 𝐴 → 𝐵 such that:

↑𝐹 (𝑓)

↑
𝑓

↑𝛼 ↑𝛽

𝐹(𝐴) 𝐹(𝐵)

𝐴 𝐵

49

The initial 𝐹 -algebra

Suppose (𝜇𝐹 , into : 𝐹 (𝜇𝐹) → 𝜇𝐹) is the initial object in the category of 𝐹 -algebras. Then, for

any object (𝐴, 𝑓 : 𝐹(𝐴) → 𝐴), there is a unique map (|𝑓|) : 𝜇𝐹 → 𝐴 such that

↑𝐹 (|𝑓|)

↑

(|𝑓|)

↑into ↑𝑓

𝐹(𝜇𝐹) 𝐹(𝐴)

𝜇𝐹 𝐴

The diagram says

into; (|𝑓|) = 𝐹(|𝑓|); 𝑓

If into and out form an isomorphism, then:

out; into; (|𝑓|) = out; 𝐹 (|𝑓|); 𝑓
(|𝑓|) = out; 𝐹 (|𝑓|); 𝑓

50

Summarized Requirements

Given a polynomial functor 𝐹 , we want to find:

1. A set 𝜇𝐹 such that (into, out) : 𝐹 (𝜇𝐹) ≅ 𝜇𝐹
2. (𝜇𝐹 , into) forms the initial object of the category of 𝐹 -algebras

Then 𝜇𝐹 will accurately model our the datatype.

51

Constructing 𝜇𝐹 by successive approximation

Concretely, let’s look at 𝐹List:

𝐹 0
List(0) = 0 = ∅

𝐹 1
List(0) = 1 + (ℤ × 0) = {𝜄1(∗)}

𝐹 2
List(0) = 1 + (ℤ × (1 + (ℤ × 0))) = {𝜄1(∗)} ∪ {𝜄2(𝑛, 𝜄1(∗)) | 𝑛 ∈ ℕ}

…
𝐹𝑛+1

List (0) = 1 + (ℤ × 𝐹𝑛
List(0)) = {𝜄1(∗)} ∪ {𝜄2(𝑛, 𝑣) | 𝑣 ∈ 𝐹𝑛

List(0)}

𝐹𝑛
List(0) is the set of list values of length ≤ 𝑛!

52

Defining 𝜇𝐹

Define

𝜇𝐹 = ⋃
𝑛∈ℕ

𝐹𝑛(0)

We need to ask:

1. Is there a pair of into : 𝐹 (𝜇𝐹) → 𝜇𝐹 and out : 𝜇𝐹 → 𝐹(𝜇𝐹) that form an isomorphism?

2. If so, is (𝜇𝐹 , into) an initial 𝐹 -algebra?

53

Monotonicity of polynomial functors

Theorem. If 𝐹 is a polynomial functor, and 𝐴 ⊆ 𝐵 then 𝐹(𝐴) ⊆ 𝐹(𝐵).

Proof. By induction on 𝐹 . (See notes for proof)

Since 0 ⊆ 𝐹(0), this theorem implies that if 𝑚 ≤ 𝑛, then 𝐹𝑚(0) ⊆ 𝐹𝑛(0).

54

Uniformity of polynomial functors

Theorem. If 𝐹 and 𝐺 are polynomial functors, and 𝑥 ∈ 𝐺(𝜇𝐹) then there exists an 𝑛 such that

𝑥 ∈ 𝐺(𝐹𝑛(0)).

Proof. By induction on 𝐹 . (See notes for proof)

55

into and out for 𝜇𝐹

Theorem. The map into : 𝐹 (𝜇𝐹) → 𝜇𝐹 can be defined as into (𝑥) = 𝑥, and the map out :
𝜇𝐹 → 𝐹(𝜇𝐹) can be defined as out (𝑥) = 𝑥.

Proof. These trivially form an isomorphism: the proof is that they have the correct codomain!

into:

1. Assume 𝑥 ∈ 𝐹(𝜇𝐹).
2. By uniformity, 𝑥 ∈ 𝐹(𝐹𝑛(0)).
3. Hence 𝑥 ∈ 𝐹𝑛+1(0).
4. Hence 𝑥 ∈ 𝜇𝐹 .

out:

1. Assume 𝑥 ∈ 𝜇𝐹 . Hence 𝑥 ∈ 𝐹𝑛(0).
2. Since 𝐹 0(0) = ∅, we know 𝑛 = 𝑚+ 1.

3. So 𝑥 ∈ 𝐹𝑚+1(0) = 𝐹(𝐹𝑚(0)).
4. Since 𝐹𝑚(0) ⊆ 𝜇𝐹 and 𝐹 is monotone,

𝐹(𝐹𝑚(0)) ⊆ 𝐹(𝜇𝐹).
5. Hence 𝑥 ∈ 𝐹(𝜇𝐹).

56

The well-foundedness of (|𝑓|)

Theorem. For any polynomial functor 𝐹 and map 𝑓 : 𝐹(𝐴) → 𝐴, the map (|𝑓|) : 𝜇𝐹 → 𝐴 can

be defined as

(|𝑓|) = 𝑓 ∘ 𝐹(|𝑓|) ∘ out

Proof. To show this is well-defined, we show that for any 𝑛, the expression (|𝑓|) defines a map

𝐹𝑛(0) → 𝐴, by induction on 𝑛.

57

Initiality

To establish initiality, we need to show that (|𝑓|) is the only 𝐹 -algebra homomorphism 𝜇𝐹 → 𝐴.

Theorem. If ℎ : (𝜇𝐹 , into) → (𝐴, 𝑓), then ℎ = 𝑓 .

Proof. We show that for all 𝑛 and all 𝑥 ∈ 𝐹𝑛(0), we have ℎ(𝑥) = (|𝑓|)(𝑥).

58

Coinductive Types

𝐹 -Algebras Describe a Family of Constructors

A group is a set 𝐺 plus some operations:

 A zero element 𝑒 : 𝐺

 A negation neg : 𝐺 → 𝐺

 A binary operation (·) : 𝐺 × 𝐺 → 𝐺

59

𝐹 -Algebras Describe a Family of Constructors

A group is a set 𝐺 plus some operations:

 A zero operation 𝑒op : 1 → 𝐺

 A negation neg : 𝐺 → 𝐺

 A binary operation (·) : 𝐺 × 𝐺 → 𝐺

60

𝐹 -Algebras Describe a Family of Constructors

A group is a set 𝐺 plus some operations:

 Zero or negation 𝑓 : (1 + 𝐺) → 𝐺

 A binary operation (·) : 𝐺 × 𝐺 → 𝐺

We can reconstruct the original operations as follows:

 The original 𝑒 = 𝑓(𝜄1(∗))
 The original negation neg(𝑔) = 𝑓(𝜄2(𝑔))

61

𝐹 -Algebras Describe a Family of Constructors

A group is a set 𝐺 plus some operations:

 Zero or negation or multiplication 𝑓 : (1 + 𝐺 + (𝐺 ×𝐺)) → 𝐺

We can reconstruct the original operations as follows:

 The original 𝑒 = 𝑓(𝜄1(∗))
 The original negation neg(𝑔) = 𝑓(𝜄2(𝑔))
 The original multiplication 𝑔1 · 𝑔2 = 𝑓(𝜄3(𝑔1, 𝑔2))

62

Inductive Types are Finite Data

Inductive types are unbounded but finite data (e.g., lists), described by:

• A family of constructors into : 𝐹 (𝜇𝐹) → 𝜇𝐹
• Structurally recursive defintions, taking an algebra 𝑓 : 𝐹(𝐴) → 𝐴 to a fold (|𝑓|) : 𝜇(𝐹) → 𝐴

63

Infinite Lists in Haskell

In Haskell,

ints : Int -> [Int]

ints n = n : (ints (n+1)) -- this won't go into an infinite loop!

square : Int -> Int

square n = n * n

squares = map square (ints 0) -- yields 0, 1, 4, 9, 16, ...

main = do

 putStrLn (show (squares !! 3 + squares !! 4))

will terminate and print 25.

64

Infinite Lists in OCaml?

let ints n = n :: ints(n+1)

let v = ints 0

65

Infinite Lists in OCaml?

let ints n = n :: ints(n+1)

let v = ints 0

When we try to run it:

 utop[48]> ints 0;;

 Stack overflow during evaluation (looping recursion?).

66

But What About Infinite Data?

Not all programs are guaranteed to terminate:

• Text editors

• Web browsers

• Operating systems

• Databases

• All of these respond to input, and keep responding, until externally terminated.

• Take state and input to produce state and output

67

Infinite Streams in OCaml

type stream = S : 'a * ('a -> int * 'a) -> stream

let unfold : ('a -> int * 'a) -> 'a -> stream =

 fun step s -> S(s, step)

let ints : int -> stream =

 fun n -> let step n = (n, n+1) in

 unfold step n

let toggle : stream =

 let step b = (Bool.to_int b, not b) in

 unfold step true

A stream is a state, plus a function which returns an element and an updated state.

68

Using Infinite Streams

(* stream -> int * stream *)

let out (S(s, step)) =

 let (n, s') = step s in

 (n, S(s', step))

(* int -> stream -> int list *)

let rec take n s =

 match n with

 | 0 -> []

 | n -> let (x, s') = out s in

 x :: take (n-1) s'

utop[78]> take 5 (ints 0);;

- : int list = [0; 1; 2; 3; 4]

utop[79]> take 5 toggle;;

- : int list = [1; 0; 1; 0; 1]

69

The Stream API So Far

Viewed as an abstract type, we can define everything in terms of unfold and out:

 module type Stream = sig

 type t

 val unfold : ('a -> int * 'a) -> 'a -> t

 val out : t -> int * t

 end

70

The Stream API So Far

Observe that the type family type 'a t = int * 'a is a functor:

 type 'a t = int * 'a

 (* map : ('a -> 'b) -> 'a t -> 'b t *)

 let map f (n, a) = (n, f a)

This suggests the possiblity of a generic construction! For example:

 let into : stream t -> stream =

 fun ns -> unfold (map out) ns

71

Coinductive Types, Generically

We want to write something with the following API:

module type FUNCTOR = sig

 type 'a t

 val map : ('a -> 'b) -> 'a t -> 'b t

end

module type COINDUCTIVE = functor (F : FUNCTOR) ->

 sig

 type t

 val unfold : ('a -> 'a F.t) -> 'a -> t

 val out : t -> t F.t

 val into : t F.t -> t

 end

72

Implementing Coinductive Types

module CoInd : COINDUCTIVE = functor (F : FUNCTOR) -> struct

 type t = Build : (('a -> 'a F.t) * 'a) -> t

 let unfold coalg seed = Build(coalg, seed)

 let out (Build(coalg, seed)) =

 let shape = coalg seed in (* shape : a F.t *)

 let g = unfold coalg in (* g : a -> t *)

 let h = F.map g in (* h : a F.t -> t F.t *)

 h shape (* result : t F.t *)

 let into fs = unfold (F.map out) fs

end

73

Coinductive Types, Mathematically

A map 𝑓 : 𝐴 → 𝐹(𝐴) is an 𝐹 -coalgebra.

• Coalgebras are dual to algebras

• Algebras model construction

• Coalgebras model observation

Given an (𝐴, 𝑓 : 𝐴 → 𝐹(𝐴)), we want to find a map ⟨𝑓⟩ : 𝐴𝑡𝑜𝜈𝐹 . This suggests thinking of

studying final 𝐹 -coalgebras.

74

The category of 𝐹 -coalgebras

Suppose 𝐹 is a endofunctor on 𝖲𝖾𝗍. The category of 𝐹 -coalgebras is defined as:

• Objects are pairs, (𝐴 ∈ 𝖲𝖾𝗍, 𝛼 : 𝐴 → 𝐹(𝐴)).
• Morphisms 𝑓 : (𝐴, 𝛼) → (𝐵, 𝛽) are functions 𝑓 : 𝐴 → 𝐵 such that:

↑𝐹 (𝑓)

↑

𝑓

↑
𝛼

↑
𝛽

𝐹(𝐴) 𝐹(𝐵)

𝐴 𝐵

75

The terminal 𝐹 -coalgebra

Suppose (𝜈𝐹 , out : 𝜈𝐹 → 𝐹(𝜈𝐹) is the terminal object in the category of 𝐹 -algebras. Then, for

any object (𝐴, 𝑓 : 𝐴 → 𝐹(𝐴)), there is a unique map (|𝑓|) : 𝜇𝐹 → 𝐴 such that

↑𝐹 ⟨𝑓⟩
↑

⟨𝑓⟩

↑
out

↑
𝑓

𝐹(𝜈𝐹) 𝐹(𝐴)

𝜈𝐹 𝐴

The diagram says

⟨𝑓⟩; out = 𝑓; 𝐹⟨𝑓⟩

If into and out form an isomorphism, then:

⟨𝑓⟩; out; into = 𝑓; 𝐹⟨𝑓⟩; into
⟨𝑓⟩ = 𝑓; 𝐹⟨𝑓⟩; into

76

Approximations of Streams

Consider the stream functor 𝐹 = ℤ ⊗ 𝖨𝖽. Let’s consider powers of 𝐹 :

𝐹 0(1) = 1 ≅ ℤ0

𝐹 1(1) = ℤ × 1 ≅ ℤ1

𝐹 2(1) = ℤ × (ℤ × 1) ≅ ℤ2

…
𝐹𝑛+1(1) = ℤ × 𝐹𝑛(1) ≅ ℤ𝑛

77

Approximations of Streams

• Suppose we have an approximate stream 𝑥𝑛+1 ∈ 𝐹𝑛+1(1).

• How do we find 𝑥𝑛 ∈ 𝐹𝑛(1), the first 𝑛 elements?

• Observe:

1. ! : 𝐹 (1) → 1 is the terminal map – it sends ℤ × 1 → 1.

2. So 𝐹𝑛(!) : 𝐹𝑛+1(1) → 𝐹𝑛(1).
3. This remembers the first 𝑛 elements, and drops the 𝑛 + 1-st.

• Furthermore, from 𝑥 ∈ 𝜈𝐹 , we should be able to approximate it 𝜋𝑛 : 𝜈𝐹 → 𝐹𝑛(1).

78

The Approximation Diagram, Pictorially

↑

!

↑

𝐹 (!)

↑

𝐹 2(!)

↑

𝜋0
↑

𝜋1
↑

𝜋2
↑

𝜋3

1 𝐹(1) 𝐹 2(1) 𝐹 3(1)

𝜈𝐹

The diagram at the bottom is called the terminal diagram. 𝜈𝐹 is the limit of this diagram.

79

The Limit Property of 𝜈𝐹
↑

!

↑

𝐹 (!)

↑

𝐹 2(!)

↑⟨𝑓𝑖⟩

↑

𝜋0

↑

𝜋1

↑

𝜋2

↑

𝜋3

↑

𝑓0

↑

𝑓1

↑

𝑓2

↑

𝑓3

1 𝐹(1) 𝐹 2(1) 𝐹 3(1)

𝜈𝐹

𝑋
• 𝜈𝐹 is the “greatest lower bound” of the

diagram

• Any family of maps commuting with the

projections factors through 𝜈𝐹 .

80

Constructing 𝜈𝐹

We define 𝜈𝐹 as follows:

𝜈𝐹 ≡ {𝑣 ∈ Π𝑛 : ℕ.𝐹𝑛(1) | ∀𝑚 ≤ 𝑛. 𝑣𝑚 = 𝑝𝑛,𝑚(𝑣𝑛)}

𝑝𝑛,𝑚 : 𝐹𝑛(1) → 𝐹𝑚(1)

𝑝𝑛,𝑚 = id𝐹𝑛(1) when 𝑛 = 𝑚

𝑝𝑛,𝑚 = 𝐹𝑛(!); 𝑝𝑛−1,𝑚 when 𝑛 > 𝑚

and

𝜋𝑛 : 𝜈𝐹 → 𝐹𝑛(1)
𝜋𝑛 = 𝑣 ↦ 𝑣𝑛

81

The Projective Limit

To show that 𝜈𝐹 is the limit of the terminal diagram, we generalize to projective limits:

↑

𝑎0

↑

𝑎1

↑

𝑎2

↑

𝜋0

↑

𝜋1

↑

𝜋2

↑

𝜋3

𝐴0 𝐴1 𝐴2 𝐴3

lim𝐴𝑖

lim𝐴𝑖 is a projective limit of the 𝐴𝑖, if 𝑎𝑖-compatible families of maps factor through lim𝐴𝑖.

82

Polynomial Functors Preserve Projective Limits

Theorem. If lim𝐴𝑖 is a projective limit of a diagram 𝑎𝑖 : 𝐴𝑖+1 → 𝐴𝑖 for 𝑖 ∈ ℕ, then

𝐹(lim𝐴𝑖) ≅ lim𝐹(𝐴𝑖), where lim𝐹(𝐴𝑖) is the projective limit of the diagram 𝐹(𝑎𝑖) :
𝐹(𝐴𝑖+1) → 𝐹(𝐴𝑖).

Proof. By induction on 𝐹 (see the notes). It is important that the action of the isomorphism is

compatible with the projections.

83

𝐹(𝜈𝐹) ≅ 𝜈𝐹

Theorem. There exists an isomorphism 𝜈𝐹 ≅ 𝐹(𝜈𝐹) compatible with the projections.

Proof. The key idea is that the apply 𝐹 to the terminal diagram yields a diagram that looks

exactly like the terminal diagram, except with the 𝐹 0(1) = 1 tip cut off. So it suffices to show

that lim𝐹 𝑖(1) ≅ lim𝐹 𝑖+1(1), which follows because the map into the terminal object 1 is

always unique. So the isomorphism can just “shift the projections” to the left or right in an

information-preserving way.

84

The unfold

Theorem. Given a coalgebra 𝛼 : 𝐴 → 𝐹(𝐴), there is a unique coalgebra homomorphism ⟨𝛼⟩ :
(𝐴, 𝛼) → (𝜈𝐹 , out).

Proof.

1. We construct a cone 𝛼𝑖 : 𝐴 → 𝐹 𝑖(1) by recursion on 𝑖.
2. This gives a unique map ⟨𝛼⟩ : 𝐴 → 𝜈𝐹 .

3. We can then use the universal property of projective limits to show that it is a unique 𝐹 -

coalgebra homomorphism.

85

	Algebraic Techniques for Programming
	Course Aims
	Stuff, Structure, Property
	Stuff, Structure, Property
	Monoids: an Example
	What is a Monoid, Anyway?
	Examples of Our Example - 1
	Examples of Our Example - 2
	Examples of Our Example - 3
	Examples of Our Example - 4
	Examples of Our Example - 3
	Examples of Our Example - 4
	Examples of Our Example - 5
	Warning!
	Monoid Homomorphisms
	Monoid Homomorphisms
	Monoid Homomorphisms
	Monoid Homomorphisms
	Categories
	Examples of Categories: Set
	The Category of Monoids
	Examples of Categories: Matrices
	Examples of Categories: Relations
	Functors: Homomorphisms of Categories
	Examples of Functors: The Forgetful Functor
	Examples of Functors: The Forgetful Functor
	Structures on Categories: Products
	Products: Sets
	Products: Monoids
	Products: Matrices
	Structures on Categories: Coproducts
	Coproducts: Sets
	Coproducts: Matrices
	Matrix coproduct example
	Coproducts: Monoids
	Inductive Types
	Datatypes
	Defining a Fold
	Untying the Knot
	Tying the Knot
	Redefining eval
	Typing fold anew
	Typing fold anew
	Defining eval via fold
	Relating fold0 and fold
	The Polynomial Functors
	Shapes of Datatypes
	Shapes of Datatypes
	Datatypes as Fixed Points of Functors
	Properties of Folds
	The category of F-algebras
	The initial F-algebra
	Summarized Requirements
	Constructing μ F by successive approximation
	Defining μ F
	Monotonicity of polynomial functors
	Uniformity of polynomial functors
	into and out for μ F
	The well-foundedness of (|f|)
	Initiality
	Coinductive Types
	F-Algebras Describe a Family of Constructors
	Inductive Types are Finite Data
	Infinite Lists in Haskell
	Infinite Lists in OCaml?
	But What About Infinite Data?
	Infinite Streams in OCaml
	Using Infinite Streams
	The Stream API So Far
	The Stream API So Far
	Coinductive Types, Generically
	Implementing Coinductive Types
	Coinductive Types, Mathematically
	The category of F-coalgebras
	The terminal F-coalgebra
	Approximations of Streams
	Approximations of Streams
	The Approximation Diagram, Pictorially
	The Limit Property of ν F
	Constructing ν F
	The Projective Limit
	Polynomial Functors Preserve Projective Limits
	F(ν F) ≅ ν F
	The unfold

