
Algebraic Techniques for Programming

Neel Krishnaswami

University of Cambridge

Lent 2026



Course Aims

1. Data and Codata:

• Develop mathematical foundations for recursion over (co)data

• Apply this theory to understand dynamic programming

2. Fixed point computations

• Use partial orders and lattices to formalize fixed point computations

• Apply categorical methods to incrementalize these computations

3. The Algebraic Path Problem

• Generically solve path problems over graphs with linear algebra

• Derive all-pairs shortest paths, convert DFAs to regular expressions, the Viterbi algorithm, 

etc
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Stuff, Structure, Property

• This course makes heavy use of algebraic structures

• But what are they?
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Stuff, Structure, Property

An algebraic structure consists of:

• Stuff: One or more sets

• Structure: Some operations on those sets

• Properties: Some properties of those operations
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Monoids: an Example

A monoid (𝑀, 1𝑀 , ⋅) is:

• A set 𝑀  (called the carrier)

• An element 1𝑀 ∈ 𝑀  (called the unit)

• An operation (⋅) : 𝑀 ×𝑀 →𝑀  (called the multiplication)

such that:

• for all 𝑚 ∈ 𝑀 , we have 1 ⋅ 𝑚 = 𝑚
• for all 𝑚 ∈ 𝑀 , we have 𝑚 ⋅ 1 = 𝑚
• for all 𝑚1,𝑚2,𝑚3 ∈ 𝑀 , we have (𝑚1 ⋅ 𝑚2) ⋅ 𝑚3 = 𝑚1 ⋅ (𝑚2 ⋅ 𝑚3)
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What is a Monoid, Anyway?

• Note that a monoid is not a single thing

• In programming terms, it is an interface

• Multiple types can implement this interface

• Sometimes in multiple ways!
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Examples of Our Example - 1

The natural numbers 𝑁  form a monoid:

• The unit is 1𝑁 = 0

• The multiplication is 𝑗 ⋅ 𝑘 = 𝑗 + 𝑘

• Note that 0 + 𝑗 = 𝑗 + 0 = 𝑗

• Also (𝑗 + 𝑘) + 𝑛 = 𝑗 + (𝑘 + 𝑛)
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Examples of Our Example - 2

The natural numbers 𝑁  form a monoid:

• The unit is 1𝑁 = 0

• The multiplication is 𝑗 ⋅ 𝑘 = max(𝑗, 𝑘)

• Note that max(0, 𝑗) = max(𝑗, 0) = 𝑗

• Also max(𝑗,max(𝑘, 𝑛)) = max(max(𝑗, 𝑘), 𝑛)
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Examples of Our Example - 3

The booleans 2 = {⊥,⊤} form a monoid:

• The unit is 1𝑁 = ⊥

• The multiplication is 𝑗 ⋅ 𝑘 = 𝑗 ∨ 𝑘

• Note that ⊥ ∨ 𝑗 = 𝑗 ∨ ⊥ = 𝑗

• Also (𝑗 ∨ 𝑘) ∨ 𝑛 = 𝑗 ∨ (𝑘 ∨ 𝑛)
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Examples of Our Example - 4

The booleans 2 = {⊥,⊤} form a monoid:

• The unit is 1𝑁 = ⊤

• The multiplication is 𝑗 ⋅ 𝑘 = 𝑗 ∧ 𝑘

• Note that ⊤ ∧ 𝑗 = 𝑗 ∧ ⊤ = 𝑗

• Also (𝑗 ∧ 𝑘) ∧ 𝑛 = 𝑗 ∧ (𝑘 ∧ 𝑛)
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Examples of Our Example - 3

Given a set 𝑋, the set of finite sequences (𝑥0, 𝑥1,…, 𝑥𝑛) form a monoid.

• The unit is 1𝑁 = ()

• The multiplication is concatenation (𝑥0,…) ⋅ (𝑦0,…) = (𝑥0,…, 𝑦𝑜,…)

• Note that () + ⃗𝑥 = ⃗𝑥 + () = ⃗𝑥

• Also ( ⃗𝑥 ⋅ ⃗𝑦) ⋅ ⃗𝑧 = ⃗𝑥 ⋅ ( ⃗𝑦 ⋅ ⃗𝑧)
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Examples of Our Example - 4

Given a finite set 𝑋, the powerset 𝒫︀(𝑋) forms a monoid:

• The unit is 1𝑁 = ∅

• The multiplication is 𝑆 ⋅ 𝑇 = 𝑆 ∪ 𝑇

• Note that ∅ ∪ 𝑆 = 𝑆 ∪ ∅ = 𝑆

• Also (𝑆 ∪ 𝑇 ) ∪ 𝑈 = 𝑆 ∪ (𝑇 ∪ 𝑈)
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Examples of Our Example - 5

Given a finite set 𝑋, the powerset 𝒫︀(𝑋) forms a monoid another way:

• The unit is 1𝑁 = 𝑋

• The multiplication is 𝑆 ⋅ 𝑇 = 𝑆 ∩ 𝑇

• Note that 𝑋 ∩ 𝑆 = 𝑆 ∩𝑋 = 𝑆

• Also (𝑆 ∩ 𝑇 ) ∩ 𝑈 = 𝑆 ∩ (𝑇 ∩ 𝑈)
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Warning!

A monoid is its carrier plus its operations:

(𝑁, 0,+) and (𝑁, 0,max) are two different monoids!

(2,⊥, ∨) and (2,⊤, ∧) are two different monoids!

(𝒫︀(𝑋), ∅, ∪) and (𝒫︀(𝑋),𝑋,∩) are two different monoids!
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Monoid Homomorphisms

Given a monoid (𝑀, 0,+) and a monoid (𝑁, 1,×), a monoid homomorphism is:

A function 𝑓 : 𝑀 → 𝑁  such that:

• f(0) = 1

• for all 𝑚1,𝑚2 ∈ 𝑀 , we have 𝑓(𝑚1 +𝑚2) = 𝑓(𝑚1) × 𝑓(𝑚2)
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Monoid Homomorphisms

Suppose we have (𝒫︀(𝑋), ∅, ∪) and (2,⊥,⊤)

Let inhabited : 𝒫︀(𝑋) → 2 return ⊥ if it is empty, and ⊤ if it is nonempty

Then inhabited is a monoid homomorphism.
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Monoid Homomorphisms

Suppose we have (2,⊥, ∨) and (𝑁, 0,max)

Define 𝑓 : 2 → 𝑁  as follows:

𝑓(⊤) = 1
𝑓(⊥) = 0

Then 𝑓  is a monoid homomorphism, since 𝑓(⊥) = 0 and 𝑓(𝑥 ∨ 𝑦) = max(𝑓(𝑥), 𝑓(𝑦))
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Monoid Homomorphisms

Suppose we have (𝑁, 0,+) and (𝒫︀(𝑋), ∅, ∪)

Class question: what are some monoid homomorphisms 𝑓 : 𝑁 → 𝒫︀(𝑋)?
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Categories

A category ℂ consists of:

• A set of objects Obj(ℂ)
• For each 𝐴,𝐵 ∈ Obj(ℂ), a set of morphisms Hom(A,B)
• For each 𝐴 ∈ Obj(ℂ) an identity morphism idA ∈ Hom(A,B)
• For all 𝐴,𝐵,𝐶 , a composition operator (; ) : Hom(A,B) × Hom(B,C) → Hom(A,C)

such that for all 𝑓 : 𝐴 → 𝐵, 𝑔 : 𝐵 → 𝐶, and ℎ : 𝐶 → 𝐷,

• idA; 𝑓 = 𝑓
• 𝑓; idB = 𝑓
• (𝑓; 𝑔); ℎ = 𝑓; (𝑔; ℎ)

(This is an algebraic structure!)
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Examples of Categories: Set

The category of sets consists of

• The objects are sets

• Hom(A,B) are the functions from 𝐴 to 𝐵
• idA is the identity function

• 𝑓; 𝑔 is (reversed) function composition 𝑔 ○ 𝑓
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The Category of Monoids

Monoids form a category Mon:

• The objects of Mon are monoids (𝑋, 1, ⋅)

• The hom-sets are given by:

HomMon((𝑋, 1, ⋅), (𝑌 , 0,+)) = {𝑓 : 𝑋 → 𝑌 | 𝑓 is a monoid homomorphism}
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Examples of Categories: Matrices

The category of matrices consists of:

• The objects are natural numbers ℕ
• Hom(𝑚, 𝑛) is the set of 𝑚× 𝑛 ℝ-valued matrices

• idn is the 𝑛 × 𝑛 identity matrix

• 𝑓; 𝑔 is matrix multiplication

Note that objects do not have to be sets: here they are the dimensions of the matrices.
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Examples of Categories: Relations

The category of relations consists of:

• The objects are sets

• Hom(𝐴,𝐵) is 𝒫︀(𝐴 × 𝐵), the relations between 𝐴 and 𝐵:

• id𝐴 is the identity relation on 𝐴: {(𝑎, 𝑎) | 𝑎 ∈ 𝐴}
• 𝑓; 𝑔 is relational composition:

𝑓; 𝑔 = {(𝑎, 𝑐) | ∃𝑏.(𝑎, 𝑏) ∈ 𝑓 ∧ (𝑏, 𝑐) ∈ 𝑔}

Note that morphisms do not have to be functions: here, they are relations.
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Functors: Homomorphisms of Categories

Give categories ℂ and 𝔻, a functor 𝐹 : ℂ → 𝔻 is

• 𝐹Obj : Obj(ℂ) → Obj(𝔻)
• 𝐹Hom : ℂ(𝐴,𝐵) → 𝔻(𝐹(𝐴), 𝐹(𝐵))

such that

• 𝐹(id𝐴) = id𝐹(𝐴)
• 𝐹(𝑓; 𝑔) = 𝐹(𝑓); 𝐹 (𝑔)
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Examples of Functors: The Forgetful Functor

There is a functor 𝑈 : Mon → Set:

𝑈(𝑀, 1,×) = 𝑈
𝑈(𝑓 : (𝑀, 1,×) → (𝑁, 0,+)) = 𝑓

This is a forgetful functor: it “forgets” the monoid structure on its argument.
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Examples of Functors: The Forgetful Functor

There is a functor 𝐹 : Set → Mon:

• 𝐹(𝑋) = 𝑋∗ (the set of sequences on 𝑋)

• 𝐹(𝑓 : 𝑋 → 𝑌 ) : 𝑋∗ → 𝑌 ∗ = (𝑥0,…, 𝑥𝑛) ↦ (𝑓(𝑥0),…, 𝑓(𝑥𝑛))

This functor maps each set 𝑋 to the monoid of sequences of elements of 𝑋. The action of the 

functor on a function 𝑓 , takes a sequence of 𝑋-elements, and maps 𝑓  over each element.
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Structures on Categories: Products

Suppose we have objects 𝐴 and 𝐵. Then the triple (𝐴 × 𝐵, 𝜋1, 𝜋2) is a product, when

↑ 𝜋1 ↑𝜋2

↑
𝑓

↑
𝑔

↑

⟨𝑓, 𝑔⟩

𝐴 𝐵

𝑋

𝐴×𝐵

∀𝑓 : 𝑋 → 𝐴, 𝑔 : 𝑋 → 𝐵, ∃!ℎ : 𝑋 → 𝐴×𝐵, (ℎ; 𝜋1 = 𝑓) ∧ (ℎ; 𝜋2 = 𝑔)
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Products: Sets

Given sets 𝑋 and 𝑌 , the product 𝑋 × 𝑌  is the Cartesian product:

𝑋 × 𝑌 = {(𝑥, 𝑦) | 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 }

The projections are given by:

• 𝜋1 : 𝑋 × 𝑌 → 𝑋 = (𝑥, 𝑦) ↦ 𝑥
• 𝜋2 : 𝑋 × 𝑌 → 𝑌 = (𝑥, 𝑦) ↦ 𝑦

The universal map (𝑓, 𝑔) is defined as:

⟨𝑓, 𝑔⟩(𝑥) = (𝑓𝑥, 𝑔𝑥)
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Products: Monoids

Given a monoid (𝑀, 0,+) and a monoid (𝑁, 1,×), their product object is:

• The carrier 𝑀 ×𝑁
• The unit is 1𝑀×𝑁 = (0, 1)
• The multiplication is: (𝑚1, 𝑛1) ⋅ (𝑚2, 𝑛2) = (𝑚1 +𝑚2, 𝑛1 × 𝑛2)

The projections are given by:

• 𝜋1 : 𝑀 ×𝑁 → 𝑀 = (𝑚,𝑛) ↦ 𝑚
• 𝜋2 : 𝑀 ×𝑁 → 𝑁 = (𝑚, 𝑛) ↦ 𝑛
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Products: Matrices

In the category of matrices, the product 𝑚× 𝑛 is the number 𝑚+ 𝑛.

The projections are given by:

• 𝜋1 : (𝑚 + 𝑛) → 𝑚 = (𝐼𝑚×𝑚
0𝑛×𝑚

)

• 𝜋2 : (𝑚 + 𝑛) → 𝑛 = (0𝑚×𝑛
𝐼𝑛×𝑛

)

So if 𝑚 = 3 and 𝑛 = 2, then:

𝜋1 : 5 → 3 =

(




1
0
0
0
0

0
1
0
0
0

0
0
1
0
0)






𝜋2 : 5 → 2 =

(




0
0
0
1
0

0
0
0
0
1)
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Structures on Categories: Coproducts

Suppose we have objects 𝐴 and 𝐵. Then the triple (𝐴 + 𝐵, 𝜄1, 𝜄2) is a coproduct, when

↑

𝜄1

↑

𝜄2

↑

𝑓

↑

𝑔

↑

[𝑓, 𝑔]

𝐴 𝐵

𝑋

𝐴+𝐵

∀𝑓 : 𝐴 → 𝑋, 𝑔 : 𝐵 → 𝑋, ∃!ℎ : 𝐴 + 𝐵 → 𝑋, (𝜄1; ℎ = 𝑓) ∧ (𝜄2; ℎ = 𝑔)
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Coproducts: Sets

Given sets 𝑋 and 𝑌 , the coproduct 𝑋 × 𝑌  is the disjoint union:

𝑋 + 𝑌 = {(0, 𝑥) | 𝑥 ∈ 𝑋} ∪ {(1, 𝑦) | 𝑦 ∈ 𝑌 }

The injections are given by:

• 𝜄1 : 𝑋 → 𝑋 + 𝑌 = 𝑥 ↦ (0, 𝑥)
• 𝜄2 : 𝑌 → 𝑋 + 𝑌 = 𝑦 ↦ (1, 𝑦)

The universal map is given by:

[𝑓1, 𝑓2] = (𝑖, 𝑣) ↦ 𝑓𝑖(𝑣)
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Coproducts: Matrices

In the category of matrices, the coproduct 𝑚+ 𝑛 is the number 𝑚+ 𝑛.

The injections are given by:

• 𝜄1 : 𝑚 → (𝑚+ 𝑛) = (𝐼𝑚×𝑚 0𝑚×𝑛)

• 𝜄2 : 𝑛 → (𝑚+ 𝑛) = (0𝑛×𝑚 𝐼𝑛×𝑛)

So if 𝑚 = 3 and 𝑛 = 2, then:

𝜄1 : 3 → 5 =
(

1
0
0

0
1
0

0
0
1

0
0
0

0
0
0)

 𝜄2 : 2 → 5 = (00

0
0
0
0
1
0
0
1)
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Matrix coproduct example

An example of composing with 𝜄1:

(1 2 3) ·
(

1
0
0

0
1
0

0
0
1

0
0
0

0
0
0)

 = (1 2 3 0 0)

An example of composing with 𝜄2:

(4 5) · (00
0
0
0
0
1
0
0
1) = (0 0 0 4 5)
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Coproducts: Monoids

Given monoids (𝑀, 0,+) and (𝑁, 1, ⋅), we can construct the coproduct as follows:

1. Define X to the set of sequences of elements of 𝑀  and 𝑁  (eg, (𝑚0 𝑚1 𝑛2 𝑛3 𝑛4 … 𝑚𝑛))
2. Define an equivalence relation ≈ such that

• (𝑥⃗ 0 𝑥′) ≈ (𝑥⃗ 𝑥′)
• (𝑥⃗ 1 𝑥′) ≈ (𝑥⃗ 𝑥′)
• (𝑥⃗ 𝑚 𝑚′ 𝑥′) ≈ (𝑥⃗ 𝑚+𝑚′ 𝑥′)
• (𝑥⃗ 𝑛 𝑛′ 𝑥′) ≈ (𝑥⃗ 𝑛+𝑛′ 𝑥′)

3. Let the carrier be the quotient set 𝑋/≈.

Then the injections are:

• 𝜄1 : 𝑀 → 𝑀 +𝑁 = 𝑚 ↦ [(𝑚)]
• 𝜄2 : 𝑀 → 𝑀 +𝑁 = 𝑛 ↦ [(𝑛)]
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Inductive Types



Datatypes

Consider an OCaml datatype definition like:

type tree = 

   | Num : int -> tree

   | Plus : tree * tree -> tree

   | Times : tree * tree -> tree

We can define recursive functions like:

(* eval : tree -> int *)

let rec eval = function

  | Num n       -> n

  | Plus(l, r)  -> eval l + eval r 

  | Times(l, r) -> eval l * eval r 
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Defining a Fold

Now, let’s try to define a fold function for this datatype:

(* (int -> 'a) -> ('a * 'a -> 'a) -> ('a * 'a -> 'a) -> tree -> 'a *)

let rec fold0 num plus times = function

  | Num n       -> num n

  | Plus(l, r)  -> plus (fold0 num plus times l.

                         fold0 num plus times l)

  | Times(l, r) -> times (fold0 num plus times l,

                          fold0 num plus times l)

(* eval : tree -> int *)

let eval = fold0 (fun n -> n) (fun (n,m) -> n + m) (fun (n,m) -> n * m)

There is one argument per constructor. But The OCaml AST datatype has 192 entries…!
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Untying the Knot

Define a new datatype 'a treeF:

type 'a treeF = 

  | Num : int -> 'a treeF

  | Plus : 'a * 'a -> 'a treeF

  | Times : 'a * 'a -> 'a treeF

This supports a map function:

(* map : ('a -> 'b) -> 'a treeF -> 'b treeF *)

let map f = function

  | Num n          -> Num n 

  | Plus (a1, a2)  -> Plus(f a1, f a2)

  | Times (a1, a2) -> Times(f a1, f a2)

So 𝑇 (𝐴) = ℤ + (𝐴 × 𝐴) + (𝐴 × 𝐴) and map sends 𝐴 → 𝐵 to 𝑇 (𝐴) → 𝑇(𝐵)
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Tying the Knot

Now, we can separately do the type recursion:

type tree = 

  | In : tree treeF -> tree

which yields an obvious isomorphism:

(* into : : tree treeF -> tree  *) 

let into x = In x 

(* out : tree -> tree treeF *) 

let out (In x) = x 
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Redefining eval

We can still define the eval function, almost as before:

(* eval : tree -> int *)

let rec eval (In x) =

  match x with 

  | Num n       -> n

  | Plus(l, r)  -> eval l + eval r

  | Times(l, r) -> eval l * eval r
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Typing fold anew

Now, let’s define a new fold function:

(* fold : ('a treeF -> 'a) -> tree -> 'a *)

let rec fold falg x = 

   falg (map (fold falg) (out x))
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Typing fold anew

Now, let’s define a new fold function, more legibly:

(* fold : ('a treeF -> 'a) -> tree -> 'a *)

let rec fold (falg : 'a treeF -> 'a) (x : tree) =

  let o : tree treeF = out x in 

  let fa : 'a treeF   = map (fold falg) o in

  let result : 'a      = falg fa in

  result 
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Defining eval via fold

Now, let’s define an algebra for treeF:

(* eval_alg : int treeF -> int *)

let eval_alg = function

  | Num n       -> n 

  | Plus(n, m)  -> n + m 

  | Times(n, m) -> n * m 

This can be used to define eval as a fold:

(* eval : tree -> int *)

let eval = fold eval_alg
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Relating fold0 and fold

Starting with the type of fold0:

(ℤ → 𝐴) → (𝐴 × 𝐴 → 𝐴) → (𝐴 × 𝐴 → 𝐴) → 𝐴
≅ ((ℤ → 𝐴) × (𝐴 × 𝐴 → 𝐴) × (𝐴 × 𝐴 → 𝐴)) → 𝐴
≅ ((ℤ + (𝐴 × 𝐴) → 𝐴)) × (𝐴 × 𝐴 → 𝐴) → 𝐴
≅ ((ℤ + (𝐴 × 𝐴) + (𝐴 × 𝐴)) → 𝐴) → 𝐴
≅ (𝑇 (𝐴) → 𝐴) → 𝐴

We finish with the type of fold!
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The Polynomial Functors

Let us consider some functors on 𝖲𝖾𝗍. Suppose 𝐹,𝐺 : 𝖲𝖾𝗍 → 𝖲𝖾𝗍.

• The constant functor:

𝐴(𝑋) = 𝐴
𝐴(𝑓) = id𝐴

• The identity functor:

𝖨𝖽(𝑋) = 𝑋
𝖨𝖽(𝑓) = 𝑓

• The product functor:

(𝐹 ⊗ 𝐺)(𝑋) = 𝐹(𝑋) × 𝐺(𝑋)
(𝐹 ⊗ 𝐺(𝑓) = 𝐹(𝑓) × 𝐺(𝑓)

• The sum functor:

(𝐹 ⊕ 𝐺)(𝑋) = 𝐹(𝑋) + 𝐺(𝑋)
(𝐹 ⊕ 𝐺)(𝑓) = 𝐹(𝑓) + 𝐺(𝑓)
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Shapes of Datatypes

The polynomial functors let us model a datatype shape of the form

  type 'a shape =

    | C1 : (a1 * ... * an) 

    ...

    | Cn : (b1 * ... * bk) 

    

This is modelled as a sum of products:

• Each alternative is separated by an ⊕
• Each * is separated by an ⊗
• Occurences of 'a are mapped to 𝖨𝖽

• Occurences of types like int are mapped to ℤ
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Shapes of Datatypes

The polynomial functors let us model a datatype shape of the form

  type 'a intlist_f

    | Nil   : 'a intlist_f 

    | Cons  : int * 'a -> 'a intlist_f 

This is modelled as 𝐹List = 1 ⊕ (ℤ ⊗ 𝖨𝖽). The functorial action of 𝐹List is the map on the shapes:

(* map : ('a -> 'b) -> 'a intlist_f -> 'b intlist_f *)

let map f = function

  | Nil -> Nil

  | Cons(n, a) -> Cons(n, f a)
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Datatypes as Fixed Points of Functors

The recursive type definition gives rise to an isomorphism:

   type intlist = In of intlist intlist_f 

   let into x = (In x)  (* intlist intlist_f  -> intlist *)

   let out (In x) = x   (* intlist -> intlist intlist_f  *)

This suggests we want to model lists as the fixed point of a functor:

List ≅ 𝐹List(List)
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Properties of Folds

Recall the definition of fold:

let rec fold falg x = 

  falg (map (fold falg) (out x))

Witing (|𝑓|) for the fold, our recursive definition tells us fold satisfy:

(|𝑓|) = 𝑓 ∘ 𝐹List(|𝑓|) ∘ out
= out; 𝐹List(|𝑓|); 𝑓

Note that this is not obviously a definition in 𝖲𝖾𝗍! We need to show that it is well-founded and 

that there is a unique solution.
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The category of 𝐹 -algebras

Suppose 𝐹  is a endofunctor on 𝖲𝖾𝗍.

The category of 𝐹 -algebras is defined as:

• Objects are pairs, (𝐴 ∈ 𝖲𝖾𝗍, 𝛼 : 𝐹(𝐴) → 𝐴).
• Morphisms 𝑓 : (𝐴, 𝛼) → (𝐵, 𝛽) are functions 𝑓 : 𝐴 → 𝐵 such that:

↑𝐹 (𝑓)

↑
𝑓

↑𝛼 ↑𝛽

𝐹(𝐴) 𝐹(𝐵)

𝐴 𝐵
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The initial 𝐹 -algebra

Suppose (𝜇𝐹 , into : 𝐹 (𝜇𝐹) → 𝜇𝐹) is the initial object in the category of 𝐹 -algebras. Then, for 

any object (𝐴, 𝑓 : 𝐹(𝐴) → 𝐴), there is a unique map (|𝑓|) : 𝜇𝐹 → 𝐴 such that

↑𝐹 (|𝑓|)

↑

(|𝑓|)

↑into ↑𝑓

𝐹(𝜇𝐹) 𝐹(𝐴)

𝜇𝐹 𝐴

The diagram says

into; (|𝑓|) = 𝐹(|𝑓|); 𝑓

If into and out form an isomorphism, then:

out; into; (|𝑓|) = out; 𝐹 (|𝑓|); 𝑓
(|𝑓|) = out; 𝐹 (|𝑓|); 𝑓
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Summarized Requirements

Given a polynomial functor 𝐹 , we want to find:

1. A set 𝜇𝐹  such that (into, out) : 𝐹 (𝜇𝐹) ≅ 𝜇𝐹
2. (𝜇𝐹 , into) forms the initial object of the category of 𝐹 -algebras

Then 𝜇𝐹  will accurately model our the datatype.
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Constructing 𝜇𝐹  by successive approximation

Concretely, let’s look at 𝐹List:

𝐹 0
List(0) = 0 = ∅

𝐹 1
List(0) = 1 + (ℤ × 0) = {𝜄1(∗)}

𝐹 2
List(0) = 1 + (ℤ × (1 + (ℤ × 0))) = {𝜄1(∗)} ∪ {𝜄2(𝑛, 𝜄1(∗)) | 𝑛 ∈ ℕ}

…
𝐹𝑛+1

List (0) = 1 + (ℤ × 𝐹𝑛
List(0)) = {𝜄1(∗)} ∪ {𝜄2(𝑛, 𝑣) | 𝑣 ∈ 𝐹𝑛

List(0)}

𝐹𝑛
List(0) is the set of list values of length ≤ 𝑛!
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Defining 𝜇𝐹

Define

𝜇𝐹 = ⋃
𝑛∈ℕ

𝐹𝑛(0)

We need to ask:

1. Is there a pair of into : 𝐹 (𝜇𝐹) → 𝜇𝐹  and out : 𝜇𝐹 → 𝐹(𝜇𝐹 ) that form an isomorphism?

2. If so, is (𝜇𝐹 , into) an initial 𝐹 -algebra?
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Monotonicity of polynomial functors

Theorem. If 𝐹  is a polynomial functor, and 𝐴 ⊆ 𝐵 then 𝐹(𝐴) ⊆ 𝐹(𝐵).

Proof. By induction on 𝐹 . (See notes for proof)

Since 0 ⊆ 𝐹(0), this theorem implies that if 𝑚 ≤ 𝑛, then 𝐹𝑚(0) ⊆ 𝐹𝑛(0).
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Uniformity of polynomial functors

Theorem. If 𝐹  and 𝐺 are polynomial functors, and 𝑥 ∈ 𝐺(𝜇𝐹) then there exists an 𝑛 such that 

𝑥 ∈ 𝐺(𝐹𝑛(0)).

Proof. By induction on 𝐹 . (See notes for proof)
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into and out for 𝜇𝐹

Theorem. The map into : 𝐹 (𝜇𝐹) → 𝜇𝐹  can be defined as into (𝑥) = 𝑥, and the map out :
𝜇𝐹 → 𝐹(𝜇𝐹) can be defined as out (𝑥) = 𝑥.

Proof. These trivially form an isomorphism: the proof is that they have the correct codomain!

into:

1. Assume 𝑥 ∈ 𝐹(𝜇𝐹).
2. By uniformity, 𝑥 ∈ 𝐹(𝐹𝑛(0)).
3. Hence 𝑥 ∈ 𝐹𝑛+1(0).
4. Hence 𝑥 ∈ 𝜇𝐹 .

out:

1. Assume 𝑥 ∈ 𝜇𝐹 . Hence 𝑥 ∈ 𝐹𝑛(0).
2. Since 𝐹 0(0) = ∅, we know 𝑛 = 𝑚+ 1.

3. So 𝑥 ∈ 𝐹𝑚+1(0) = 𝐹(𝐹𝑚(0)).
4. Since 𝐹𝑚(0) ⊆ 𝜇𝐹  and 𝐹  is monotone, 

𝐹(𝐹𝑚(0)) ⊆ 𝐹(𝜇𝐹).
5. Hence 𝑥 ∈ 𝐹(𝜇𝐹).
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The well-foundedness of (|𝑓|)

Theorem. For any polynomial functor 𝐹  and map 𝑓 : 𝐹(𝐴) → 𝐴, the map (|𝑓|) : 𝜇𝐹 → 𝐴 can 

be defined as

(|𝑓|) = 𝑓 ∘ 𝐹(|𝑓|) ∘ out

Proof. To show this is well-defined, we show that for any 𝑛, the expression (|𝑓|) defines a map 

𝐹𝑛(0) → 𝐴, by induction on 𝑛.
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Initiality

To establish initiality, we need to show that (|𝑓|) is the only 𝐹 -algebra homomorphism 𝜇𝐹 → 𝐴.

Theorem. If ℎ : (𝜇𝐹 , into) → (𝐴, 𝑓), then ℎ = 𝑓 .

Proof. We show that for all 𝑛 and all 𝑥 ∈ 𝐹𝑛(0), we have ℎ(𝑥) = (|𝑓|)(𝑥).
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Coinductive Types



𝐹 -Algebras Describe a Family of Constructors

A group is a set 𝐺 plus some operations:

 A zero element 𝑒 : 𝐺

 A negation neg : 𝐺 → 𝐺

 A binary operation (·) : 𝐺 × 𝐺 → 𝐺
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𝐹 -Algebras Describe a Family of Constructors

A group is a set 𝐺 plus some operations:

 A zero operation 𝑒op : 1 → 𝐺

 A negation neg : 𝐺 → 𝐺

 A binary operation (·) : 𝐺 × 𝐺 → 𝐺
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𝐹 -Algebras Describe a Family of Constructors

A group is a set 𝐺 plus some operations:

 Zero or negation 𝑓 : (1 + 𝐺) → 𝐺

 

 A binary operation (·) : 𝐺 × 𝐺 → 𝐺

We can reconstruct the original operations as follows:

 The original 𝑒 = 𝑓(𝜄1(∗))
 The original negation neg(𝑔) = 𝑓(𝜄2(𝑔))
 

61



𝐹 -Algebras Describe a Family of Constructors

A group is a set 𝐺 plus some operations:

 Zero or negation or multiplication 𝑓 : (1 + 𝐺 + (𝐺 ×𝐺)) → 𝐺

 

 

We can reconstruct the original operations as follows:

 The original 𝑒 = 𝑓(𝜄1(∗))
 The original negation neg(𝑔) = 𝑓(𝜄2(𝑔))
 The original multiplication 𝑔1 · 𝑔2 = 𝑓(𝜄3(𝑔1, 𝑔2))
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Inductive Types are Finite Data

Inductive types are unbounded but finite data (e.g., lists), described by:

• A family of constructors into : 𝐹 (𝜇𝐹) → 𝜇𝐹
• Structurally recursive defintions, taking an algebra 𝑓 : 𝐹(𝐴) → 𝐴 to a fold (|𝑓|) : 𝜇(𝐹) → 𝐴
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Infinite Lists in Haskell

In Haskell,

ints : Int -> [Int]

ints n = n : (ints (n+1))     -- this won't go into an infinite loop!

square : Int -> Int

square n = n * n 

squares = map square (ints 0) -- yields 0, 1, 4, 9, 16, ...

main = do

  putStrLn (show (squares !! 3 + squares !! 4))

will terminate and print 25.
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Infinite Lists in OCaml?

let ints n = n :: ints(n+1)

let v = ints 0
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Infinite Lists in OCaml?

let ints n = n :: ints(n+1)

let v = ints 0

When we try to run it:

    utop[48]> ints 0;;

    Stack overflow during evaluation (looping recursion?).
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But What About Infinite Data?

Not all programs are guaranteed to terminate:

• Text editors

• Web browsers

• Operating systems

• Databases

• All of these respond to input, and keep responding, until externally terminated.

• Take state and input to produce state and output
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Infinite Streams in OCaml

type stream = S : 'a * ('a -> int * 'a) -> stream 

let unfold : ('a -> int * 'a) -> 'a -> stream = 

  fun step s -> S(s, step)

    

let ints : int -> stream = 

  fun n -> let step n = (n, n+1) in 

           unfold step n 

let toggle : stream = 

  let step b = (Bool.to_int b, not b) in

  unfold step true

A stream is a state, plus a function which returns an element and an updated state.
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Using Infinite Streams

(* stream -> int * stream *)

let out (S(s, step)) = 

  let (n, s') = step s in

  (n, S(s', step))

(* int -> stream -> int list *) 

let rec take n s = 

  match n with 

  | 0 -> []

  | n -> let (x, s') = out s in

         x :: take (n-1) s' 

utop[78]> take 5 (ints 0);;

- : int list = [0; 1; 2; 3; 4]

utop[79]> take 5 toggle;;

- : int list = [1; 0; 1; 0; 1]

69



The Stream API So Far

Viewed as an abstract type, we can define everything in terms of unfold and out:

 module type Stream = sig

   type t

   val unfold : ('a -> int * 'a) -> 'a -> t 

   val out : t -> int * t 

 end
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The Stream API So Far

Observe that the type family type 'a t = int * 'a is a functor:

 type 'a t = int * 'a 

 (* map : ('a -> 'b) -> 'a t -> 'b t *)

 let map f (n, a) = (n, f a)

This suggests the possiblity of a generic construction! For example:

   let into : stream t -> stream = 

     fun ns -> unfold (map out) ns 
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Coinductive Types, Generically

We want to write something with the following API:

module type FUNCTOR = sig

  type 'a t

  val map : ('a -> 'b) -> 'a t -> 'b t 

end

module type COINDUCTIVE = functor (F : FUNCTOR) -> 

  sig 

    type t 

    val unfold : ('a -> 'a F.t) -> 'a -> t

    val out : t -> t F.t

    val into : t F.t -> t 

  end
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Implementing Coinductive Types

module CoInd : COINDUCTIVE = functor (F : FUNCTOR) -> struct

  type t = Build : (('a -> 'a F.t) * 'a) -> t 

  let unfold coalg seed = Build(coalg, seed)

  let out (Build(coalg, seed)) = 

    let shape = coalg seed in    (* shape : a F.t *)

    let g     = unfold coalg in  (* g : a -> t *)

    let h     = F.map g in       (* h : a F.t -> t F.t *)

    h shape                      (* result : t F.t *)

   let into fs = unfold (F.map out) fs

end
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Coinductive Types, Mathematically

A map 𝑓 : 𝐴 → 𝐹(𝐴) is an 𝐹 -coalgebra.

• Coalgebras are dual to algebras

• Algebras model construction

• Coalgebras model observation

Given an (𝐴, 𝑓 : 𝐴 → 𝐹(𝐴)), we want to find a map ⟨𝑓⟩ : 𝐴𝑡𝑜𝜈𝐹 . This suggests thinking of 

studying final 𝐹 -coalgebras.
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The category of 𝐹 -coalgebras

Suppose 𝐹  is a endofunctor on 𝖲𝖾𝗍. The category of 𝐹 -coalgebras is defined as:

• Objects are pairs, (𝐴 ∈ 𝖲𝖾𝗍, 𝛼 : 𝐴 → 𝐹(𝐴)).
• Morphisms 𝑓 : (𝐴, 𝛼) → (𝐵, 𝛽) are functions 𝑓 : 𝐴 → 𝐵 such that:

↑𝐹 (𝑓)

↑

𝑓

↑
𝛼

↑
𝛽

𝐹(𝐴) 𝐹(𝐵)

𝐴 𝐵
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The terminal 𝐹 -coalgebra

Suppose (𝜈𝐹 , out : 𝜈𝐹 → 𝐹(𝜈𝐹) is the terminal object in the category of 𝐹 -algebras. Then, for 

any object (𝐴, 𝑓 : 𝐴 → 𝐹(𝐴)), there is a unique map (|𝑓|) : 𝜇𝐹 → 𝐴 such that

↑𝐹 ⟨𝑓⟩
↑

⟨𝑓⟩

↑
out

↑
𝑓

𝐹(𝜈𝐹) 𝐹(𝐴)

𝜈𝐹 𝐴

The diagram says

⟨𝑓⟩; out = 𝑓; 𝐹⟨𝑓⟩

If into and out form an isomorphism, then:

⟨𝑓⟩; out; into = 𝑓; 𝐹⟨𝑓⟩; into
⟨𝑓⟩ = 𝑓; 𝐹⟨𝑓⟩; into
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Approximations of Streams

Consider the stream functor 𝐹 = ℤ ⊗ 𝖨𝖽. Let’s consider powers of 𝐹 :

𝐹 0(1) = 1 ≅ ℤ0

𝐹 1(1) = ℤ × 1 ≅ ℤ1

𝐹 2(1) = ℤ × (ℤ × 1) ≅ ℤ2

…
𝐹𝑛+1(1) = ℤ × 𝐹𝑛(1) ≅ ℤ𝑛
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Approximations of Streams

• Suppose we have an approximate stream 𝑥𝑛+1 ∈ 𝐹𝑛+1(1).

• How do we find 𝑥𝑛 ∈ 𝐹𝑛(1), the first 𝑛 elements?

• Observe:

1. ! : 𝐹 (1) → 1 is the terminal map – it sends ℤ × 1 → 1.

2. So 𝐹𝑛(!) : 𝐹𝑛+1(1) → 𝐹𝑛(1).
3. This remembers the first 𝑛 elements, and drops the 𝑛 + 1-st.

• Furthermore, from 𝑥 ∈ 𝜈𝐹 , we should be able to approximate it 𝜋𝑛 : 𝜈𝐹 → 𝐹𝑛(1).
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The Approximation Diagram, Pictorially

↑

!

↑

𝐹 (!)

↑

𝐹 2(!)

↑

𝜋0
↑

𝜋1
↑

𝜋2
↑

𝜋3

1 𝐹(1) 𝐹 2(1) 𝐹 3(1)

𝜈𝐹

The diagram at the bottom is called the terminal diagram. 𝜈𝐹  is the limit of this diagram.
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The Limit Property of 𝜈𝐹
↑

!

↑

𝐹 (!)

↑

𝐹 2(!)

↑⟨𝑓𝑖⟩

↑

𝜋0

↑

𝜋1

↑

𝜋2

↑

𝜋3

↑

𝑓0

↑

𝑓1

↑

𝑓2

↑

𝑓3

1 𝐹(1) 𝐹 2(1) 𝐹 3(1)

𝜈𝐹

𝑋
• 𝜈𝐹  is the “greatest lower bound” of the 

diagram

• Any family of maps commuting with the 

projections factors through 𝜈𝐹 .
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Constructing 𝜈𝐹

We define 𝜈𝐹  as follows:

𝜈𝐹 ≡ {𝑣 ∈ Π𝑛 : ℕ.𝐹𝑛(1) | ∀𝑚 ≤ 𝑛. 𝑣𝑚 = 𝑝𝑛,𝑚(𝑣𝑛)}

𝑝𝑛,𝑚 : 𝐹𝑛(1) → 𝐹𝑚(1)

𝑝𝑛,𝑚 = id𝐹𝑛(1)  when 𝑛 = 𝑚

𝑝𝑛,𝑚 = 𝐹𝑛(!); 𝑝𝑛−1,𝑚  when 𝑛 > 𝑚

and

𝜋𝑛 : 𝜈𝐹 → 𝐹𝑛(1)
𝜋𝑛 = 𝑣 ↦ 𝑣𝑛

81



The Projective Limit

To show that 𝜈𝐹  is the limit of the terminal diagram, we generalize to projective limits:

↑

𝑎0

↑

𝑎1

↑

𝑎2

↑

𝜋0

↑

𝜋1

↑

𝜋2

↑

𝜋3

𝐴0 𝐴1 𝐴2 𝐴3

lim𝐴𝑖

lim𝐴𝑖 is a projective limit of the 𝐴𝑖, if 𝑎𝑖-compatible families of maps factor through lim𝐴𝑖.
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Polynomial Functors Preserve Projective Limits

Theorem. If lim𝐴𝑖 is a projective limit of a diagram 𝑎𝑖 : 𝐴𝑖+1 → 𝐴𝑖 for 𝑖 ∈ ℕ, then 

𝐹(lim𝐴𝑖) ≅ lim𝐹(𝐴𝑖), where lim𝐹(𝐴𝑖) is the projective limit of the diagram 𝐹(𝑎𝑖) :
𝐹(𝐴𝑖+1) → 𝐹(𝐴𝑖).

Proof. By induction on 𝐹  (see the notes). It is important that the action of the isomorphism is 

compatible with the projections.
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𝐹(𝜈𝐹) ≅ 𝜈𝐹

Theorem. There exists an isomorphism 𝜈𝐹 ≅ 𝐹(𝜈𝐹) compatible with the projections.

Proof. The key idea is that the apply 𝐹  to the terminal diagram yields a diagram that looks 

exactly like the terminal diagram, except with the 𝐹 0(1) = 1 tip cut off. So it suffices to show 

that lim𝐹 𝑖(1) ≅ lim𝐹 𝑖+1(1), which follows because the map into the terminal object 1 is 

always unique. So the isomorphism can just “shift the projections” to the left or right in an 

information-preserving way.
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The unfold

Theorem. Given a coalgebra 𝛼 : 𝐴 → 𝐹(𝐴), there is a unique coalgebra homomorphism ⟨𝛼⟩ :
(𝐴, 𝛼) → (𝜈𝐹 , out).

Proof.

1. We construct a cone 𝛼𝑖 : 𝐴 → 𝐹 𝑖(1) by recursion on 𝑖.
2. This gives a unique map ⟨𝛼⟩ : 𝐴 → 𝜈𝐹 .

3. We can then use the universal property of projective limits to show that it is a unique 𝐹 -

coalgebra homomorphism.
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