
Algebraic Techniques for Programming: Course Notes

Neel Krishnaswami

Lent 2026

Chapter 1

Introduction

Most sciences strive to develop a foundational basis from which higher-level ideas can be derived. For
example, in physics, statistical mechanics shows how to derive things like the ideal gas law and the laws of
thermodynamics from the underlying principles of mechanics.

Computer science is a discipline which is in the unusual position of having not one, but two, founda-
tions, which for historical reasons are called Theory A and Theory B. Theory A is the theory of algorithms
and complexity, and Theory B is semantics and type theory. The former makes heavy use of ideas from
combinatorics, graph theory, and number theory, whereas the latter makes heavy use of abstract algebra,
category theory, and formal logic.

The dual foundation has persisted for two reasons. First, each area is very mathematically sophisticated,
and consequently it is unusual to find people who are equally conversant with the methods of both sides.
Second, the aesthetic spirit of each subfield is different. The question dearest to an algorithmist’s heart is to
find the best solution to a problem. A semanticist, on the other hand, wants to know a problem’s family: in
what class does this problems live, and what features do they share that an algorithm might exploit?

These two goals are forever in tension, because the best algorithms exploits all the problem-specific struc-
ture, structurewhich is necessarily lost whenwe generalize. Thismight seem to be an argument against gen-
eralization, except that it is rarely the case that the problems we run into when programming fit the exact
mold of a textbook algorithm. Always we have to adapt and adjust our algorithms, and it is unfortunately
easy to adjust our way out of a solution.

In this course, we will take a look at some classical results of Theory A, from the perspective of Theory
B. The goal of this course is not to redo complexity analyses, since those analyses already exist and work.
Instead, we want to understand the mathematical structure of these algorithms, with an eye towards break-
ing them into small, modular, and re-usable parts. Then, you will be able to not just reimplement textbook
algorithms, but also modify them and develop alternatives to them.

1

Chapter 2

Mathematical Preliminaries

In this secton, we will begin by giving some of the fundamental mathematical ideas we will use in this
course. None of them will be difficult, but many of them will be unfamiliar to a general computer science
audience.

2.1 Stuff, Structure, Property
Category theory has a reputation for being extremely abstract, but we will tend to use it very concretely in
this course, working mainly with various categories of algebraic structures.

An algebraic structure is conventionally presented in the following way:

• one or more sets 𝑋𝑖, which we call “stuff”,

• a collection of functions on the stuff, which we call “structure”, and

• the logical properties these operations satisfy, which we call “properties”.

Example 2.1.1 (Monoids). A monoid is defined as the following:

• Stuff:

– A set 𝑀, called the carrier.

• Structure:

– A distinguished element 𝑒 ∈ 𝑀, called the unit
– A binary operation (⋅) ∶ 𝑀 × 𝑀 → 𝑀, called the multiplication

• Properties:

– for all 𝑥 ∈ 𝑀, we have 𝑒 ⋅ 𝑥 = 𝑥
– for all 𝑥 ∈ 𝑀, we have 𝑥 ⋅ 𝑒 = 𝑥
– for all 𝑥, 𝑦, 𝑧 ∈ 𝑀, we have (𝑥 ⋅ 𝑦) ⋅ 𝑧 = 𝑥 ⋅ (𝑦 ⋅ 𝑧) (property)

Naturally, we need examples of our examples. Monoids are often written (𝑀, 𝑒, ⋅), which specifies the
carrier and structure. Such a triple is only a monoid if the unit and multiplication actually satisfy the prop-
erties.

Example 2.1.2 (Examples of Monoids). Here are some examples of monoids.

2

• The natural numbers form a monoid (ℕ, 0, +) , where the set 𝑀 = ℕ, the unit 𝑒 = 0, and the multi-
plication is addition (𝑥 ⋅ 𝑦 = 𝑥 + 𝑦). Then the facts that 0 is left and right unit to addition, and that
addition is associative, show that our operations satisfy the desired properties.

• Given a set 𝑋, the functions 𝑋 → 𝑋 form a monoid, with the unit being the identity function 𝑒 = id𝑋,
and with function the multiplication 𝑓 ⋅ 𝑔 = 𝑓 ∘ 𝑔.

• The set of 𝑛 × 𝑛 matrices forms a monoid, with 𝑒 = 𝐼 defining the unit as the identity matrix, and
𝑀 ⋅ 𝑁 = 𝑀𝑁.

• Given a set 𝑋, the set of finite sequences of elements [𝑥1, ⋯ , 𝑥𝑛] forms a monoid, with the unit being
the empty sequence [], and the multiplication given by concatenation [⃗𝑥𝑖] ⋅ [⃗𝑦𝑗] = [⃗𝑥𝑖, ⃗𝑦𝑗]. This is also
called the free monoid over X, since it is the “minimal” monoid into which 𝑋 can be embedded. (The
sense in which it is minimal is outside the scope of this course!)

Note that we will often augment an algebraic structure with additional structure:

Example 2.1.3 (Groups). A group consists of a monoid (𝐺, 𝑒, ⋅), with:

• an additional operator inv ∶ 𝐺 → 𝐺,

• for all 𝑥 ∈ 𝐺, 𝑥 ⋅ inv(𝑥) = 𝑒, and

• for all 𝑥 ∈ 𝐺, inv(𝑥) ⋅ 𝑥 = 𝑒.

For example, the integers ℤ with zero, addition, and negation form a group.
It is important to understand that the same structure can be presented in different ways. For example,

many mathematics textbooks give the following alternate definition of a group:

Example 2.1.4 (Groups, Take Two). A group consists of a monoid (𝐺, 𝑒, ⋅), satisfying the additional property
that:

• for all 𝑥 ∈ 𝐺, there exists a unique 𝑖 such that 𝑥 ⋅ 𝑖 = 𝑖 ⋅ 𝑥 = 𝑒.

These two definitions are equivalent! Any mathematical object that satisfies the first presentation can be
shown to satisfy the second presentation.

Example 2.1.5 (Partial orders). A partial order consists of

• A carrier set 𝑋,

• A binary relation (≤) ⊂ 𝑋 × 𝑋,

• for all 𝑥 ∈ 𝑋, 𝑥 ≤ 𝑥,

• for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧, then 𝑥 ≤ 𝑧.

• for all 𝑥, 𝑦 ∈ 𝑋, if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥, then 𝑥 = 𝑦.

Example 2.1.6 (Examples of partial orders). • Thenatural numbersℕ, with their usual ordering≤, form
a partial order.

• The natural numbers ℕ, with the divisibility relation 𝑎 ∣ 𝑏 (𝑎 divides 𝑏) forms a partial order. (Check
the properties!)

• The subsets of a set 𝑋, with an ordering given by subset inclusion ⊆, form a partial order.

• Σ∗, the set of strings over an alphabet, forms a partial order with an ordering given by the prefix
relation (𝑤 ≤ 𝑤′ if 𝑤′ = 𝑤 ⋅ 𝑤0 for some 𝑤0).

As we can see, the same carrier set can be made into a partial order in multiple ways. It is important
to understand that a monoid, partial order, or other algebraic structure is the carrier plus all the associated
operations, and so the same carrier

3

2.2 Homomorphisms
Homomorphisms are “structure-preserving maps”.

• Suppose we have two monoids (𝑀, 0, +) and (𝑁, ⊥, ⊔). Then, a monoid homomorphism is a function
𝑓 ∶ 𝑀 → 𝑁, such that 𝑓 (0) = ⊥ and 𝑓 (𝑚1 + 𝑚2) = 𝑓 (𝑚1) ⊔ 𝑓 (𝑚2).

• A pointed set is a set 𝑋 with a distinguished element 𝑎 ∈ 𝑋. Suppose we have pointed sets (𝑋, 𝑎) and
(𝑌, 𝑏). A pointed set homomorphism (or point-preserving map) is a function 𝑓 ∶ 𝑋 → 𝑌 such that 𝑓 (𝑎) = 𝑏.

• Suppose we have two groups (𝑀, 0, +, −) and (𝑁, ⊥, ⊔, ¬). Then, a group homomorphism if a function
𝑓 ∶ 𝑀 → 𝑁 such that 𝑓 (0) = ⊥, and 𝑓 (𝑚1 + 𝑚2) = 𝑓 (𝑚1) ⊔ 𝑓 (𝑚2), and 𝑓 (−𝑚) = ¬𝑓 (𝑚).

2.2.1 Caveat
These two cases suggest that a natural way to define the notion of homomorphism is to consider maps that
preserve the structure on the nose. This is almost always the first thing you should try, but is not always the
right thing to do.

Example 2.2.1 (Monotone function between partial orders). Suppose we have two partial orders (𝑋, ≤𝑋)
and (𝑌, ≤𝑌). Then, a partial order homomorphism (a.k.a. monotone function) is a function 𝑓 ∶ 𝑋 → 𝑌 such that
if 𝑥 ≤𝑋 𝑥′ then 𝑓 (𝑥) ≤𝑌 𝑓 (𝑥′).

To understand this as a structure-prerserving map, it helps to consider that a subset ≤𝑋 of 𝑋 × 𝑋 can
also be represented as an indicator function 𝑃𝑋 ∶ 𝑋 × 𝑋 → 2 (i.e., 𝑃𝑋(𝑥, 𝑥′) = true if and only if 𝑥 ≤𝑋 𝑥′).
Thenwe can “follow the homomorphism recipe” to define an initial notion of homomorphism as 𝑃𝑋(𝑥, 𝑥′) =
𝑃𝑌(𝑓 (𝑥), 𝑓 (𝑥′)).

Unwinding this definition, we get that 𝑥 ≤𝑋 𝑥′ if and only if 𝑓 (𝑥) ≤𝑌 𝑓 (𝑥′). This is too strict in practice,
and in fact the monotonicity condition is equivalent to 𝑃𝑋(𝑥, 𝑥′) ≤2 𝑃𝑌(𝑓 (𝑥), 𝑓 (𝑥′)), where ≤2 puts false
below true.

2.3 Categories
Definition 2.3.1 (Categories). A category ℂ consists of:

• A set of objects Obj

• For each object 𝑋 and 𝑌, a set of morphisms Hom(𝑋, 𝑌). We will write 𝑓 ∶ 𝑋 → 𝑌 to mean that
𝑓 ∈ Hom(𝑋, 𝑌).

• For each object 𝑋, an identity morphism id𝑋 ∶ 𝑋 → 𝑋.

• For each object 𝑋,𝑌, and 𝑍, we have a composition operator1 (;)𝑋,𝑌,𝑍 ∶ Hom(𝑋, 𝑌) × Hom(𝑌, 𝑍) →
Hom(𝑋, 𝑍). (So for each 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍, we have (𝑓 ; 𝑔) ∶ 𝑋 → 𝑍.)

• For all 𝑓 ∶ 𝑋 → 𝑌, we have that id𝑌 ∘ 𝑓 = 𝑓 and 𝑓 ∘ id𝑋 = 𝑓

• For all 𝑓 ∶ 𝐴 → 𝐵, 𝑔 ∶ 𝐵 → 𝐶, and ℎ ∶ 𝐶 → 𝐷, we have (𝑓 ; 𝑔); ℎ = 𝑓 ; (𝑔; ℎ).

The very first thing to notice about the definition of a category is that it is an algebraic structure, exactly
like all of the other algebraic structures we have seen. Most of the power of category theory comes from the
fact categories turn out to be an excellent abstraction for grouping other algebraic structures.

1The (;) operator is called “diagrammatic composition”. Composition with arguments reversed is written 𝑔 ∘ 𝑓 and is called “func-
tional composition”. Obviously 𝑔 ∘ 𝑓 = 𝑓 ; 𝑔

4

We will write ℂ and 𝔻 for typical categories. We will write Obj(ℂ) to mean the objects when we want
to be pedantic, and just write ℂ if there is no confusion. We will write Homℂ(𝐴, 𝐵) when we want to
specify which category we are considering the hom-set of, and often write 𝑓 ∶ 𝐴 → 𝐵 instead of writing
𝑓 ∈ Hom(𝐴, 𝐵).

2.3.1 Examples of Categories
Example 2.3.2 (The Most Important Category). Set, the category of (small) sets and functions, is the most
important category. The objects of this category are sets, and Hom(𝐴, 𝐵) is the set of functions from 𝐴 to
𝐵. The identity morphism on 𝐴 is the identity function, and given 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶, we define the
composition 𝑓 ; 𝑔 to be reversed function composition 𝑔 ∘ 𝑓.

Taken literally, the objects of Set are all sets, which means the set of objects is the set of all sets – a set
which, thanks to Bertrand Russell, we know cannot exist. So we actually need to pick out a collection of
sets which does form a set (the “small” sets), and while the technicalities involved in making sense of this
are of interest to set theorists and type theorists, they are of little relevance to the kinds of problems we will
consider. As a result, I will be fairly cavalier about size issues in these notes, using the notation “small”
when it matters, but not otherwise delving into what that adjective means. Interested students may consult
? for details.

Example 2.3.3 (Relations). Rel, the category of small sets and relations, is the category in which the objects
are sets, and Hom(𝐴, 𝐵) are the relations between 𝐴 and 𝐵. The identity morphism is the identity relation:

id𝐴 = {(𝑎, 𝑎) ∣ 𝑎 ∈ 𝐴}

Composition is relational composition. Given 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶, we define:

𝑓 ; 𝑔 = {(𝑎, 𝑐) ∈ 𝐴 × 𝐶 ∣ ∃𝑏. (𝑎, 𝑏) ∈ 𝑓 ∧ (𝑏, 𝑐) ∈ 𝑔} .

Note that Set and and Rel have the same objects, but very different morphisms.

Example 2.3.4 (The Category of Matrices). Fix a semiring 𝑆. Then, the category of matrices over Mat𝑆 can
be defined as follows. The objects of Mat𝑆 are the natural numbers. A morphism 𝑓 ∶ 𝑛 → 𝑚 is an 𝑛 × 𝑚
matrix with entries valued in 𝑆. The identity morphism id𝑛 ∶ 𝑛 → 𝑛 is the 𝑛-dimensional identity matrix.
Composition of two matrices 𝑓 ∶ 𝑛 → 𝑚 and 𝑔 ∶ 𝑚 → 𝑘 is matrix multiplication.

Note thatmultiplying an 𝑛×𝑚matrix by a𝑚×𝑘matrix yields an 𝑛×𝑘matrix, and thatmatrixmultiplication
is associative with the identity matrix as left and right units.

Algebraic Structures and Homomorphisms

A general recipe for building categories is to take instances of an algebraic structure as objects, and homo-
morphisms between these structures as morphisms.

Example 2.3.5. The category of monoids has monoids as objects. Given two monoids 𝑀 and 𝑁, we define
Hom(𝑀, 𝑁) as the set ofmonoid homomorphisms between 𝑀 and 𝑁. The identity is the identity function, and
composition is composition of the underlying functions.

Example 2.3.6. The category of groupshas groups as objects. Given two groups𝑀 and𝑁, wedefineHom(𝑀, 𝑁)
as the set of group homomorphisms between 𝑀 and 𝑁. The identity is the identity function, and composition
is composition of the underlying functions.

Example 2.3.7. The category of partial orders has partial orders as objects. Given two partial orders 𝑀 and 𝑁, we
define Hom(𝑀, 𝑁) as the set of monotone functions between 𝑀 and 𝑁. The identity is the identity function,
and composition is composition of the underlying functions.

Notice that the only change is in the italicized words: everything else remains the same.

5

2.3.2 Functors: Homomorphisms of Categories
A homomorphism is a structure-preserving map between algebraic structures, and categories are algebraic
structures. A functor is a homomorphism of categories. Given two categories ℂ and 𝔻, a functor 𝐹 between
them consists of:

• A mapping 𝐹0 ∶ Obj(ℂ) → Obj(𝔻)

• For each pair of objects 𝐴, 𝐵 ∈ Obj(ℂ), a mapping 𝐹𝐴,𝐵
1 ∶ Homℂ(𝐴, 𝐵) → Hom𝔻(𝐹0(𝐴), 𝐹0(𝐵)).

• For each object 𝐴 ∈ Obj(ℂ), we have 𝐹𝐴,𝐴
1 (id𝐴) = id𝐹0(𝐴)

• For ℂ-morphisms 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶, we have that 𝐹𝐴,𝐶
1 (𝑓 ; 𝑔) = 𝐹𝐴,𝐵

1 (𝑓); 𝐹𝐵,𝐶
1 (𝑔)

In the usual case when there is no ambiguity, we will write 𝐹(𝐴) instead of 𝐹0(𝐴), and 𝐹(𝑓) instead of
𝐹𝐴,𝐵

1 (𝑓).

2.3.3 Structures on Categories
Initial and Terminal Objects

Definition 2.3.8 (Terminal Objects). A category ℂ has terminal objects if there is a ℂ-object 1, with the fol-
lowing universal property:

For every 𝑋 ∈ Obj(ℂ), there is a unique morphism ⟨⟩𝑋 ∶ 𝑋 → 1.

Definition 2.3.9 (Initial Objects). An object 0 of a category ℂ is an initial object if it has the folliowing uni-
versal property:

For all 𝑋 ∈ ℂ, there is a unique morphism !𝑋 ∶ 0 → 𝑋.

Example 2.3.10 (Initial and Terminal Objects in Set). The terminal object 1 in Set is the singleton set {∗}.
The initial object 0 in Set is the empty set ∅.

Products

Definition 2.3.11 (Products). A category ℂ has products, if for every 𝐴, 𝐵 ∈ ℂ, there is an object 𝐴 × 𝐵 ∈ ℂ,
with morphisms 𝜋1 ∶ 𝐴 × 𝐵 → 𝐴 and 𝜋2 ∶ 𝐴 × 𝐵 → 𝐵. These morphisms have the following universal
property:

For any object 𝐶 and maps 𝑓 ∶ 𝐶 → 𝐴 and 𝑔 ∶ 𝐶 → 𝐵, there is a unique map ⟨𝑓 , 𝑔⟩ ∶ 𝐶 → 𝐴 × 𝐵 such that
⟨𝑓 , 𝑔⟩ ; 𝜋1 = 𝑓 and ⟨𝑓 , 𝑔⟩ ; 𝜋2 = 𝑔.

Given two morphisms 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝑋 → 𝑌, we define 𝑓 × 𝑔 ∶ 𝐴 × 𝑋 → 𝐵 × 𝑌 as ⟨𝜋1; 𝑓, 𝜋2; 𝑔⟩.
Here are some examples of product structures on categories:

Example 2.3.12 (Products in Set). Given two sets 𝐴 and 𝐵, their product 𝐴×𝐵 is just their cartesian product,
the set {(𝑎, 𝑏) ∣ 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵}. The projection 𝜋1 is given by the function returning the first component
of a pair (𝑎, 𝑏) ↦ 𝑎, and likewise 𝜋2 is given by (𝑎, 𝑏) ↦ 𝑏.

Example 2.3.13 (Products in the Category of Monoids). Given two monoids (𝑀, 0, +) and (𝑁, 1, ×), their
product can be defined as follows:

• The carrier is the set 𝑀 × 𝑁.

• The zero element 𝑒 is (0, 1).

• The multiplication (𝑚1, 𝑛1) ⋅ (𝑚2, 𝑛2) is defined as (𝑚1 + 𝑚2, 𝑛1 × 𝑛2).

6

• The projections 𝜋1 ∶ 𝑀×𝑁 → 𝑀 and 𝜋2 ∶ 𝑀×𝑁 → 𝑁 are given by the the projections on the underlying
sets.

The reader should check that 𝑀×𝑁 satisfies themonoid equations, and then that the projections aremonoid
homomorphisms.

Example 2.3.14 (The Product of Categories). Given two (small) categories ℂ and 𝔻, the product category
ℂ × 𝔻 is defined as follows:

• Obj(ℂ × 𝔻) = Obj(ℂ) × Obj(𝔻). The objects of the product category are pairs of objects, one from ℂ
and one from 𝔻.

• Homℂ×𝔻((𝐴, 𝑋), (𝐵, 𝑌)) = Homℂ(𝐴, 𝐵) × Hom𝔻(𝑋, 𝑌). A morphism (𝑓 , 𝑔) ∶ (𝐴, 𝑋) → (𝐵, 𝑌) is a pair
of morphisms, one ℂ-morphims 𝑓 ∶ 𝐴 → 𝐵 and one 𝔻-morphism 𝑔 ∶ 𝑋 → 𝑌.

Identity is a pair of identities, and composition is defined pointwise. The category properties are inherited
from the category properties of ℂ and 𝔻.

Coproducts

Dual to products are coproducts.

Definition 2.3.15 (Coproducts). A category ℂ has coproducts, if for every 𝐴, 𝐵 ∈ ℂ, there is an object 𝐴+𝐵 ∈
ℂ, with morphisms 𝜄1 ∶ 𝐴 → 𝐴 + 𝐵 and 𝜋2 ∶ 𝐵 → 𝐴 + 𝐵, satisfying the following universal property:

For any object 𝐶 and morphisms 𝑓 ∶ 𝐴 → 𝐶 and 𝑔 ∶ 𝐵 → 𝐶, there is a unique morphism [𝑓 , 𝑔] ∶ 𝐴 + 𝐵 → 𝐶
such that 𝜄1; [𝑓 , 𝑔] = 𝑓 and 𝜄2; [𝑓 , 𝑔] = 𝑔.

Example 2.3.16 (Coproducts in Set). The coproduct of two sets 𝐴 and 𝐵 is the disjoint (or tagged) union:

𝐴 + 𝐵 = {(1, 𝑎) ∣ 𝑎 ∈ 𝐴} ∪ {(2, 𝑏) ∣ 𝑏 ∈ 𝐵}

The tag lets us identify which set each element of 𝐴 + 𝐵 originally came from, and the injections add the
tags:

𝜄1 ∶ 𝐴 → 𝐴 + 𝐵
𝜄1 = 𝑎 ↦ (1, 𝑎)

𝜄2 ∶ 𝐵 → 𝐴 + 𝐵
𝜄2 = 𝑏 ↦ (2, 𝑏)

Given 𝑓 ∶ 𝐴 → 𝐶 and 𝑔 ∶ 𝐵 → 𝐶, we define the mediating morphism [𝑓 , 𝑔] as follows:

[𝑓 , 𝑔] = 𝑥 ↦ { 𝑓 (𝑎) when 𝑥 = (1, 𝑎)
𝑔(𝑏) when 𝑥 = (2, 𝑏)

Example 2.3.17 (Coproducs in Mon). Given two monoids (𝑀, 0, +) and (𝑁, 1, ×), their coproduct can be
defined as follows:

1. To define the carrier, we first define the set 𝑋 as the set of sequences of elements of 𝑀 + 𝑁, writing ()
for the empty sequence and xs ⋅ ys for concatenation.

2. Next, we define an equivalence relation ≈ as the least equivalence relation closed under the following
equations:

• () ≈ ().
• If xs1 ≈ ys1 and xs2 ≈ ys2, then (xs1 ⋅ xs2) ≈ (ys1 ⋅ ys2).
• (𝜄1(0𝑀)) ≈ ().

7

• (𝜄1(𝑚1), 𝜄1(𝑚2)) ≈ (𝜄1(𝑚1 + 𝑚2)).
• (𝜄2(1𝑁)) ≈ ().
• (𝜄2(𝑛1), 𝜄2(𝑛2)) ≈ (𝜄2(𝑛1 + 𝑛2)).

3. We define the carrier of 𝑀 + 𝑁 as the set 𝑋/≈.

4. The injections are defined as 𝜄1(𝑚) = [𝜄1(𝑚)] and 𝜄2(𝑛) = [𝜄2(𝑛)].

5. Given 𝑓 ∶ (𝑀, 0, +) → (𝑅, ⊥, ∨) and 𝑔 ∶∶ (𝑁, 1, ×) → (𝑅, ⊥, ∨), we can define the unique map [𝑓 , 𝑔] as
follows. First, we define a map from ℎ ∶ (𝑋, (), ⋅) → (𝑅, ⊥, ∨) by recursion on the structure of lists:

ℎ() = ⊥
ℎ(𝜄1(𝑚) ⋅ xs) = 𝑓 (𝑚) ∨ ℎ(xs)
ℎ(𝜄2(𝑛) ⋅ xs) = 𝑔(𝑛) ∨ ℎ(xs)

Then, by proving that if xs ≈ ys, then ℎ(xs) = ℎ(ys), we establish that there is amonoid homomorphism
𝑀 + 𝑁 → 𝑅. (This can be done by induction on the derivation of ≈.)

This example illustrates that what coproducts look like can be surprisingly intricate. Once we have
proved that this structure exists, luckily we do not need to think about it again: basically every property
we really care about depends on the fact that it is a coproduct, and not on details of the quotienting scheme.

Exponentials

An exponential is the categorical generalization of the concept of a function space.

Definition 2.3.18 (Exponentials). Suppose ℂ is a category with products. We say that ℂ has exponentials,
when, given two objects 𝑋 and 𝑌, we have an object 𝑋 ⇒ 𝑌 and morphism eval ∶ (𝑋 ⇒ 𝑌) × 𝑋 → 𝑌. They
must satisfy the property that for any 𝑓 ∈ Hom(𝐶 × 𝑋, 𝑌), there is a unique 𝜆(𝑓) ∶ 𝐶 → (𝑋 ⇒ 𝑌) such that
(𝜆(𝑓) × id𝑋); eval = 𝑓.

𝐶 × 𝑋

𝐶 × (𝑋 ⇒ 𝑌) 𝑌

id×𝜆(𝑓) 𝑓

eval

8

Chapter 3

Recursion

In this chapter, we will study the semantics of datatypes.
The key idea is that an inductive datatype is the fixed point of a functor.

3.1 Algebraic Datatypes and Structural Recursion
Consider the following datatype declaration in OCcaml:

type nat =
| Zero : nat
| Succ : nat -> nat

This datatype models the natural numbers. It can be used to define the numbers Peano-style:

let one : nat = Succ(Zero)

let two : nat = Succ(one) (* i.e. Succ(Succ(Zero)) *)

let three : nat = Succ(two) (* i.e., Succ(Succ(Succ(Zero))) *)

It can also be used to define functions acting on the natural numbers:

let rec double : nat -> nat =
function
| Zero -> Zero
| Succ n -> Succ(Succ(double n))

let rec plus : nat * nat -> nat =
function
| (Zero, m) -> m
| (Succ n, m) -> Succ (plus (n,m))

let rec times : nat * nat -> nat =
function
| (Zero, m) -> Zero
| (Succ n, m) -> plus(times(n, m), m)

All of these functions are structurally recursive: each time they make a recursive call, they make it on
a subterm of the first argument. This pattern of structural recursion can be packaged up into a recursive
function called a fold:

9

(* fold : 'a * ('a -> 'a) -> nat -> 'a *)
let rec fold (zero, succ) = function
| Zero -> zero
| Succ n -> succ (fold (zero, succ) n)

With this higher-order function, it is now possible to write our functions without any explicit recursion
at all:

(* double' : nat -> nat *)
let double' n = fold (Zero, fun m -> Succ(Succ m)) n

(* plus' : nat -> nat -> nat *)
let plus' n m = fold ((fun m -> m), (fun r m -> Succ(r m))) n m

(* times' : nat -> nat -> nat *)
let times' n m = fold ((fun m -> Zero), (fun r m -> plus (r m) m)) n m

3.2 Natural Numbers as an Inductive Datatype
To interpret an inductive dataype like ℕ, we are looking for a solution to the recursive type equation 𝑁𝑎𝑡 =
1 + 𝑁𝑎𝑡. Taking 𝑁 = 1 ⊕ Id, we are looking for a set 𝜇𝑁 such that 𝑁(𝜇𝑁) ≅ 𝜇𝑁.

Now consider the following sequence of sets:

0 = ∅
𝑁(0) = {𝜄1(∗)}
𝑁2(0) = {𝜄1(∗), 𝜄2(𝜄1(∗))}
𝑁3(0) = {𝜄1(∗), 𝜄2(𝜄1(∗)), 𝜄2(𝜄2(𝜄1(∗)))}
𝑁4(0) = {𝜄1(∗), 𝜄2(𝜄1(∗)), 𝜄2(𝜄2(𝜄1(∗))), 𝜄2(𝜄2(𝜄2(𝜄1(∗))))}

Writing zero for 𝜄1(∗) and succ(𝑘) for 𝜄2(𝑘), we can see that:

0 = ∅
𝑁(0) = {zero}
𝑁2(0) = {zero, succ(zero)}
𝑁3(0) = {zero, succ(zero), succ(succ(zero))}
𝑁4(0) = {zero, succ(zero), succ(succ(zero)), succ(succ(succ(zero)))}

This suggests that we construct the natural numbers 𝜇𝑁 as follows:

𝜇𝑁 = ⋃
𝑘∈ℕ

𝑁𝑘(0)

This is, in fact, perfectly correct, but there is one key issue: where does the fold operation come from?
First, we’ll make the observation that 𝜇𝑁 ≅ 𝑁(𝜇𝑁), writing in ∶ 𝑁(𝜇𝑁) → 𝜇𝑁, and out ∶ 𝜇𝑁 → 𝑁(𝜇𝑁)

for the components of the isomorphism. Our specific construction of 𝜇𝑁 makes both of these identity maps,
but there are other representations of 𝜇𝑁 (for example, as binary numbers) in which they will not be.

Next, let’s think about what the fold operation for natural numbers does. It takes a map 𝑓 ∶ (1 + 𝐴) → 𝐴,
and produces a map (∣𝑓∣) ∶ 𝜇𝑁 → 𝐴 which is compatible with it:

(∣𝑓∣) ∶ 𝜇𝑁 → 𝐴
(∣𝑓∣) (zero) = 𝑓 (𝜄1(∗))
(∣𝑓∣) (succ(𝑘)) = 𝑓 (𝜄2((∣𝑓∣) 𝑘))

10

Simplifying the abbreviations, the clauses can also be rendered as:

(∣𝑓∣) ∶ 𝜇𝑁 → 𝐴
(∣𝑓∣) (in(𝜄1(∗))) = 𝑓 (𝜄1(∗))
(∣𝑓∣) (in(𝜄2(𝑘))) = 𝑓 (𝜄2((∣𝑓∣) 𝑘))

Looking at this, it is clear that the clauses are actually unnecessary, and we can write the definition as
follows:

(∣𝑓∣) ∘ in = 𝑓 ∘ 𝑁 (∣𝑓∣)

This is less obviously a definition, but is more obviously a single equation that (∣𝑓∣) must satisfy. Putting
these two views together, we are saying that for every 𝑓, there is a unique (∣𝑓∣) satisfying the equation (∣𝑓∣)∘ in =
𝑓 ∘ 𝑁 (∣𝑓∣). One of the basic heuristics of category theory is that every time we see a statement “for every map
𝑓, there exists a unique map 𝑔 such that …,” we should wonder if we are looking at a universal property.

Definition 3.2.1 (The Category of 𝑁-algebras). We will define the category of 𝑁-algebras as the category
whose objects are pairs of sets and 𝑁-algebras (𝐴 ∈ Set, 𝛼 ∶ 𝑁(𝐴) → 𝐴). A morphism 𝑓 ∶ (𝐴, 𝛼) → (𝐵, 𝛽) is a
Set-function 𝑓 ∶ 𝐴 → 𝐵 respecting the algebra structure – that is, satisfying the equation 𝑁(𝑓); 𝛽 = 𝛼; 𝑓.

Now, we can make two observations. First, the pair (𝜇𝑁, in ∶ 𝜇𝑁 → 𝑁) is an 𝑁-algebra. Second, it is the
initial object in the category of 𝑁-algebras.

Recall that an object 𝑋 is initial when there is a unique map 𝑋 → 𝐴 for any other object 𝐴.

Lemma 3.2.2. (𝜇𝑁, in) is an initial object in the category of 𝑁-algebras.

Proof. Initiality means that for every object (𝐴, 𝑓), there is a unique map (𝜇𝑁, in) → (𝐴, 𝑓).
Suppose we have an object (𝐴, 𝑓 ∶ 𝑁(𝐴) → 𝐴). Proving unique existence means that we have two tasks,

to prove existence, and to prove uniqueness.

1. Existence is relatively easy. We have just defined (∣𝑓∣) ∶ 𝜇𝑁 → 𝐴 as a map in Set, and we can show it is
a map in 𝑁-algebras if we can show that it satisfies the commuting diagram. So we need to show that
𝑁((∣𝑓∣)); 𝑓 = in; (∣𝑓∣). This is immediate from our discussion above about the definition of (∣𝑓∣).

2. Next, we need to show that this morphism is unique.
Suppose that we have another map ℎ ∶ (𝜇𝑁, in) → (𝐴, 𝑓). In this case, we can establish uniqueness by
showing that necessarily ℎ = (∣𝑓∣).
First, observe that because ℎ is an algebra morphism, we know that 𝑁(ℎ); 𝑓 = in; ℎ, or equivalently
that 𝑓 ∘ 𝑁(ℎ) = ℎ ∘ in. Because in and out form an isomorphism, we also know that 𝑓 ∘ 𝑁(ℎ) ∘ out =
ℎ ∘ in ∘ out = ℎ. Similarly, we know that 𝑓 ∘ 𝑁((∣𝑓∣)) ∘ out = (∣𝑓∣).
Now we show that for all 𝑥 ∈ 𝜇𝑁, we have that ℎ 𝑥 = (∣𝑓∣) 𝑥.
To do this, we first note that 𝑥 ∈ 𝜇𝑁 means that there exists an 𝑛 ∈ ℕ such that 𝑥 ∈ 𝑁𝑛(0).
So it suffices to show that for all 𝑛 ∈ ℕ and 𝑥 ∈ 𝑁𝑛(0), we have ℎ 𝑥 = (∣𝑓∣) 𝑥, proceeding by induction
on 𝑛:

• Case 𝑛 = 0: In this case, 𝑁0(0) = ∅, and so the assumption that 𝑥 ∈ ∅ makes this case vacuous.
• Case 𝑛 = 𝑘 + 1: In this case, we proceed by cases on 𝑥:

11

– Case 𝑥 = zero:
ℎ zero = (𝑓 ∘ 𝑁(ℎ) ∘ out)(zero) By definition

= (𝑓 ∘ 𝑁(ℎ))(out zero)
= (𝑓 ∘ 𝑁(ℎ))(𝜄1(∗))
= 𝑓 (𝑁(ℎ) (𝜄1(∗)))
= 𝑓 (𝜄1(∗))
= 𝑓 (𝑁 (∣𝑓∣) (𝜄1(∗)))
= (𝑓 ∘ 𝑁((∣𝑓∣)))(𝜄1(∗))
= (𝑓 ∘ 𝑁((∣𝑓∣)))(out zero)
= (𝑓 ∘ 𝑁((∣𝑓∣)) ∘ out)(zero)
= (∣𝑓∣) zero

– Case 𝑥 = succ(𝑘):

ℎ succ(𝑘) = (𝑓 ∘ 𝑁(ℎ) ∘ out)(succ(𝑘)) By definition
= (𝑓 ∘ 𝑁(ℎ))(out(succ(𝑘)))
= (𝑓 ∘ 𝑁(ℎ))(𝜄2(𝑘))
= 𝑓 (𝑁(ℎ) (𝜄2(𝑘)))
= 𝑓 (𝜄2(ℎ 𝑘))
= 𝑓 (𝜄2((∣𝑓∣) 𝑘)) By induction
= 𝑓 (𝑁 (∣𝑓∣) (𝜄2(𝑘)))
= (𝑓 ∘ 𝑁((∣𝑓∣)))(𝜄2(𝑘))
= (𝑓 ∘ 𝑁((∣𝑓∣)))(out (succ(𝑘)))
= (𝑓 ∘ 𝑁((∣𝑓∣)) ∘ out)(succ(𝑘))
= (∣𝑓∣) succ(𝑘)

Therefore ℎ = (∣𝑓∣).

Putting this all together, what is the semantics of the natural number datatype? It consists of the following
three pieces of data:

• A functor 𝑁 ∶ Set → 𝑆𝑒𝑡,

• an object 𝜇𝑁 ∈ Set,

• an isomorphism (out, in) ∶ 𝜇𝑁 ≅ 𝑁(𝜇𝑁).

satisfying the condition that (𝜇𝑁, in) is the initial 𝑁-algebra.

3.3 Boolean-labelled Trees
Let us replay the idea from the previous section one more time, but for a different datatype, and this time
mostly in code. We want to pursue the idea that an inductive datatype declaration should be understood
as the fixed point of a functor. Concretely, consider the following type of trees with boolean values at the
leaves:

1 type tree =
2 | Leaf : bool -> tree
3 | Node : tree * tree -> tree

We begin by making the functorial structure more explicit, by separating the shape of the datatype from the
recursive definition.

12

1 type 'a treeF =
2 | Leaf : bool -> 'a treeF
3 | Node : 'a * 'a -> 'a treeF

In this step, we replace every recursive occurence of tree with a type variable 'a. This “unties the knot.”
The idea is that we want to think of the type constructor treeF as a map from types to types, corresponding
to the mathematical functor:

𝑇(𝑋) = 𝟚 + (𝑋 × 𝑋)
This way, the the type int treeF can be modelled by

𝑇(ℤ) = 𝟚 + (ℤ × ℤ)

In other words, instantiating the type parameter of the treeF type constructor gives us result of each functor
application. Functors also act on hom-sets, and so we model the action of the functor using the 'a treeF
type constructor by showing that every function a -> b can be lifted to a function a treeF -> b treeF.

1 (* map : ('a -> 'b) -> ('a treeF -> 'b treeF) *)
2 let map f = function
3 | Leaf b -> Leaf b
4 | Node(a, a') -> Node(f a, f a')

To turn this into a recursive type, we can separately define the recursive structure of the type:

1 type tree = In of tree treeF
2

3 (* into : tree treeF -> tree *)
4 let into x = In x
5

6 (* out : tree -> tree treeF *)
7 let out (In x) = x

On line 1, we define a recursive type tree, whose sole argument is an element of tree treeF. The isomor-
phism between the tree and tree treeF types is witnessed by the into and out functions on lines 4 and
7.

Finally, the fold operation takes an 'a treeF-algebra and yields a function from tree to 'a. This can be
defined in several ways, more or less directly following the characterizing equations.

1 (* fold1 : ('a treeF -> 'a) -> (tree -> 'a) *)
2 let rec fold1 (f : 'a treeF -> 'a) (t : tree) =
3 match out t with
4 | Leaf b -> f (Leaf b)
5 | Node(l, r) -> f (Node(fold1 f l, fold1 f r))

This corresponds to the structural definition of (∣𝑓∣). We can also define it using the characterizing equation
of the fold operation:

1 let (>>) f g x = g (f x) (* diagrammatic composition f; g *)
2

3 (* fold2 : ('a treeF -> 'a) -> (tree -> 'a) *)
4 let rec fold2 f = out >> map (fold2 f) >> f (* corresponds to <f> = out; T(<f>); f *)

3.4 Inductive Types and Structural Recursion
Thepolynomial functors are the endofunctors 𝐹 ∶ Set → Set, generated by the identity functor Id, the constant
functor 𝐴, and products and coproducts. We can formalize this idea by giving the following grammar:

13

𝐹, 𝐺 ∶∶= Id | 𝐴 | 𝐹 ⊗ 𝐺 | 𝐹 ⊕ 𝐺

The interpretation of this grammar is given (on objects) as follows:

JIdK (𝑋) = 𝑋
J𝐴K (𝑋) = 𝐴
J(𝐹 ⊕ 𝐺)K (𝑋) = J𝐹K (𝑋) + J𝐹K (𝑋)
J(𝐹 ⊗ 𝐺)K (𝑋) = J𝐹K (𝑋) × J𝐹K (𝑋)

JIdK (𝑓) = 𝑓
J𝐴K (𝑓) = id𝐴
J(𝐹 ⊕ 𝐺)K (𝑓) = J𝐹K (𝑓) + J𝐹K (𝑓)
J(𝐹 ⊗ 𝐺)K (𝑓) = J𝐹K (𝑓) × J𝐹K (𝑓)

We will omit the brackets J⋅K whenever it is unambiguous.

Definition 3.4.1 (The Least Fixed Point of a Polynomial Functor). For each polynomial functor 𝐹, we define
the fixed point of 𝐹 as follows:

𝜇𝐹 = ⋃
𝑛∈ℕ

𝐹𝑛(∅)

There is a map

To show that this is indeed a fixed point takes a few steps.

Lemma 3.4.2 (Monotonicity of Polynomial Functor). For any polynomial functor 𝐹 and sets 𝐴 and 𝐵, we have
that if 𝐴 ⊆ 𝐵 then 𝐹(𝐴) ⊆ 𝐹(𝐵).

Proof. This goes by induction on the structure of 𝐹. Assume 𝐴 ⊆ 𝐵.

• Case 𝐹 = Id:
Immediate, since 𝐹(𝐴) = 𝐴 and 𝐹(𝐵) = 𝐵, so 𝐴 ⊆ 𝐵 means 𝐹(𝐴) ⊆ 𝐹(𝐵).

• Case 𝐹 = 𝑋:
Since 𝐹(𝐴) = 𝑋 and 𝐹(𝐵) = 𝑋, we need to show that 𝑋 ⊆ 𝑋, which is immediate.

• Case 𝐹 = 𝐺1 ⊕ 𝐺2:
We want to show (𝐺1 ⊕ 𝐺2)(𝐴) ⊆ (𝐺1 ⊕ 𝐺2)(𝐵).

1. Assume 𝑥 ∈ (𝐺1 ⊕ 𝐺2)(𝐴).
2. Hence 𝑥 ∈ 𝐺1(𝐴) + 𝐺2(𝐴).
3. Therefore 𝑥 = (𝑖, 𝑣) for some 𝑖 ∈ {1, 2} and 𝑣 ∈ 𝐺𝑖(𝐴).
4. By induction, 𝑣 ∈ 𝐺𝑖(𝐵).
5. Therefore (𝑖, 𝑣) ∈ 𝐺1(𝐵) + 𝐺2(𝐵).
6. Hence 𝑥 ∈ 𝐹(𝐵).

Therefore 𝐹(𝐴) ⊆ 𝐹(𝐵).

• Case 𝐹 = 𝐺 ⊗ 𝐻:

1. Assume 𝑥 ∈ (𝐺 ⊗ 𝐻)(𝐴).
2. Note that (𝐺 ⊗ 𝐻)(𝐴) = 𝐺(𝐴) × 𝐻(𝐴).
3. Hence 𝑥 = (𝑦, 𝑧) and 𝑦 ∈ 𝐺(𝐴) and 𝑧 ∈ 𝐻(𝐴).

14

4. By induction twice, 𝑦 ∈ 𝐺(𝐵) and 𝑧 ∈ 𝐻(𝐵).
5. Hence (𝑦, 𝑧) ∈ 𝐺(𝐵) × 𝐻(𝐵).
6. So 𝑥 ∈ (𝐺 ⊗ 𝐻)(𝐵).

This implies that each successive approximation is a superset of the previous step.

Lemma 3.4.3. For all 𝑛, we have that 𝐹𝑛(∅) ⊆ 𝐹𝑛+1(∅).

Proof. We do this by induction on 𝑛.

• Case 𝑛 = 0:
We need to show that ∅ ⊆ 𝐹(∅), which is immediate.

• Case 𝑛 = 𝑚 + 1:
By induction, we know that 𝐹𝑚(∅) ⊆ 𝐹𝑚+1(∅).
By monotonicity, 𝐹𝑚+1(∅)) ⊆ 𝐹𝑚+2(∅).

As an aside, note that this obviously implies that if 𝑚 ≤ 𝑛, then 𝐹𝑚(∅) ⊆ 𝐹𝑛(∅).

Lemma 3.4.4. For all polynomial functors 𝐺 and 𝐹, if 𝑥 ∈ 𝐺(𝜇𝐹), then there exists an 𝑛 such that 𝑥 ∈ 𝐺(𝐹𝑛(∅)).

Proof. This follows by induction on 𝐺. Assume we have 𝑥 ∈ 𝐺(𝜇𝐹).

• Case 𝐺 = Id:
In this case 𝑥 ∈ 𝜇𝐹, and there exists an 𝑛 such that 𝑥 ∈ 𝐹𝑛(∅) by the definition of 𝜇𝐹.

• Case 𝐺 = 𝐴:

1. Assume 𝑥 ∈ 𝐴(𝜇𝐹).
2. Hence 𝑥 ∈ 𝐴.
3. Choose 𝑛 = 0, since 𝐴(∅) = 𝐴, and so 𝑥 ∈ 𝐴(∅).

• Case 𝐺 = 𝐻1 ⊕ 𝐻2:

1. Assume 𝑥 ∈ (𝐻1 ⊕ 𝐻2)(𝜇𝐹).
2. Hence 𝑥 = (𝑖, 𝑣), where 𝑖 ∈ {1, 2} and 𝑣 ∈ 𝐻𝑖(𝜇𝐹).
3. By induction, 𝑣 ∈ 𝐻𝑖(𝐹𝑛(∅)).
4. Hence (𝑖, 𝑣) ∈ 𝐻1(𝐹𝑛(∅)) + 𝐻2(𝐹𝑛(∅)).
5. Hence 𝑥 ∈ (𝐻1 ⊕ 𝐻2)(𝐹𝑛(∅)).

• Case 𝐺 = 𝐻1 ⊗ 𝐻2:

1. Assume 𝑥 ∈ (𝐻1 ⊗ 𝐻2)(𝜇𝐹).
2. So 𝑥 ∈ 𝐻1(𝜇𝐹) × 𝐻2(𝜇𝐹).
3. Therefore 𝑥 = (𝑦, 𝑧) where 𝑦 ∈ 𝐻1(𝜇𝐹) and 𝑧 ∈ 𝐻2(𝜇𝐹).
4. By induction, 𝑦 ∈ 𝐻1(𝐹𝑚(∅)) for some 𝑚.
5. By induction, 𝑧 ∈ 𝐻2(𝐹𝑛(∅)) for some 𝑛.
6. Without loss of generality, suppose 𝑚 ≤ 𝑛.
7. Then 𝐹𝑚(∅) ⊆ 𝐹𝑛(∅).

15

8. By monotonicity of 𝐻1, we have 𝐻1(𝐹𝑚(∅)) ⊆ 𝐻1(𝐹𝑛(∅)).
9. Hence 𝑦 ∈ 𝐻1(𝐹𝑛(∅)).

10. Hence (𝑦, 𝑧) ∈ 𝐻1(𝐹𝑛(∅)) × 𝐻2(𝐹𝑛(∅)).
11. So 𝑥 ∈ (𝐻1 ⊗ 𝐻2)(𝐹𝑛(∅)).

Theorem 3.4.5. We have two mutually inverse maps in𝐹 ∶ 𝐹(𝜇𝐹) → 𝜇𝐹 and out𝐹 ∶ 𝜇𝐹 → 𝐹(𝜇𝐹).

Proof. Both of these are just the identity on elements: in𝐹(𝑥) = 𝑥 and out𝐹(𝑥) = 𝑥. This means that they are
obviously mutually inverse.

The real work is to show that these definitions have the correct domain and codomain.

• First, we show that in𝐹 ∶ 𝐹(𝜇𝐹) → 𝜇𝐹.

1. Assume we have 𝑥 ∈ 𝐹(𝜇𝐹).
2. By the lemma above, we know that 𝑥 ∈ 𝐹(𝐹𝑛(∅)) for some 𝑛).
3. Hence 𝑥 ∈ 𝐹𝑛+1(∅).
4. Since 𝐹𝑛+1(∅) ⊆ 𝜇𝐹, we see that 𝑥 ∈ 𝜇𝐹.

• Next, we show that out𝐹 ∶ 𝜇𝐹 → 𝐹(𝜇𝐹).

1. Assume 𝑥 ∈ 𝜇𝐹.
2. Therefore 𝑥 ∈ 𝐹𝑛(∅) for some 𝑛.
3. 𝑛 cannot be zero, since 𝐹0(∅) = ∅.
4. Hence 𝑛 = 𝑚 + 1, and 𝑥 ∈ 𝐹(𝐹𝑚(∅).
5. Since 𝐹𝑚(∅) ⊆ 𝜇𝐹 and 𝐹 is monotone, 𝑥 ∈ 𝐹(𝜇𝐹).

Theorem 3.4.6 (The generic fold). For any polynomial functor 𝐹 and function 𝑓 ∶ 𝐹(𝐴) → 𝐴, the map (∣𝑓∣) ∶ 𝜇𝐹 → 𝐴
is defined as:

(∣𝑓∣) = 𝑓 ∘ 𝐹 (∣𝑓∣) ∘ out𝐹

Proof. Since this is a recursive definition, our task is to show that this is a well-founded definition. To show
this, it suffices to show that for any 𝑛, the expression (∣𝑓∣) defines a map 𝐹𝑛(∅) → 𝐴.

We proceed by induction on 𝑛.

• Case 𝑛 = 0:

1. Assume 𝑥 ∈ 𝐹0(∅).
2. Since 𝐹0(∅) = ∅, this case is vacuous.

• Case 𝑛 = 𝑚 + 1:

1. Assume 𝑥 ∈ 𝐹𝑚+1(∅).
2. We want to show (∣𝑓∣) 𝑥 ∈ 𝐴.
3. By induction, we know that (∣𝑓∣) ∶ 𝐹𝑚(∅) → 𝐴, and hence 𝐹 (∣𝑓∣) ∶ 𝐹𝑚+1(∅) → 𝐹(𝐴).
4. Then (∣𝑓∣) 𝑥 = 𝑓 (𝐹 (∣𝑓∣) (out𝐹 𝑥))
5. By definition, out𝐹(𝑥) = 𝑥 ∈ 𝐹(𝐹𝑚(0))
6. Hence 𝐹 (∣𝑓∣) (out𝐹 𝑥) ∈ 𝐹(𝐴).

16

7. Since 𝑓 ∶ 𝐹(𝐴) → 𝐴, we know that 𝑓 (𝐹 (∣𝑓∣) 𝑥) ∈ 𝐴.

Definition 3.4.7 (The Category of 𝐹-algebras). The objects of the category of 𝐹-algebras are defined as pairs
(𝑋 ∈ Set, 𝛼 ∶ 𝐹(𝑋) → 𝑋). A morphism 𝑓 ∶ (𝑋, 𝛼) → (𝑌, 𝛽) is defined as a function 𝑓 ∶ 𝑋 → 𝑌 such that
𝐹(𝑓); 𝛽 = 𝛼; 𝑓. In other words, the following diagram must commute:

𝐹(𝑋) 𝑋

𝐹(𝑌) 𝑌

𝛼

𝐹(𝑓) 𝑓

𝛽

Theorem 3.4.8 (Inductive types as the initial 𝐹-algebra). In the category of 𝐹-algebras, (𝜇𝐹, in) is initial.

Proof. To prove this, we must show that given any object (𝐴, 𝛼 ∶ 𝐹(𝐴) → 𝐴) there exists a unique map
(𝜇𝐹, in) → (𝐴, 𝛼).

Take (|𝛼|) ∶ 𝜇𝐹 → 𝐴 as this morphism, which requires us to prove that (1) it is an algebra map, and (2)
that it is unique.

1. First, we prove that (∣𝑓∣) is an algebra map. That is, we want to show 𝑖𝑛𝑡𝑜; (|𝐹|) = 𝐹((|𝛼|)); 𝛼

(|𝛼|) = out; 𝐹((|𝛼|)); 𝛼 By definition
in; (|𝛼|) = in; out; 𝐹((|𝛼|)); 𝛼 Precomposing in

= 𝐹((|𝛼|)); 𝛼 in and out are isomorphic

2. Next, we must show that it is unique.

(a) Suppose we have an arbitrary ℎ ∶ (𝜇𝐹, in) → (𝐴, 𝛼).
(b) Because it is an algebra map, in; ℎ = 𝐹(ℎ); 𝛼.
(c) Therefore ℎ = out; 𝐹(ℎ); 𝛼.
(d) We want to show that it is equal to (∣𝑓∣).
(e) We do this by inductively showing that for all 𝑛 and 𝑥 ∈ 𝐹𝑛(0), ℎ 𝑥 = (∣𝑓∣) 𝑥.

i. Case 𝑛 = 0: This case is vacuous since 𝐹0(0) = ∅.
ii. Case 𝑛 = 𝑚 + 1:

A. Assume we have 𝑥 ∈ 𝐹𝑚+1(0).
B. Then, we can reason as follows:

ℎ 𝑥 = (𝛼 ∘ 𝐹(ℎ) ∘ out)(𝑥)
= 𝛼(𝐹(ℎ) (out 𝑥)) Note that (out 𝑥) ∈ 𝐹(𝐹𝑚(0))
= 𝛼(𝐹((|𝛼|)) (out 𝑥) By induction
= (𝛼 ∘ 𝐹((|𝛼|)) ∘ out)(𝑥)
= (|𝛼|) 𝑥

17

3.4.1 Why are inductive types least fixed points?
Our semantics of inductive types tells us that 𝜇𝐹 is a fixed point of 𝐹; that is, 𝐹 = 𝐹(𝜇𝐹). In general, though,
functions can have multiple fixed points: for example, the square function 𝑓 (𝑥) = 𝑥2 has two fixed points:
𝑓 (0) = 02 = 0, and 𝑓 (1) = 12 = 1.

So we can ask what the relationship of 𝜇𝐹 is to all of the other potential fixed points of 𝐹. The answer
turns out to be that 𝜇𝐹 is the least fixed point of 𝐹:

Theorem 3.4.9 (𝜇𝐹 is the least fixed point of 𝐹). If 𝑋 is a fixed point of the polynomial functor 𝐹, then 𝜇𝐹 ⊆ 𝑋.

Proof. We establish this by showing that if 𝑥 ∈ 𝜇𝐹 then 𝑥 ∈ 𝑋.

1. Suppose 𝑥 ∈ 𝜇𝐹.

2. By definition, there is an 𝑛 such that 𝑥 ∈ 𝐹𝑛(∅).

3. Note that ∅ ⊆ 𝑋.

4. By the monotonicity of 𝐹, we know that 𝐹𝑛(∅) ⊆ 𝐹𝑛(𝑋).

5. But 𝐹𝑛(𝑋) = 𝑋, since 𝑋 is a fixed point of 𝐹.

6. So 𝐹𝑛(∅) ⊆ 𝑋.

7. Hence 𝑥 ∈ 𝑋.

3.5 Folds, Generically
Inspired by the generic proof that polynomial functors have initial algebras, we can mimic this construction
in OCaml.

1 module type FUNCTOR = sig
2 type 'a t
3 val map : ('a -> 'b) -> 'a t -> 'b t
4 end

This module type defines a type constructor 'a t with a map operator. Any module implementing such a
type constructor and map operation has this module type.

We can use this module type to define the type of the inductive type constructor:

1 module type INDUCTIVE = functor (F : FUNCTOR) -> sig
2 type t
3

4 val into : t F.t -> t
5 val out : t -> t F.t (* Not strictly necessary! *)
6

7 val fold : ('a F.t -> 'a) -> t -> 'a
8 end

INDUCTIVE defines the type of a parameterized module which takes a FUNCTOR as an argument, and returns
a module defining an abstract type t, functions into and out which itness the isomorphism between t and
t F.t, and a function fold, which takes an algebra on an arbitrary type 'a and a value of type t, and returns
a value of type 'a.

We can implement this parameterized module as follows:

18

1 module Ind : INDUCTIVE =
2 functor (F : FUNCTOR) -> struct
3 type t = In : t F.t -> t
4

5 let into x = In x
6 let out (In x) = x
7

8 let rec fold falg x =
9 falg (F.map (fold falg) (out x))

10 end

The t type is implemented with a single constructor, which takes an element of t F.t and embeds it into t.
The into and out functions

We can use Ind to implement lists:

1 module ListF = struct
2 type 'a t =
3 | Nil : 'a t
4 | Cons : int * 'a -> 'a t
5

6 let map f = function
7 | Nil -> Nil
8 | Cons(n, a) -> Cons(n, f a)
9 end

10

11 module List = Ind(ListF)

The 'a t type constructor in the ListF module corresponds to the polynomial functor 1 ⊕ (ℤ ⊗ Id), and
the map function applies a function argument f to the value in the tail position (which is of type 'a). The
module List constructs the inductive type corresponding to 𝜇(1 ⊕ (ℤ ⊗ Id)), along with the isomorphism
with the unfolding, and the fold operation, which takes a list-algebra on an arbitrary type 'a to a function
t -> 'a. We can write many familiar functions now:

1 (* nil : List.t *)
2 let nil = List.into Nil
3

4 (* cons : int -> List.t -> List.t *)
5 let cons x xs = List.into (Cons(x, xs))
6

7

8 (* len : List.t -> int *)
9 let len = List.fold (function Nil -> 0

10 | Cons(_, acc) -> 1 + acc)
11

12 (* sum : List.t -> int *)
13 let sum = List.fold (function Nil -> 0
14 | Cons(n, acc) -> n + acc)
15

16 (* filter : (int -> bool) -> List.t -> List.t *)
17 let filter p =
18 List.fold (function
19 | Nil -> nil
20 | Cons(v, acc) -> if p v then cons v acc else acc)

19

3.6 Streams and Unfolds
Give a polynomial functor 𝐹, we defined 𝐹 as the smallest set closed under 𝐹. This gave rise to a principle of
induction, in which we were able to produce results by taking apart a finite data structure step by step.

But not all the data structures we use in programming are finitary! One of the most simplest examples
are streams. Mathematically, they are trivial: just infinite sequences:

ℕ = [0, 1, 2, 3, 4, …]

Fact = [1, 2, 6, 24, 120, …]

Fib = [0, 0, 1, 2, 3, 5, 8, 13, …]

But how might we formulate the principles for constructing such objects, and how might we program with
them? Let’s sketch an API for infinite streams of integers, and see what we can do.

3.6.1 The Stream API
Part of the stream API is obvious: we need a type to represent them, and we need to be able to examine a
stream:

1 module type Stream = sig
2 type t (* the type of streams *)
3

4 val head : t -> int (* If the stream is [x0, x1, x2,...] return x0 *)
5 val tail : t -> t (* If the stream is [x0, x1, x2,...] return [x1, x2, ...] *)
6 end

We can merge these two operations into one:

1 module type Stream = sig
2 type t (* the type of streams *)
3

4 val out : t -> int * t (* If the stream is [x0, x1,...] return (x0, [x1, x2, ...]) *)
5 end

Given an element xs of type t, we want to be able to observe it to find the head and the tail of the stream.
Now, let’s write a little code:

1 (* view1 : bool -> (int * bool) *)
2 let view1 b0 = (Bool.to_int b, not b)
3

4 let b0 = true
5 let (x1, b1) = view1 b0 (* x1 = 1, b1 = false *)
6 let (x2, b2) = view1 b1 (* x2 = 0, b2 = true *)
7 let (x3, b3) = view1 b2 (* x3 = 1, b3 = false *)
8 let (x4, b4) = view1 b3 (* x4 = 0, b4 = true *)

Here, we repeatedly call view on a boolean, returning its integer representation and negating it. So the
sequence of variables x1, x2, x3, x4 and so on have values cycling between 0 and 1.

Now, let’s define a function view2, that acts on a number, returning a pair of its square and the next
number:

1 (* view2 : int -> (int * int) *)
2 let view2 n = (n*n, n+1)

20

3

4 let n0 = 0
5 let (x1, n1) = view2 n0 (* x1 = 0, n1 = 1 *)
6 let (x2, n2) = view2 n1 (* x2 = 1, n2 = 2 *)
7 let (x3, n3) = view2 n2 (* x3 = 4, n3 = 3 *)
8 let (x4, n4) = view2 n3 (* x4 = 9, n4 = 4 *)

In this case, the the sequence of variables x1, x2, x3, x4 and so on have values yielding the successive squares
0, 1, 4, 9 and so on.

Let’s do this one more time, this time with a function which takes a pair of integers (a,b), and then
returns a pair whose first component is a, and whose second component is the pair (b, a+b).

1 (* view2 : int * int -> (int * (int * int)) *)
2 let view3 (a,b) = (a (b, a+b))
3

4 let p0 = (1, 2)
5 let (x1, p1) = view3 p0 (* x1 = 1, p1 = (2, 3) *)
6 let (x2, p2) = view3 p1 (* x2 = 2, p2 = (3, 5) *)
7 let (x3, p3) = view3 p2 (* x3 = 3, p3 = (5, 8) *)
8 let (x4, p4) = view3 p3 (* x4 = 5, p4 = (8, 13) *)

In this case, the sequence of calls to view3 binds the variables x1, x2, x3, x4 and so on with 1, 2, 3, 5 and so
on: the Fibonacci numbers!

The pair of a view function and an initial value lets us generate as many values as we like, telling us that
this is certainly a sufficient amount of information to define an infinite stream:

1 module type Stream = sig
2 type t (* the type of streams *)
3

4 val out : t -> int * t (* If the stream is [x0, x1,...] return (x0, [x1, x2, ...]) *)
5 val unfold : ('a -> int * 'a) -> a -> t
6 end

Note that the unfold function is polymorphic: each of the different view functions we invented had the type
a -> int * a for a different type a.

3.6.2 Programming Against the Stream API
Using our stream API, it is possible to define many more operations:

1 let ints = unfold (fun n -> (n, n+1)) 0
2

3 let fibs = unfold (fun (a, b) -> (a, (b, a+b))) (0, 1)

The ints value enumerates the integers starting with 0, by starting with a seed value of 0 and incrementing
it by one at each step. The fibs function keeps the next two values of the Fibonacci sequence in its seed, and
then returns the first component and then updates the register to hold the next two values.

1 (* cons : int -> t -> t *)
2 let cons x xs = unfold (fun (y, ys) -> (y, out ys)) (x, xs)
3

4 (* map : (int -> int) -> t -> t *)
5 let map f xs = unfold (fun xs -> let (y, ys) = out xs in (f y, ys)) xs

21

The cons function takes a value and a stream, and appends the value to the head of stream. So cons uses
a seed type consisting of a pair of the current head and the stream representing the tail. Note that the seed
type is int * t: we can use the type of streams as part of the state building further elements of the stream.

The map function is similar, with a seed type of t itself, and its coalgebra map (its view function) calls
out on it to extract the value to apply f to it.

The ability to store additional data by augmenting the seed type lets us keep track of information about
previous values of the stream. In the sum function below, we a seed type of int * t, and use the first
component of the stream to store a running total of the sum of the integers emitted so far.

1 (* sum : t -> t *)
2 let sum xs = unfold (fun (acc, ys) -> let (z, zs) = out ys in
3 (acc, (acc + z, tail ys)))
4 (0, xs)

Finally, we define take n xs to be a functionwhich returns a list containing the first n elements of the stream
xs. Because it is structurall recursive on n, it is guaranteed to terminate, event though it is manipulating
infinite objects – take only makes a finite number of observations of any stream it is given.

1 (* take : int -> t -> int list *)
2 let rec take n xs =
3 if n = 0 then
4 []
5 else
6 let (y, ys) = out xs in
7 y :: take (n-1) ys

Then, we can combine streams by putting these functions together:

1 let square n = n * n
2

3 let squares = map square ints
4

5 let sumsquares = sum squares
6

7 let triangular = take 10 (sum ints) (* [0; 1; 3; 6; 10; 15; 21; 28; 36; 45] *)
8 let vs = take 10 (sum (map square ints)) (* [0; 1; 5; 14; 30; 55; 91; 140; 204; 285] *)

3.6.3 Implementing the Stream Type
In this section, we will see how to implement the stream type.

3.6.4 A Failed Attempt
Our first idea might be to define a recursive type in OCaml which looks like this:

1 type t = Cons of int * t

This is a well-formed type, and the out and unfold operations are both definable and have the correct type:

1 (* out : t -> int * t *)
2 let out (Cons(x, xs)) = (x, xs)
3

4

5 (* unfold : ('a -> int * 'a) -> 'a -> t *)

22

6 let rec unfold view s =
7 let (x, s') = view s in
8 Cons(x, unfold view s')
9

But if we try to actually execute it, we don’t get any answer back:

1 utop[1]> unfold (fun n -> (n, n+1)) 0;;
2 (... a long time later, hopefully before a stack overflow ...)
3 Interrupted.

The reason for this is that OCaml is an eager language: in the unfold function, it tries to build the whole of
the infinite sequence before consing on the first element. Obviously, building an infinite sequence cannot be
done.

3.6.5 A Successful Attempt to Implement Streams
Instead, we have to build the sequence lazily and on-demand: we want to use the view function to produce
a value when it is demanded, and only when it is demanded.

We can do this by representing a stream as a pair of the view function and the seed, and only applying
it when the out function is invoked.

1 module Stream = struct
2 type t = Stream : ('a -> int * 'a) * 'a -> t
3

4 (* unfold : ('a -> int * 'a) -> 'a -> t *)
5 let unfold view s = Stream(view, s)
6

7 (* out : ('a -> int * 'a) -> 'a -> t *)
8 let out (Stream(view, s)) =
9 let (x, s') = view s in

10 (x, Stream(view, s'))
11 end

The type t can be thought of as a kind of state machine: in a value 𝑆𝑡𝑟𝑒𝑎𝑚(𝑣𝑖𝑒𝑤, 𝑠), the value s is the current
state, and the function view takes the current state, and produces a new value plus an updated state. So the
out function just applies s to view to get a pair of a value x and an updated state s', and then repackages
view and s' to build the tail stream starting from the next state.

All of the code wewrote in the previous section typechecks and runs, but this implementation does raise
a question, about how to reason about programs involving streams. Consider the following two programs

1 let xs = unfold (fun b -> (Bool.to_int b, not b)) false
2

3 let ys = unfold (fun n -> (n mod 2, n + 1)) 0

Both xs and ys produce the same infinite sequence 0, 1, 0, 1, …, but how can we prove that? The intuitive
answer is that take n xs and take n ys yield the same answer for any n, but to answer this question rig-
orously, we will need to give a semantics to possibly-infinite data structures.

3.7 Possibly-Infinite Streams
Now, what if we wanted to support streams which could be either finite or infinite? If we could observe
such a value, then it should either tell us the list is empty, or it should return the head and the tail.

23

3.8 Coinductive Types Generically
With these two examples in hand, let us observe that we can write similar code for an arbitrary polynomial
functor 𝐹.

1 module type FUNCTOR = sig
2 type 'a t
3 val map : ('a -> 'b) -> 'a t -> 'b t
4 end

This module type defines a type constructor 'a t with a map operator. Any module implementing such a
type constructor and map operation has this module type.

It would also need to preserve identities and compositions to be a true mathematical endofunctor, but
the OCaml type system cannot express that constraint! (Languages with advanced type systems based on
dependent type theory, such as Lean, Rocq, or Agda, are able to express such constraints.)

We can use the FUNCTOR module type to define a module type which takes a functor as an argument, and
returns a module satisfying the types expected of a coinductive type:

1 module type COINDUCTIVE =
2 functor (F : FUNCTOR) ->
3 sig
4 type t
5

6 val out : t -> t F.t
7 val unfold : ('a -> 'a F.t) -> 'a -> t
8 end

(As an aside, the word functor in the OCaml module type declaration is just the jargon Ocaml uses for pa-
rameterizedmodules, and has nothing to do with categorical functors.) We can implement a parameterized
module implementing this module type as follows:

1 module CoInd : COINDUCTIVE = functor (F : FUNCTOR) -> struct
2 type t = Build : (('a -> 'a F.t) * 'a) -> t
3

4 let unfold view seed = Build(view, see)
5

6 let out (Build(view, seed)) =
7 let shape = view seed in
8 F.map (unfold view) shape
9 end

This code is short, but very abstract. To understand it, it is helpful to work out the type of every subterm:

1 (* F.map : ('a -> b) -> 'a F.t -> 'b F.t *)
2 (* unfold : ('a -> F.t) -> 'a -> t *)
3

4 let out (Build(coalg, (* coalg : s -> s F.t *)
5 seed)) = (* seed : s *)
6 let shape = coalg seed in (* shape = coalg seed : s F.t *)
7 let g = unfold coalg in (* g = unfold coalg : s -> t *)
8 let h = F.map g in (* h = F.map g : s F.t -> s t *)
9 h shape (* h shape : t F.t *)

We can define stream as follows:

24

1 module StreamF = struct
2 type 'a t = int * 'a
3 let map f (n, a) = (n, f a)
4 end
5

6 module Stream = CoInd(StreamF)

3.9 Coalgebras and Coinductive Types

3.9.1 Coinductive Types as Terminal Coalgebras
One of the fundamental principles of category theory is duality.

We have proved that inductive types corresponds to having an initial algebra in the category of 𝐹-
algebras, and the fold operation corresponds to the unique morphism from the initial 𝐹-algebra, to an arbi-
trary 𝐹-algebra (𝐴, 𝑓 ∶ 𝐹(𝐴) → 𝐴). So the generic type of fold:

1 fold : ('a F.t -> 'a) -> t -> 'a

corresponds to taking an 𝐹-algebra on 'a, and returning the unique map t -> a from the initial algebra.
We have also seen that the generic type of unfold looks like this:

1 unfold : ('a -> 'a F.t) -> 'a -> t

Instead of taking an 𝐹-algebra (amorphism 𝐹(𝐴) → 𝐴, the unfold is taking amap of type 𝐴 → 𝐹(𝐴). And
instead of finding a map to 𝐴, we are constructing a map from 𝐴. These two reversals suggest that we should
look for a semantics of coinductive types in terms of a terminal coalgebra in the category of 𝐹-coalgebras.

Definition 3.9.1 (The Category of 𝐹-Coalgebras). An 𝐹-coalgebra is a pair of (𝐴 ∈ Set, 𝛼 ∶ 𝐴 → 𝐹(𝐴)). A
coalgebra homomorphism 𝑓 ∶ (𝐴, 𝛼) → (𝐵, 𝛽) is a function 𝑓 ∶ 𝐴 → 𝐵, such that

𝐴 𝐹(𝐴)

𝐵 𝐹(𝐵)

𝛼

𝑓 𝐹(𝑓)

𝛽

Given this definition, we can see what a terminal object looks like in this category. An object (𝜈𝐹, out ∶
𝐹(𝜈𝐹) → 𝜈𝐹) is terminal when, given any other (𝐴, 𝛼), there is a unique map ⟨𝛼⟩ ∶ 𝐴 → 𝜈𝐹 such that
𝛼; 𝐹(⟨𝛼⟩) = ⟨𝛼⟩ ; out.

Furthermore, the idea of a recursive type as a fixed type tells use we should have an in making 𝜈𝐹 and
𝐹(𝜈𝐹) into isomorphisms. Then we would expect

⟨𝛼⟩ = ⟨𝛼⟩ ; out; in
= 𝛼; 𝐹(⟨𝛼⟩); in

Drawing this as a diagram so we can see the types, we get:

𝐴 𝐹(𝐴) 𝐹(𝜈𝐹) 𝜈𝐹𝛼 𝐹(⟨(⟩𝛼)) in

So ⟨𝛼⟩ should take an 𝐴, and use the algebra map to get an 𝐹(𝐴). Then, it uses the functorial action 𝐹 to
recursively turn every 𝐴-valued subterm into a 𝜈𝐹, yielding a result of type 𝐹(𝜈𝐹). Then, we can use in to
turn this into the desired element of 𝜈𝐹.

This exactly matches the behaviour of the code we wrote for the generic coinductive unfold we wrote
earlier.

25

3.9.2 Approximations as Projective Limits
Given 𝐹, we want to define a set 𝜈𝐹 whose elements are potentially infinite objects. This is slightly tricky,
because it seems like we have to specify infinite objects “all at once”. The idea we will use is inspired by
the take function on streams. The call take n xs returns the list of the first n elements of xs, and is a
perfectly inductively well-defined function. Two streams xs and ys are obviously equivalent, if take n xs
and take n ys give the same values for all n.

So the strategy we will follow is to define the notion of an approximation to a type, and then take 𝜈𝐹 to
be the collection of all its approximations. To do this, it is helpful to formalize this idea in general, before
specializing it to the case we need.

Consider a (countably infinite) diagram (in Set) of the following shape:

𝑋0 𝑋1 𝑋2 …𝑎0 𝑎1 𝑎2

We can picture each of the 𝑋𝑖 as successively better approximations to some desired set of values. Given
an 𝑋𝑖 and an 𝑋𝑖+1, the map 𝑎𝑖 ∶ 𝑋𝑖+1 → 𝑋𝑖 takes a “better” approximation and forgets some information,
turning it into a “worse” approximation.

Wewant to define a notion of the “limit of the approximation”, whichwewill do via a universal property.

Definition 3.9.2 (The Projective Limit). An object lim𝑋𝑖 and a family of maps 𝜋𝑗 ∶ lim𝑋𝑖 → 𝑋𝑗 form a
projective limit when they satisfy the following universal property.

Suppose we have an object 𝐴 and a family of maps 𝑓𝑛 ∶ 𝐴 → 𝑋𝑛, which are compatible with the approxi-
mation maps: for all 𝑗, 𝑓𝑗+1; 𝑎𝑗 = 𝑓𝑗. We call this “a cone over the projective diagram”.

… 𝑋𝑗 𝑋𝑗+1 …

𝐴

𝑎𝑖

𝑓𝑗

𝑓𝑗+1

Then there is a unique map ⃗𝑓 ∶ 𝐴 → lim𝑋𝑖, such that all the 𝑓𝑖 factor through the projection maps 𝜋𝑖:

𝑋𝑗 𝑋𝑗+1

lim𝑋𝑖

𝐴

𝑎𝑖

𝜋𝑗+1

𝜋𝑗

𝑓𝑗

𝑓𝑗+1

⃗𝑓

Intuitively, you can think of the projective limit as the “best” version of the 𝑋𝑖, and the projection maps 𝜋𝑖
let you project out an approximation of 𝑋.

In Set, we can show that projective limits always exist, by giving an explicit construction of them. Give a
projective diagram, we first observe we can compose the approximation maps 𝑎𝑖 to get a map 𝑎(𝑗,𝑖) ∶ 𝑋𝑗 → 𝑋𝑖
for any 𝑗 ≥ 𝑖 as follows:

𝑎(𝑗,𝑖) = id when 𝑗 = 𝑖
𝑎(𝑗+1,𝑖) = 𝑎𝑗+1; 𝑎(𝑗,𝑖) when 𝑗 + 1 > 𝑖

26

We use this to construct the projective limit of the 𝑋𝑖 as follows:

lim𝑋𝑖 = {𝑣 ∶ Π𝑛 ∶ ℕ. 𝑋𝑛 ∣ ∀𝑗 ≥ 𝑖. 𝑎(𝑗,𝑖)(𝑣𝑗) = 𝑣𝑖}

So an element 𝑣 ∈ lim𝑋𝑖 is an infinite vector of values, all of which are compatible with each other: for every
𝑗 ≥ 𝑖, 𝑣𝑗 is a “better approximation” of 𝑣𝑖 – that is, 𝑎(𝑗,𝑖)(𝑣𝑗) = 𝑣𝑖. We can take any element of lim𝑋𝑖 and find
an approximation of it by projecting out the appropriate component:

𝜋𝑛 ∶ lim𝑋𝑖 → 𝑋𝑛
𝜋𝑛(𝑣) = 𝑣𝑛

Given an object 𝐴 and a family of maps 𝑓𝑛 ∶ 𝐴 → 𝑋𝑛 forming a cone over the projective diagram, the
mediating map

#»

𝑓 can be explicitly given as:
#»

𝑓 (𝑎) = 𝑛 ↦ 𝑓𝑛(𝑎)

3.9.3 Polynomial Functors Preserve Projective Limits
One of the most important properties of projective limits is that they are preserved by polynomial functors
in Set.

Theorem 3.9.3 (Polynomial Functors Preserve Projective Limits). Suppose we have a polynomial functor 𝐹 and
projective diagram

𝑋0 𝑋1 𝑋2 …𝑎0 𝑎1 𝑎2

If we apply 𝐹 to the first diagram, we get a new diagram:

𝐹(𝑋0) 𝐹(𝑋1) 𝐹(𝑋2) …
𝐹(𝑎0) 𝐹(𝑎1) 𝐹(𝑎2)

There exists an isomorphism (𝛿, 𝛿−1) ∶ 𝐹(lim𝑋𝑖) ≅ lim𝐹(𝑋𝑖), such that 𝐹(𝜋𝑖) = 𝛿; 𝜋𝐹
𝑖 , where 𝜋𝑖 ∶ lim𝑋𝑖 → 𝑋𝑖 and

𝜋𝐹
𝑖 ∶ lim𝐹(𝑋𝑖) → 𝐹(𝑋𝑖) are the projection maps for the two limits.

Proof. This follows by induction on 𝐹. All of the cases are easy except for the sum case, when 𝐹 = 𝐺 ⊕ 𝐻.

1. By induction, we know that (𝛿𝐺, 𝛿𝐺
−1) ∶ lim𝐺(𝑋𝑖) ≅ 𝐺(lim𝑋𝑖) such that 𝐺(𝜋𝑖) = 𝛿𝐺; 𝜋𝐺

𝑖 .

2. By induction, we know that (𝛿𝐻, 𝛿𝐻
−1) ∶ lim𝐻(𝑋𝑖) ≅ 𝐻(lim𝑋𝑖) such that 𝐻(𝜋𝑖) = 𝛿𝐻; 𝜋𝐻

𝑖 .

3. Hence 𝐺(𝜋𝑖) + 𝐻(𝜋𝑖) = (𝛿𝐺; 𝜋𝐺
𝑖) + (𝛿𝐻; 𝜋𝐽

𝑖) = (𝛿𝐹 + 𝛿𝐺); (𝜋𝐺
𝑖 + 𝜋𝐻

𝑖).

4. The action of 𝐺 ⊕ 𝐻 on the pieces of the diagram looks like this:

𝐺(𝑋𝑖) + 𝐻(𝑋𝑖) 𝐺(𝑋𝑖+1) + 𝐻(𝑋𝑖+1)
𝐺(𝑎𝑖)+𝐻(𝑎𝑖)

5. So the limit is

lim (𝐺 ⊕ 𝐻)(𝑋𝑖) = {𝑣 ∶ Π𝑛 ∶ ℕ. 𝐺(𝑋𝑛) + 𝐻(𝑋𝑛) ∣ ∀𝑗 ≥ 𝑖.(𝐺(𝑎(𝑗,𝑖)) + 𝐻(𝑎(𝑗,𝑖)))(𝑣𝑗) = 𝑣𝑖}

with projection maps 𝜋𝐺⊕𝐻
𝑗 ∶ lim((𝐺 ⊕ 𝐻)(𝑋𝑖)) → (𝐺 ⊕ 𝐻)(𝑋𝑗).

6. Observe that 𝐺(𝑎(𝑗,𝑖)) + 𝐻(𝑎(𝑗,𝑖)) never sends a value 𝜄1𝑣 to a value 𝜄2(𝑣′), or vice-versa.

7. Hence the elements of the limit (lim (𝐺 ⊕ 𝐻)(𝑋𝑖) are either of the shape (𝜄1𝑔0, 𝜄1𝑔1, 𝜄1𝑔2, …) where
(𝑔0, 𝑔1, 𝑔2, …) ∈ lim𝐺(𝑋𝑖), or are of the shape (𝜄2(ℎ0), 𝜄2(ℎ1), 𝜄2(ℎ2), …), where (ℎ0, ℎ1, ℎ2, …) ∈ lim𝐻(𝑋𝑖).

27

8. This yields an isomorphism (𝑚, 𝑚−1) lim (𝐺 ⊕ 𝐻)(𝑋𝑖) ≅ lim𝐺(𝑋𝑖) + lim𝐻(𝑋𝑖).

9. Consider the projection maps 𝜋𝐺
𝑖 ∶ lim𝐺(𝑋𝑖) → 𝐺(𝑋𝑖) and 𝜋𝐻

𝑖 ∶ lim𝐻(𝑋𝑖) → 𝐻(𝑋𝑖).

10. It is clear that 𝜋𝐺
𝑖 + 𝜋𝐻

𝑖 = 𝑚; 𝜋𝐺⊕𝐻
𝑖 .

11. From above, we know that (𝐹 ⊕ 𝐺)(𝜋𝑖) = (𝛿𝐹 + 𝛿𝐺); (𝜋𝐹
𝑖 + 𝜋𝐺

𝑖).

12. So (𝐹 ⊕ 𝐺)(𝜋𝑖) = (𝛿𝐹 + 𝛿𝐺); 𝑚; 𝜋𝐺⊕𝐻
𝑖 .

13. Since 𝛿𝐺, 𝛿𝐻 and 𝑚 are isomorphisms, (𝛿𝐺 +𝛿𝐻); 𝑚 is one half of an iso as well, with 𝑚−1; (𝛿𝐺
−1 +𝛿𝐻

−1)
as the other direction.

Because universal properties only characterize objects up to isomorphism, this theorem means that if
an object lim𝑋𝑖 and projection maps 𝜋𝑖 ∶ 𝑋𝑖+1 → 𝑋𝑖 form a projective limit, then 𝐹(lim𝑋𝑖) and the maps
𝐹(𝜋𝑖) ∶ 𝐹(𝑋𝑖+1) → 𝐹(𝑋𝑖) form a projective limit over the diagram with 𝐹 applied to it.

3.9.4 Coinductive Types as Projective Limits
Now that we have the general notion of projective limit, we can use it do define the set 𝜈𝐹. To do this, we
draw the projective diagram:

1 𝑋1 𝑋2 …⟨⟩ 𝐹(⟨⟩) 𝐹2(⟨⟩)

where ⟨⟩ ∶ 𝐴 → 1 is the terminal map sending everything to the singleton value ∗. We then define 𝜈𝐹 to be
the projective limit of this diagram 𝜈𝐹 = lim𝐹𝑖(1).

Example 3.9.4. Consider the stream functor 𝐹 = ℤ⊗ Id. Then the sequence of approximations is 1, ℤ×1, ℤ×
ℤ × 1 and so on: the 𝑛-the approximation is a tuple of 𝑛 integers.

Then, the stream of square numbers will be represented in 𝜈𝐹 as a series of increasing lists of squares:
[(), (1), (1, 4), (1, 4, 9), (1, 4, 9, 16), …]. The 𝑛-th position (counting from 0) will be a list of the first 𝑛 square
numbers.

Theorem 3.9.5 (Isomorphism Theorem for Coinductive Types). There exists an isomorphism (𝛿, 𝛿−1) ∶ 𝜈𝐹 ≅
𝐹(𝜈𝐹) such that 𝐹(𝜋𝑖) = 𝛿; 𝐹(𝜋𝑖).

Proof. First, observe that 𝐹(𝜈𝐹) is over a projective diagram whose 𝑖-th component looks like this:

𝐹(𝐹𝑖(1)) 𝐹(𝐹𝑖+1(1))
𝐹(𝐹𝑖(⟨⟩))

Then, recalling that polynomial functors preserve projective limits, we know that 𝐹(𝜈𝐹) ≅ lim𝐹𝑖+1(1) and
that the 𝐹(𝜋𝑖) factor through the projection maps 𝜋′

𝑖 of lim𝐹𝑖+1(1). Since 𝜈𝐹 = lim𝐹𝑖(1), it suffices to show
that lim𝐹𝑖(1) ≅ lim𝐹(𝑖+1)(1).

We can give the isomorphism explicitly as:

out ∶ lim𝐹𝑖(1) → lim𝐹(𝑖+1)(1)
out(𝑣) = (𝑛 ↦ 𝜋𝑛+1(𝑣))

in ∶ lim𝐹𝑖+1(1) → lim𝐹𝑖(1)

in(𝑣′) = { ∗ when 𝑛 = 0
𝜋′

𝑘(𝑣′) when 𝑛 = 𝑘 + 1

This clearly form an isomorphism (which preserves projections) for all 𝑛 > 0, and the case 𝑛 = 0 works
because the terminus of 𝑛𝑢𝐹’s diagram is 1, all maps into the terminal object are equal.

28

Next, we can construct the terminal map as follows.

Lemma 3.9.6. Given an 𝐹-coalgebra (𝐴, 𝛼 ∶ 𝐴 → 𝐹𝐴), we can define a map ⟨𝛼⟩ ∶ (𝐴, 𝛼) → (𝜈𝐹, out).

Proof. 1. We define a cone over the projective diagram for 𝜈𝐹 as follows:

𝑎𝑛 ∶ 𝐴 → 𝐹𝑛(1)
𝑎0 = ⟨⟩
𝑎𝑘+1 = 𝛼; 𝐹(𝑎𝑘)

2. We can prove this is a cone by inductively proving that 𝑎𝑛+1; 𝐹𝑛(⟨⟩) = 𝑎𝑛.

(a) Case: 𝑛 = 0: Note that 𝑎1; 𝐹0(⟨⟩) = 𝑎; 𝐹(⟨⟩); ⟨⟩ = ⟨⟩.
(b) Case 𝑛 = 𝑘 + 1:

𝑎𝑘+2; 𝐹𝑘+1(⟨⟩) = 𝛼; 𝐹(𝛼; 𝑎𝑘+1); 𝐹𝑘+1(⟨⟩)
= 𝛼; 𝐹(𝛼; 𝑎𝑘+1; 𝐹𝑘(⟨⟩))
= 𝛼; 𝐹(𝛼; 𝑎𝑘)
= 𝑎𝑘+1

3. We take ⟨𝛼⟩ to be the universal map ⟨ ⃗𝑎⟩.

4. Next, we need to show that 𝛼; 𝐹(⟨𝛼⟩) = ⟨𝛼⟩ ; out.

(a) First, note that 𝐹 preserves projective limits. So applying 𝐹 to the 𝑎𝑖 yields a cocone over 𝐹(𝜈𝐹),
and 𝐹(⟨𝛼⟩) ∶ 𝐹(𝐴) → 𝐹(𝜈𝐹).

(b) Furthermore, the maps 𝛼; 𝐹(𝑎𝑖) ∶ 𝐹(𝐴) → 𝐹𝑖+1 form a cocone, and by uniqueness we know the
mediating map must by 𝛼; 𝐹(⟨𝛼⟩) ∶ 𝐹(𝐴) → 𝐹(𝜈𝐹).

(c) Observe that 𝛼; 𝐹(𝑎𝑖) = 𝑎𝑖+1.
(d) Hence 𝛼; 𝐹(⟨𝛼⟩) = ⟨𝛼⟩ ; out.

3.9.5 Reasoning About Coinductive Values
Consider the following two streams:

1 let xs = unfold (fun b -> (Bool.to_int b, not b)) false
2

3 let ys = unfold (fun n -> (n mod 2, n + 1)) 0

We expect both xs and ys to be equal. Our intuition is that the coalgebra in xs keeps flipping the seed from
false to true, and in lockstep ys’s coalgebra flips from 0 to 1.

In otherwords, wewant to say that 0 and false are related, and 1 and true are related, and the coalgebras
preserve that relation. It’s easy to define the relation 𝑅 = {(0, false), (1, true)} ⊆ ℤ×2, but the coalgebramaps
return something of a different types: ℤ × Z and ℤ × 2 repectively.

Since in general we will consider polynomial functors 𝐹, we will want to think about the action of a
functor on a relation.

Definition 3.9.7 (Action of a polynomial functor on a relation). Suppose 𝐴 and 𝐵 are sets, and 𝑅 ⊆ 𝐴×𝐵 is a
relation betweent them. Then we can define the action of 𝐹 on 𝑅 to yield a relation 𝐹𝑅 ⊆ 𝐹𝐴 × 𝐹𝐵 as follows:

JIdKℛ (𝑅) = 𝑅
J𝐴Kℛ (𝑅) = Eq𝐴 = {(𝑎, 𝑎) ∣ 𝑎 ∈ 𝐴}
J𝐹 ⊗ 𝐺Kℛ (𝑅) = 𝐹(𝑅) × 𝐺(𝑅)
J𝐹 ⊕ 𝐺Kℛ (𝑅) = 𝐹(𝑅) + 𝐺(𝑅) = {(𝜄1𝑥, 𝜄1𝑦) ∣ (𝑥, 𝑦) ∈ 𝐹(𝑅)} ∪ {(𝜄2𝑥, 𝜄2𝑦) ∣ (𝑥, 𝑦) ∈ 𝐺(𝑅)}

29

We also use the notation 𝑅 ⇒ 𝑆 to denote the relation on functions which respect 𝑅 and 𝑆:

𝑅 ⇒ 𝑆 = {(𝑓 , 𝑔) ∣ ∀(𝑎, 𝑏) ∈ 𝑅. (𝑓 𝑎, 𝑔𝑏) ∈ 𝑆}

Observe that if (𝑓 , 𝑔) ∈ 𝑅 ⇒ 𝑆 and (ℎ, 𝑘) ∈ 𝑆 ⇒ 𝑇, then (𝑓 ; ℎ, 𝑔; 𝑘) ∈ 𝑅 ⇒ 𝑇.
The relational action has some basic properties:

Lemma 3.9.8 (𝐹 preserves equality). For a set 𝐴 and polynomial functor 𝐹, we have that 𝐹(Eq𝐴) = Eq𝐹(𝐴).

Proof. By induction on 𝐹

Lemma 3.9.9 (𝐹 preserves function relations). Suppose 𝑅 ⊆ 𝐴 × 𝑋 and 𝑆 ⊆ 𝐵 × 𝑌 and 𝑓 ∶ 𝐴 → 𝑋 and 𝑔 ∶ 𝐵 → 𝑌.
If (𝑓 , 𝑔) ∈ 𝑅 → 𝑆 then (𝐹(𝑓), 𝐹(𝑔)) ∈ 𝐹(𝑅) ⇒ 𝐹(𝑆)

Proof. By induction on 𝐹.

Theorem 3.9.10 (The Principle of Bisimulation). Suppose 𝛼 ∶ 𝐴 → 𝐹(𝐴) and 𝛽 ∶ 𝐵 → 𝐹(𝐵) and 𝑅 ⊆ 𝐴 × 𝑋.
If (𝛼, 𝛽) ∈ 𝑅 ⇒ 𝐹(𝑅) then (⟨𝛼⟩ , ⟨𝛽⟩) ∈ 𝑅 ⇒ Eq𝜈𝐹

Unpacking the notation a little, this theorem says that if the coalgebra maps 𝛼 and 𝛽 preserve a relation
𝑅, and 𝑎 and 𝑏 are arguments related by 𝑅, then unfold alpha a equals unfold beta b.

Proof. We know that ⟨𝛼⟩ and ⟨𝛽⟩ are defined as a family of approximations. In particular, they are

𝑎𝑛 ∶ 𝐴 → 𝐹𝑛(1) 𝑏𝑛 ∶ 𝐵 → 𝐹𝑛(1)
𝑎0 = ⟨⟩ 𝑏0 = ⟨⟩
𝑎𝑘+1 = 𝛼; 𝐹(𝑎𝑘) 𝑏𝑘+1 = 𝛽; 𝐹(𝑏𝑘)

It therefore suffices prove that (𝑎𝑛, 𝑏𝑛) ∈ 𝑅 ⇒ 𝐹𝑛(1), which we can do by induction:

• Case 𝑛 = 0: Immediate.

• Case 𝑛 = 𝑘 + 1

1. By definition, 𝑎𝑘+1 = 𝛼; 𝐹(𝑎𝑘) and 𝑏𝑘+1 = 𝛽; 𝐹(𝛽).
2. By assumption, (𝛼, 𝛽) ∈ 𝑅 ⇒ 𝐹(𝑅).
3. By induction, (𝑎𝑘, 𝑏𝑘) ∈ 𝑅 ⇒ Eq𝐹𝑘(1).
4. Hence (𝐹(𝑎𝑘), 𝐹(𝑏𝑘)) ∈ 𝐹(𝑅) ⇒ 𝐹(Eq𝐹𝑘(1)).
5. Since 𝐹(Eq𝐹𝑘(1)) = Eq𝐹𝑘+11, we have (𝐹(𝑎𝑘), 𝐹(𝑏𝑘)) ∈ 𝐹(𝑅) ⇒ Eq𝐹𝑘+1(1).
6. By composition, (𝛼; 𝐹(𝑎𝑘), 𝛽; 𝐹(𝑏𝑘)) ∈ 𝑅) ⇒ Eq𝐹𝑘+1(1).

3.10 Non-structural Recursion as Coalgebra-to-Algebra Morphisms
For each polynomial functor 𝐹, we have two notions of fixed point, the inductive type 𝜇𝐹, and the coinductive
type 𝜈𝐹. Inductive types correspond to finite data, and this means we can use a fold over an 𝐹-algebra
(𝐴, 𝛼 ∶ 𝐹(𝐴) → 𝐴) to destructure inductive data and produce an answer of type 𝐴. Coinductive types, on
the other hand, take a 𝐹-coalgebra (𝐴, 𝛾 ∶ 𝐴 → 𝐹(𝐴)), and use the coalgebra to lazily construct a value of type
𝜈𝐹.

Since 𝜇𝐹 are finite values, and 𝜈𝐹 are potentially unbounded, it’s easy to write a function embedding
an inductive value into a coinductive one. Since out𝜇𝐹 ∶ 𝜇𝐹 → 𝐹(𝜇𝐹), it makes (𝜇𝐹, out𝜇𝐹) into a coalgebra.
Therefore, we can construct an unfold as follows:

30

⟨out𝜇𝐹⟩ ∶ 𝜇𝐹 → 𝜈𝐹
However, we often want to construct inductive data. For example, manyalgorithms work by constructing

intermediate values from the input, which are then deconstructed to produce the final output.
So if we have a coalgebra (𝐼, 𝑑 ∶ 𝐼 → 𝐹(𝐼)), and an algebra (𝑂, 𝑠 ∶ 𝐹(𝑂) → 𝑂), it seems like we should be

able to destructure the input with 𝑑, and then construct outputs using 𝑠. Unfortunately, ⟨𝑑⟩ ∶ 𝐼 → 𝜈𝐹 and
(|𝑠|) ∶ 𝜇𝐹 → 𝑂, so we can’t compose them – ⟨𝑑⟩ might construct infinite values which are “too big” for (|𝑠|) to
consume.

However, consider the mergesort function:

1 (* split : int list -> (int list * int list) *)
2 let rec split = function
3 | [] -> ([], [])
4 | (x :: xs) -> let (ys, zs) = split xs in
5 (zs, x :: ys)
6

7 (* merge : (int list * int list) -> int list *)
8 let rec merge = function
9 | (xs, []) -> xs

10 | ([], ys) -> ys
11 | (x :: xs, y :: ys) when x < y -> x :: merge (xs, y :: ys)
12 | (x :: xs, y :: ys) -> y :: merge (x :: xs, ys)
13

14 (* mergesort : int list -> int list *)
15 let rec mergesort = function
16 | [] -> []
17 | [x] -> [x]
18 | xs -> let (ys, zs) = split xs in
19 merge(mergesort ys, mergesort zs)

This works by recursively split-ting an input list into two, sorting each half, and then merge-ing them
to produce a result. Let’s try to represent the splitting and merging phases as a coalgebra and algebra for a
functor.

We do this by defining an algebra with three cases, one for empty lists, one for singletons, and one for
splits. We’ll make the Split case polymorphic, so that we can define it as functor.

1 type 'a merge =
2 | Empty
3 | One of int
4 | Split of (a * 'a)
5

6 (* map : ('a -> 'b) -> 'a merge -> 'b merge *)
7 let map f = function
8 | Empty -> Empty
9 | One x -> One x

10 | Split(a, b) -> Split(f a, f b)

This corresponds to the functor 1 ⊕ ℤ ⊕ (Id ⊗ Id).
Now, let’s try towrite a generic function for taking apart inputswith amerge-coalgebra, and constructing

inputs with a merge-algebra:

1 (* fix : ('a -> 'a merge) -> ('b merge -> 'b) -> 'a -> 'b *)
2 let rec fix coalg alg xs =
3 alg (map (fix coalg alg) (coalg xs))

31

This takes an input xs, andwith coalg xsproduces a value of type 'a merge. Since fix coalg alg has type
'a -> 'b, we can see that map (fix coalg alg)has type 'a shape -> 'b shape. So map (fix coalg alg) (coalg xs)
has type 'b shape. We canhit thiswith the algebra alg, and then the body alg (map (fix coalg alg) (coalg xs))
has type 'b.

Next, let’s write a function to produce a suitable coalgebra:

1 (* coalg : int list -> (int list * int list) merge *)
2 let coalg = function
3 | [] -> Empty
4 | [x] -> One x
5 | xs -> Split(split xs)

The coalg function takes a list, and then case analyses it to decide if it is empty, a singleton, or has more
elements, in which case it uses split to split the lists.

Then, we can write an algebra map, as well:

1 (* alg : (int list) merge -> int list *)
2 let rec alg = function
3 | Empty -> []
4 | One x -> [x]
5 | Split(xs, ys) -> merge(xs, ys)

Now, we can define mergesort as a coalgebra-to-algebra morphism:

1 (* sort : int list -> int list *)
2 let sort = fix coalg alg

This works as we intend:

1 utop[]> sort [6; 3; 5; 4; 2; 2];;
2

3 - : int list = [2; 2; 3; 4; 5; 6]

3.10.1 Well-Founded Coalgebras
As we emphasized, destructuring an input with a coalgebra and producing and output with an algebra is
not always well-defined, because some (most!) coalgebras can produce larger outputs at each stage.

The mergesort coalg function is well-behaved, in the sense that it always produces smaller outputs –
the split function is called on inputs of length at least 2, and then divides them into nearly-equal sublists.
As a result, it is impossible to infinite nest Shape constructors, because the lists they are produced from are
strictly smaller on each step.

In this section, we will formalize the idea of when a coalgebra is well-founded.

Definition 3.10.1 (Preordered Sets). A preorder is a pair (𝑋, ≤) of a set 𝑋 and a reflexive, transitive binary
relation ≤ on 𝑋.

Let us fix a little notation:

1. We say that 𝑥 < 𝑦 (read “𝑥 is strictly below 𝑦”) if 𝑥 ≤ 𝑦, and 𝑦 ≰ 𝑥.

2. We say ≤ iswell-founded (or has no infinite descending chains) if there are no infinite sequences 𝑥0 > 𝑥1 >
𝑥2 > ….

3. Dually, we say ≤ is has no infinite ascending chains if there are no infinite sequences 𝑥0 < 𝑥1 < 𝑥2 < ….

4. A map 𝑓 ∶ (𝑋, ≤𝑋) → (𝑌, ≤𝑌) is strongly monotone if for all 𝑥 <𝑋 𝑥′, we have that 𝑓 (𝑥) <𝑌 𝑓 (𝑥′).

32

The notion of awell-founded preorder is valuable because it supports a general principle ofwell-founded
induction:

Theorem 3.10.2 (The Principle of Well-Founded Induction). Suppose (𝑋, ≤) is a well-founded preorder, and
𝑃(𝑥) is a property satisfying the condition that for all 𝑥 ∈ 𝑋, if ∀𝑦 < 𝑥. 𝑃(𝑦) then 𝑃(𝑥). Then it follows that
∀𝑥 ∈ 𝑋. 𝑃(𝑥) holds.

Any given set can be equipped with many possible preorders. For example in the case of mergesort, the
preorder we want to consider is the one that says xs ≤ ys if length xs ≤ length ys.

Note also that if xs = [1; 2; 3] and ys = [4; 5; 6], then xs ≤ ys and ys ≤ xs, but xs ≠ ys. (The absence of an
antisymmetry requirement is what distinguishes preorders from partial orders.)

Lemma 3.10.3 (Polynomial Functors Send Preorders to Preorders). If (≤) is a preorder on 𝑋, then 𝐹(≤) is a
preorder on 𝐹(𝑋).

Lemma 3.10.4 (Polynomial Functors PreserveMonotone Functions). If (𝑋, ≤𝑋) and (𝑌, ≤𝑌) are preorders, and
𝑓 ∶ 𝑋 → 𝑌 is a monotone function, then 𝐹(𝑓) is a monotone function.

Lemma 3.10.5 (Polynomial Functors Preserve Well-Foundedness). If (≤) is a well-founded preorder on 𝑋, then
𝐹(≤) is a well-founded preorder on 𝐹(𝑋).

Lemma 3.10.6 (Polynomial Functors Preserve Strongly Monotone Functions). If (𝑋, ≤𝑋) and (𝑌, ≤𝑌) are
preorders, and 𝑓 ∶ 𝑋 → 𝑌 is a strongly monotone function, then 𝐹(𝑓) is a strongly monotone function.

Now, suppose that we have a well-founded preorder (𝑋, ≤) and a function 𝑓 ∶ 𝑋 → 𝑋, such that for all
𝑥 ∈ 𝑋, we have that 𝑓 (𝑥) < 𝑥. In this case, we say that 𝑓 is decreasing. We know that for any 𝑥, there must
be an 𝑛 such that 𝑓 𝑛(𝑥) = 𝑓 𝑛+1(𝑥) – i.e, 𝑓 wil have a fixed point – because otherwise we would violate the no
infinite descending chain condition.

This is an easy argument, but we want to generalize this notion so that we can talk about a coalgebra
producing smaller arguments, and a coalgebra 𝑑 ∶ 𝑋 → 𝐹(𝑋) does not have the same input and output
types. So we have to generalize the notion of a decreasing function to account for the difference. To do so,
we introduce the ≤𝐹 relation, which is a subset of 𝐹(𝑋) × 𝑋.

Definition 3.10.7 (Functorial comparison). Given a preorder (𝑋, ≤) and a polynomial functor 𝐹, we define
𝑥 ≤𝐹 𝑦 as follows:

𝑥 ≤Id 𝑦 ⟺ 𝑥 ≤ 𝑦
𝑥 ≤𝐴 𝑦 ⟺ always
(𝑎, 𝑏) ≤𝐹⊗𝐺 𝑦 ⟺ 𝑎 ≤𝐹 𝑦 and 𝑏 ≤𝐺 𝑦
𝜄1𝑣 ≤𝐹⊕𝐺 𝑦 ⟺ 𝑣 ≤𝐹 𝑦
𝜄2𝑣 ≤𝐹⊕𝐺 𝑦 ⟺ 𝑣 ≤𝐺 𝑦

We also define 𝑥 <𝐹 𝑦 analogously.

Definition 3.10.8 (Well-Founded Coalgebras). A coalgebra 𝑑 ∶ 𝑋 → 𝐹(𝑋) is well-founded if for all 𝑥 ∈ 𝑋, we
have that 𝑑(𝑥) <𝐹 𝑥.

Note that since polynomial functors preserve

Theorem 3.10.9 (The Recursion Theorem). If (𝑋, ≤) is a preorder, and 𝑑 ∶ 𝑋 → 𝐹(𝑋) is a well-founded 𝐹-
coalgebra, and 𝑠 ∶ 𝐹(𝑌) → 𝑌 is an 𝐹-algebra, then there exists a function 𝜙 ∶ 𝑋 → 𝑌 satisfying the equation:

𝜙 = 𝑑; 𝐹(𝜙); 𝑠

Proof. We will prove that for all 𝑥 ∈ 𝑋, 𝜙(𝑥) ∈ 𝑌.

1. Assume 𝑥 ∈ 𝑋.

33

2. Assume for all 𝑦 < 𝑥 we have 𝜙(𝑦) ∈ 𝑌.

3. We will now prove by induction on 𝐹 that for all 𝑣 < 𝑑(𝑥), we have that 𝐹(𝜙)(𝑣) ∈ 𝐹(𝑌).
Assume we have 𝑣 <𝐹 𝑑(𝑥), and proceed by cases on 𝐹:

• Case 𝐹 = 𝐴:
𝐴(𝜙)(𝑣) = id(𝑣) = 𝑣 ∈ 𝑌 = Id(𝑌).

• Case 𝐹 = Id:
(a) Id(𝜙)(𝑣) = 𝜙(𝑣).
(b) By the definition of 𝑣 <Id 𝑑(𝑥), we have 𝑣 < 𝑑(𝑥).
(c) Since 𝑑 is decreasing, 𝑣 < 𝑑(𝑥) < 𝑥.
(d) Since 𝑣 < 𝑥, by the outer inductive hypothesis 𝜙(𝑣) ∈ 𝑌.

• Case 𝐹 = 𝐺1 ⊗ 𝐺2:
(a) Since (𝐺1 ⊗𝐺2)(𝑋) = 𝐺1(𝑋)×𝐺2(𝑋), we know 𝑣 = (𝑎, 𝑏) for some 𝑎 ∈ 𝐺1(𝑋) and 𝑏 ∈ 𝐺2(𝑋).
(b) (𝐺1 ⊗ 𝐺2)(𝜙)(𝑎, 𝑏) = (𝐺1(𝜙) × 𝐺2(𝜙))(𝑎, 𝑏) = (𝐺1(𝜙)(𝑎), 𝐺2(𝜙)(𝑏)).
(c) By the definition of (𝑎, 𝑏) <𝐺1⊗𝐺2

𝑑(𝑥), we know that 𝑎 <𝐺1
𝑑(𝑥) and 𝑏 <𝐺2

𝑑(𝑥).
(d) By induction, 𝐺1(𝜙)(𝑎) ∈ 𝐺1(𝑋) and 𝐺2(𝜙)(𝑏) ∈ 𝐺2(𝑋).
(e) Hence (𝐺1(𝜙)(𝑎), 𝐺2(𝜙)(𝑏)) ∈ 𝐺1(𝑋) × 𝐺2(𝑌).
(f) Hence (𝐺1 ⊗ 𝐺2)(𝜙)(𝑣) ∈ (𝐺1 ⊗ 𝐺2)(𝑌).

• Case 𝐹 = 𝐺1 ⊕ 𝐺2:
(a) Since (𝐺1 ⊗ 𝐺2)(𝑋) = 𝐺1(𝑋) × 𝐺2(𝑋), we know 𝑣 = 𝜄𝑖𝑣′ for some 𝑣′ ∈ 𝐺𝑖(𝑋).
(b) (𝐺1 ⊕ 𝐺2)(𝜙)(𝜄𝑖𝑣′) = (𝐺1(𝜙) + 𝐺2(𝜙))(𝜄𝑖𝑣′) = 𝜄𝑖(𝐺𝑖(𝜙)(𝑣′)).
(c) By the definition of 𝜄𝑖𝑣 <𝐺1⊕𝐺2

𝑑(𝑥), we know that 𝑣′ <𝐺𝑖
𝑑(𝑥).

(d) By induction, 𝐺𝑖(𝜙)(𝑣′) ∈ 𝐺𝑖(𝑋).
(e) Hence 𝜄𝑖(𝐺𝑖(𝜙)(𝑣′)) ∈ 𝐺1(𝑋) + 𝐺2(𝑌).
(f) Hence (𝐺1 ⊕ 𝐺2)(𝜙)(𝑣) ∈ (𝐺1 ⊕ 𝐺2)(𝑌).

3.11 Dynamic Programming as a Coalgebra-to-algebra Morphism
So far, we we have invented a semantics for data and codata, and learned how structural recursion and
corecursion arise semantically from their mathematical properties. Then, we showed how we can model
nonstructural, but still total, forms of recursion using coalgebra-to-algebra morphisms.

Most programmers have a pretty good intuition for finitary data like numbers and lists, so formalizing it
mathematically may feel a bit excessively mathematical. Being able to design and reason about potentially
infinite data structures is a useful, if somewhat niche, programming technique. But one might reasonably
ask why it is worthwhile, from an algorithmic point of view, to formulate nonstructural recursion via well-
founded coalgebras.

After all, most programming languages already support arbitrary recursive definitions. Where is the payoff
in this perspective?

One answer to this question arises from dynamic programming. In algorithms courses, we are taught
that a program is amenable to dynamic programming if it has optimal substructure. This term is never defined
formally, but we are taught that if (a) we can decompose a problem into smaller subproblems, and (b)
construct an optimal solution from optimal solutions to those subproblems, then a dynamic programming
approach can yield a good algorithm.

Now, consider a function 𝑓 ∶ 𝑋 → 𝑌, which is formulated as a coalgebra-to-algebra morphism: i.e.,
𝑓 = 𝑑; 𝐹(𝑓); 𝑠, where 𝑑 ∶ 𝑋 → 𝐹(𝑋) is a well-founded 𝐹-coalgebra, and 𝑠 ∶ 𝐹(𝑌) → 𝑌 is an 𝐹-algebra.

34

Observe that 𝑑 decomposes an input 𝑋 into a collection of smaller subproblems of a shape described by
a functor 𝐹. And 𝑠 takes a collection of solutions described by a functor 𝐹, and then assembles them into a
final solution.

In otherwords, we can define a problem to have optimal substructure if it can be solvedwith an coalgebra-
to-algebra morphism.

Next, recall that the idea behind dynamic programming is that when decomposing a problem into sub-
problems, many subproblems may occur repeatedly. By remembering the solutions to the problems we’ve
already solved, we save ourselves from having to recompute solutions over and over again.

We can implement this, once and for all, as follows:

1 module Memo(F : FUNCTOR) = struct
2 (* fix : ('a -> 'a F.t) -> ('b F.t -> 'b) -> 'a -> 'b *)
3 let rec fix coalg alg x =
4 alg (F.map (fix coalg alg) (coalg x))
5

6

7 (* memo : ('a -> 'a F.t) -> ('b F.t -> 'b) -> 'a -> 'b *)
8 let memo coalg alg x =
9 let h = Hashtbl.create 0 in

10 let rec loop x =
11 match Hashtbl.find_opt h x with
12 | Some v -> v
13 | None -> let v = alg (F.map loop (coalg x)) in
14 Hashtbl.add h x v;
15 v
16 in
17 loop x
18 end

The parameterized module Memo takes a module implementing the FUNCTOR interface as an argument, and
then constructs a module with two functions. The fix takes a coalgebra and algebra as arguments, and
then defines a coalgebra-to-algebra morphism following the recursive mathematical definition. This will
only return a function terminating on all inputs, of course, if it is passed a well-founded coalgebra as an
argument. It also defined a function memo, which has identical behavior1 (i.e., memo computes exactly the
same results as fix), but which memoizes its recursive calls using a hash table.

This guarantees that each subproblem is solved at most once, potentially yielding asymptotic speedups
if subproblems repeatedly occur.

As an example, let’s consider the longest common subsequence problem.
Given a string 𝑠, we say that a string 𝑠0 is a subsequence of 𝑠, if we can get 𝑠0 from 𝑠 by deleting characters

from 𝑠. For example, the strings "mom" and "mum" have "mm" as their longest common subsequence. (Both
the single-character string "m" and the empty string """ are subsequences as well.)

Given two strings 𝑠1 and 𝑠2, the longest common subsequence problem asks us to find the length of the
longest string which is a subsequence of both 𝑠1 and 𝑠2.

There is a naive (i.e., exponential-time) recursive algorithm to solve this. If either string is empty, we
return 0. Otherwise, we compare the first characters of 𝑠1 and 𝑠2. Then:

• If the first characters match, add 1 to longest subsequence of their suffixes.

• If the first characters differ, take the maximum of the longest common sequence of 𝑠1 and the suffix of
all of 𝑠2, and the longest common subsequence of the suffix of 𝑠1, and all of 𝑠2.

1This code is actually incorrect, because it uses OCaml’s generic equality, which gives incorrect answers for abstract types like sets.
A proper implementation would need to be parameterized with a comparator and hash function for the type 'a. However, I have not
done this in order to highlight the key idea.

35

We will write this as Ocaml code. Since OCaml strings are character arrays and so it is expensive
(𝑂(𝑛)time) to take suffixes, we introduce an auxilliary datatype to make this cheap:

1 type suffix = Suffix of string * int
2

3 (* make : string -> suffix *)
4 let make s = Suffix(s, 0)
5

6 (* view : suffix -> (char * suffix) option *)
7 let view (Suffix(s, i)) =
8 if i = String.length s then
9 None

10 else
11 Some(s.[i], Suffix(s, i+1))

The suffix type represents the suffix of a string. The value 𝑆𝑢𝑓 𝑓 𝑖𝑥(𝑠, 𝑖) represents the substring of s
starting at position 𝑖. The make function takes a string, and returns a suffix corresponding to the whole
string s. The view function takes a suffix s, and returns None if the string is empty, and Some(c, s') if the
first character of s is c, and a suffix s' representing the 1-character suffix of s. This can be done in constant
time (instead of linear), since computing the suffix is just an index increment.

This lets us directly implement the English pseudocode in OCaml:

1 (* lcs_simple : suffix -> suffix -> int *)
2 let rec lcs_simple s1 s2 =
3 match view s1, view s2 with
4 | None, _
5 | _, None -> 0
6 | Some(c, s1'), Some(c', s2') when c = c' -> 1 + lcs_simple s1' s2'
7 | Some(_, s1'), Some(_, s2') -> max (lcs_simple s1 s2') (lcs_simple s1' s2)

The two calls to lcs_simple in the third case push the time complexity of this algorithm to exponential,
rendering it useless for all practical purposes. We can convert it into a coalgebraic formulation by observing
that the function takes two suffixes as an argument, and then has three cases, depending on whether either
of the two strings are empty, or whether the first character is the same or different:

1 module LCS_F = struct
2 type 'a t =
3 | Empty
4 | CommonHead of 'a
5 | DiffHead of 'a * 'a
6

7 (* map : ('a -> 'b) -> 'a t -> 'b t *)
8 let map f = function
9 | Empty -> Empty

10 | CommonHead a -> CommonHead (f a)
11 | DiffHead(a1, a2) -> DiffHead(f a1, f a2)
12 end

We introduce a new module for this functor, with a datatype 'a t representing the three cases, and a func-
torial action map over it. The decomposition phase is implementedwith a coalgebra, lcs_coalg, which takes
a pair of suffixes, and returns a (suffix * suffix) LCS_F.t, choosing the variant based on whether either
string is empty, or whether the first characters differ.

1 (* lcs_coalg : suffix * suffix -> (suffix * suffix) LCS_F.t *)
2 let lcs_coalg (s1, s2) =

36

3 let open LCS_F in
4 match view s1, view s2 with
5 | None, _
6 | _, None -> Empty
7 | (Some(c, s1'), Some(c', s2')) ->
8 if c = c' then
9 CommonHead(s1', s2')

10 else
11 DiffHead ((s1, s2'), (s1', s2))

This is a well-founded coalgebra, because every pair of suffixes returned reduce the length of at least one
string of the returned pair.

We can also implement the algebra constructing new solutions from solutions to subproblems.

1 (* lcs_alg : int LCS_F.t -> int *)
2 let lcs_alg x =
3 let open LCS_F in
4 match x with
5 | Empty -> 0
6 | CommonHead n -> n + 1
7 | DiffHead(m, n) -> max m n

If we learned either string was empty, we return 0. If the longest common subsequence of the tails was n
and the strings shared a common head, we return n+1. If the heads differed, and the length of the longest
common subsequence for deleting the first character of the right substring was m, and the length for deleting
the left character was n, then the solutionis their maximum.

We can now implement both the naive and the optimized solutions in two lines of code:

1 (* lcs_slow : string * string -> int *)
2 let lcs_slow (s1, s2) =
3 let module R = Memo(LCS_F) in
4 R.fix lcs_coalg lcs_alg (make s1, make s2)
5

6 (* lcs : string * string -> int *)
7 let lcs (s1, s2) =
8 let module R = Memo(LCS_F) in
9 R.memo lcs_coalg lcs_alg (make s1, make s2)

However, the performance of these two solutions is radically different:

1 utop[30]> time lcs ("hello to you, world!", "hallo to my mum!");;
2 - : int * float = (11, 0.000303999999999859938)
3

4 utop[31]> time lcs_slow ("hello to you, world!", "hallo to my mum!");;
5 - : int * float = (11, 7.90834199999999754)
6

7 utop[32]> 7.90834199999999754 /. 0.000303999999999859938;;
8 - : float = 26014.2828947488197

The version implementing dynamic programming viamemoization is over twenty-six thousand times faster
for a pair of strings with 20 and 16 characters. It is easy to write expressions like 𝑂(2𝑛) and 𝑂(𝑛2), but the
difference is very stark when you run the program!

37

Chapter 4

Fixed Point Iteration

So far, we have seen how to understand recursive computations as arising from the (co)inductive structure
of data. However, it turns out that many algorithms are naturally formulated as fixed points, but are not nat-
urally structurally recursive over anything. For example, parsing of strings, dataflow analysis in compilers,
recursive SQL queries, and graph reachability are all examples of problems which have solutions naturally
formulated as fixed points, but which have no obvious (co)inductive structure to them.

In this chapter, we will see how they can all be formulated in terms of least fixed points on lattices,
and then see how we can use some simple category theory to derive algorithms for incrementalizing these
algorithms.

4.1 Partial Orders, Join-Semilattices, and Fixed Points
Definition 4.1.1 (Join-semilattice). A join-semilattice (𝑋, ≤, ⊥, ∨) consists of a set 𝑋, a binary relation ≤∈
Rel(𝑋, 𝑋), an element ⊥ ∈ 𝑋, and a function ∨ ∶ 𝑋 × 𝑋 → 𝑋, satisfying the following properties:

• (≤) is a partial order: it is reflexive, transitive, and antisymmetric.

• ⊥ is a least element: for all 𝑥 ∈ 𝑋, we have ⊥ ≤ 𝑥.

• ∨ is monotone: if 𝑥 ≤ 𝑥′ and 𝑦 ≤ 𝑦′, then (𝑥 ∨ 𝑦) ≤ (𝑥′ ∨ 𝑦′).

• ∨ is a least upper bound:

– (Upper bound) For all 𝑥 and 𝑦 in 𝑋, we have 𝑥 ≤ 𝑥 ∨ 𝑦 and 𝑦 ≤ 𝑥 ∨ 𝑦.
– (Minimality) For all 𝑥, 𝑦, and 𝑧 such that 𝑥 ≤ 𝑧 and 𝑦 ≤ 𝑧, we have 𝑥 ∨ 𝑦 ≤ 𝑧.

Here are some examples of join semilattices:

• Given a finite set 𝑋, its powerset 𝒫(𝑋) forms a join-semilattice. The partial order is inclusion ⊆, the
least element is the emptyset ⊥ = ∅, and the join is set union 𝑆 ∨ 𝑇 = 𝑆 ∪ 𝑇.

• The natural numbers ℕ form a join-semilattice. The partial order is the less-than-or-equal-to relation
𝑛 ≤ 𝑚, the least element is ⊥ = 0, and the join is the maximum 𝑛 ∨ 𝑚 = max(𝑛, 𝑚).

• The booleans 𝟚 form a join-semilattice. The partial order is the closure of false ≤ true, the least element
⊥ = false, and the join operator ∨ is logical-or.

Definition 4.1.2 (Semilattice Homomorphism). Given two semilattices 𝑋 and 𝐿, a function 𝑓 ∶ 𝑋 → 𝐿 is a
lattice homomorphism when:

38

1. It is a monotone function: for all 𝑥 ≤𝑋 𝑥′, we have that 𝑓 (𝑥) ≤𝐿 𝑓 (𝑥′).

2. It preserves least elements 𝑓 (⊥𝑋) = ⊥𝐿.

3. It preserves joins: for all 𝑥, 𝑦 ∈ 𝑋, we have 𝑓 (𝑥 ∨𝑋 𝑦) = 𝑓 (𝑥) ∨𝐿 𝑓 (𝑦).

4.1.1 Fixed Points on Lattices
Semilattices are interesting, because they have a very useful fixed point property. The fixed point theorem
below is a special case of Kleene’s fixed point theorem on directed-complete partial orders.

Theorem 4.1.3 (Fixed Points on Semilattices). Suppose 𝐿 is a join-semilattice satisfying the ascending chain con-
dition (i.e, there are no infinite sequences 𝑙0 < 𝑙1 < …), and that 𝑓 ∶ 𝐿 → 𝐿 is a monotone function.

Then 𝑓 has a least fixed point 𝜇𝑓.

Proof. We proceed as follows:

1. First, we establish the existence of a fixed point.

(a) We begin by constructing the chain:

⊥ ≤ 𝑓 (⊥) ≤ 𝑓 2(⊥) ≤ …

(b) We verify by induction that 𝑓 𝑛(⊥) ≤ 𝑓 𝑛+1(⊥):
• Case 𝑛 = 0:

Observe that ⊥ ≤ 𝑓 (⊥), since ⊥ is the least element of the semilattice.
• Case 𝑛 = 𝑚 + 1:

i. By induction, we know that 𝑓 𝑚(⊥) ≤ 𝑓 𝑚+1(⊥).
ii. Since 𝑓 is monotone, we conclude that 𝑓 𝑚+1(⊥) ≤ 𝑓 𝑚+2(⊥).

Since there are no infinite ascending chains, we know that 𝑓 𝑘(⊥) ≤ 𝑓 𝑘+1(⊥) only finitely often, so there
must be an 𝑛 such that 𝑓 𝑛(⊥) = 𝑓 𝑛+1(⊥), after which the sequence is constant. Call this element 𝜇𝑓.

2. Now, we establish that 𝜇𝐹 is minimal.

(a) Suppose that 𝑥 is another fixed point of 𝑓. Then the chain

𝑥 ≤ 𝑓 (𝑥) ≤ 𝑓 2(𝑥) ≤ …

is the constantly 𝑥 series.
(b) Since ⊥ ≤ 𝑥, it follows that 𝑓 𝑚(⊥) ≤ 𝑓 𝑚(𝑥) for any 𝑚, and since 𝑥 is a fixed point 𝑓 𝑚(⊥) ≤ 𝑥 for

any 𝑚.
(c) Since 𝜇𝑓 = 𝑓 𝑛(⊥), this means 𝜇𝑓 ≤ 𝑥.

Observe that this theorem is about arbitrary monotone functions: there is no requirement that 𝑓 be a semi-
lattice homomorphism. (Indeed, every semilattice homomorphism has the same least fixed point, since
𝑓 (⊥) = ⊥.) As a result, when we think about computing fixed points on lattices, the natural category to
study is not the category of lattices, but the category of partial orders!

39

4.2 The Category of Partial Orders
Definition 4.2.1. The category of partial orders, Poset, has as objects partial orders (𝑋, ≤) and monotone
functions between them as morphisms.

• Poset has a terminal object. The terminal object 1 is the singleton set ({∗}, and its partial order ≤1=
{⟨∗, ∗⟩}). The terminal map is as in Set.

• Poset has products. (𝐴, ≤𝐴) × (𝐵, ≤𝐵) has 𝐴 × 𝐵 as its carrier, and the partial order is given pointwise
(𝑎, 𝑏) ≤𝐴×𝐵 (𝑎′, 𝑏′) if and only if 𝑎 ≤𝐴 𝑎′ and 𝑏 ≤ 𝑏′. The projections are as in Set.

• Poset has an initial object. The initial object 0 is the empty set with the vacuous ordering. The initial
map is as in Set.

• Poset has coproducts. (𝐴, ≤𝐴)+(𝐵, ≤𝐵) has 𝐴+𝐵 as its carrier, and the partial order is given as follows:

𝜄1(𝑎) ≤𝐴+𝐵 𝜄1(𝑎′) ⟺ 𝑎 ≤𝐴 𝑎′

𝜄2(𝑏) ≤𝐴+𝐵 𝜄2(𝑏′) ⟺ 𝑏 ≤𝐵 𝑏′

The injections are as in Set. Just as in Set, coproducts distribute through products: there is an isomor-
phism (dist, dist−1) ∶ (𝐴 × (𝐵 + 𝐶)) ≅ ((𝐴 × 𝐵) + (𝐴 × 𝐶)).

• Poset has exponentials. (𝐴, ≤𝐴) ⇒ (𝐵, ≤𝐵) has the set of functions 𝐴 ⇒ 𝐵 as its carrier, and the partial
order is pointwise:

𝑓 ≤𝐴⇒𝐵 𝑔 ⟺ ∀𝑎 ∈ 𝐴.𝑓 (𝑎) ≤𝐵 𝑔(𝑏)

The transpose 𝜆(𝑓) and evaluation map eval are as in Set.

There are also some functors useful for programming supported by Poset.

• Given a partial order (𝑋, ≤), its discretizationD(𝑋, ≤) = (𝑋, =). That is, the order structure is forgotten,
and two elements are related if and only if they are equal. Discretization is a functor D(−) ∶ Poset →
Poset, with an action on morphisms D(𝑓) = 𝑓. We also have the following additional structure on it:

– There are isomorphisms (m𝐷, m𝐷
−1) ∶ D(𝐴 × 𝐵) ≅ D(𝐴) × D(𝐵) and (i𝐷, i𝐷−1) ∶ D(1) ≅ 1, given

by the identity on elements.
– There is a natural family of maps 𝜖𝐴 ∶ D(𝐴) → 𝐴, where 𝜖𝐴(𝑎) = 𝑎.
– There is a natural family of maps 𝛿𝐴 ∶ D(𝐴) → D(D(𝐴)), again where 𝛿𝐴(𝑎) = 𝑎.
– These amount to saying that D(−) forms a comonad:

∗ 𝛿𝐴; 𝜖D(𝐴) = idD(𝐴) = 𝛿𝐴; D(𝜖𝐴)
∗ 𝛿𝐴; 𝛿D(𝐴) = 𝛿𝐴; D(𝛿𝐴)

• The powerset functor 𝒫(−) ∶ Poset → SemiLat which sends (𝑋, ≤) to (𝒫(𝑋), ⊆, ∅, ∪). It acts covari-
antly on functions 𝒫(𝑓 ∶ 𝐴 → 𝐵) ∶ 𝒫(𝐴) → 𝒫(𝐵), and is defined as 𝑋 ↦ {𝑓 (𝑥) ∣ 𝑥 ∈ 𝑋}. It has a map
oneHom(D(𝑋), 𝑈(𝒫(𝑋))), defined by 𝑜𝑛𝑒(𝑥) = {𝑥}.

• There is a forgetful functor 𝑈 ∶ SemiLat → Poset which takes a lattice (𝐿, ≤, ⊥, ⊔) and returns the
underlying poset (𝐿, ≤).

– For any lattice 𝐿, there is also a map ⊥𝐿 ∶ 1 → 𝑈(𝐿) and ∨𝐿 ∶ 𝑈(𝐿)×𝑈(𝐿) → 𝑈(𝐿), corresponding
to the bottom and and join operations of the semilattice.

– Using a very slight generalization of the argument in the previous section, we can show that for
any 𝑓 ∈ Hom(𝐷(𝐴) × 𝑈(𝐿), 𝑈(𝐿)), there is a map fix(𝑓) ∈ Hom(𝐷(𝐴), 𝑈(𝐿)) which computes a
minimal fixed point.

40

– For any morphism 𝑓 ∶ 𝐴 × D(𝑋) → 𝑈(𝐿), where 𝑋 is a finite poset, we can construct its comprehen-
sion ⋁𝑋 𝑓 ∶ 𝐴 × 𝒫(𝑋) → 𝑈(𝐿), given by

⋁𝑋 𝑓 ≡ (𝑎, 𝑆) ↦ ⋁
𝑥∈𝑆

𝑓 (𝑎, 𝑥)

– Because terminal objects and products in Poset and SemiLat coincide on the nose (i.e, 𝑈(1) = 1
and (𝑈(𝑀 × 𝑁) = 𝑈(𝑀) × 𝑈(𝑁), we will feel free to write ⊥, and ∨, and ⋁𝑋 𝑓 for any finite
products of 𝑈(𝐿).1

4.3 A Lambda Calculus for Computing Fixed Points
Terms 𝑒 ∶∶= 𝑥 | 𝜆𝑥 ∶ 𝐴. 𝑒 | 𝑒1 𝑒2 | ⟨⟩ | ⟨𝑒1, 𝑒2⟩ | 𝜋𝑖𝑒

| | 𝜄𝑖(𝑒) | case(𝑒, 𝜄1(𝑥) → 𝑒1, 𝜄2(𝑦) → 𝑒2)
| ⊥𝐿 | 𝑒1 ∨𝐿 𝑒2 | [𝑒1 ∣ 𝑥 ∈ 𝑒2]
| D(𝑒) | let D(𝑥) = 𝑒1 in 𝑒2 | fix 𝑥 ∶ 𝐿. 𝑒

Types 𝐴 ∶∶= 1 | 𝐴 × 𝐵 | 𝐴 → 𝐵 | 𝐴 + 𝐵 | 𝒫(𝑇) | D(𝐴)
Finite Types 𝑇 ∶∶= 1 | 𝑇 × 𝑇 | 𝑇 + 𝑇 | 𝒫(𝑇) | D(𝑇)
Lattice Types 𝐿 ∶∶= 1 | 𝐿 × 𝐿 | 𝒫(𝑇)

Contexts Γ ∶∶= ⋅ | Γ, 𝑥 ∶𝑞 𝐴
Qualifiers 𝑞 ∶∶= D | ⋅

𝑥 ∶ 𝐴 ∈ Γ
Γ ⊢ 𝑥 ∶ 𝐴

Var
𝑥 ∶D 𝐴 ∈ Γ
Γ ⊢ 𝑥 ∶ 𝐴

DVar

Γ ⊢ ⟨⟩ ∶ 1
1I

Γ ⊢ 𝑒1 ∶ 𝐴1 Γ ⊢ 𝑒2 ∶ 𝐴2

Γ ⊢ ⟨𝑒1, 𝑒2⟩ ∶ 𝐴1 × 𝐴2
×I

Γ ⊢ 𝑒 ∶ 𝐴1 × 𝐴2

Γ ⊢ 𝜋𝑖(𝑒) ∶ 𝐴𝑖
×E

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑒 ∶ 𝐵
Γ ⊢ 𝜆𝑥 ∶ 𝐴. 𝑒 ∶ 𝐴 → 𝐵

𝜆I
Γ ⊢ 𝑒1 ∶ 𝐴 → 𝐵 Γ ⊢ 𝑒2 ∶ 𝐴

Γ ⊢ 𝑒1 𝑒2 ∶ 𝐵
𝜆E

Γ ⊢ 𝑒 ∶ 𝐴𝑖

Γ ⊢ 𝜄𝑖(𝑒) ∶ 𝐴1 + 𝐴2
+I

Γ ⊢ 𝑒 ∶ 𝐴1 + 𝐴2 Γ, 𝑥 ∶ 𝐴1 ⊢ 𝑒1 ∶ 𝐶 Γ, 𝑦 ∶ 𝐴2 ⊢ 𝑒2 ∶ 𝐶
Γ ⊢ case(𝑒, 𝜄1(𝑥) → 𝑒1, 𝜄2(𝑦) → 𝑒2) ∶ 𝐶

+E

D(Γ) ⊢ 𝑒 ∶ 𝐴
Γ ⊢ D(𝑒) ∶ D(𝐴)

DI
Γ ⊢ 𝑒1 ∶ D(𝐴) Γ, 𝑥 ∶D 𝐴 ⊢ 𝑒2 ∶ 𝐶

Γ ⊢ let D(𝑥) = 𝑒1 in 𝑒2 ∶ 𝐶
DE

Γ ⊢ ⊥𝐿 ∶ 𝐿
T⊥

Γ ⊢ 𝑒1 ∶ 𝐿 Γ ⊢ 𝑒2 ∶ 𝐿
Γ ⊢ 𝑒1 ∨𝐿 𝑒2 ∶ 𝐿

T∨
Γ ⊢ 𝑒1 ∶ 𝒫(𝑇) Γ, 𝑥 ∶D 𝑇 ⊢ 𝑒2 ∶ 𝐿

Γ ⊢ [𝑒2 ∣ 𝑥 ∈ 𝑒1] ∶ 𝐿
Tchoose

D(Γ), 𝑥 ∶ 𝐿 ⊢ 𝑒 ∶ 𝐿
Γ ⊢ fix 𝑥 ∶ 𝐿. 𝑒 ∶ 𝐿

Tfix

We will give a denotational interpretation of this language in Poset.
Types are interpreted as posets as follows:

1If you don’t, you can write down the coercions and convince yourself they are identities!

41

J1K = 1
J𝐴 × 𝐵K = J𝐴K × J𝐵K
J𝐴 → 𝐵K = J𝐴K → J𝐵K
J𝐴 + 𝐵K = J𝐴K + J𝐵K
J𝒫(𝑇)K = 𝑈(𝒫(J𝑇K))
JD(𝐴)K = D(J𝐴K)

This looks like we’re just moving brackets inwards, but this is good: the tell-tale sign of a good language
is that its semantics looks like “renotational pedantics”!

We interpret contexts as nested tuples:

J⋅K = 1
JΓ, 𝑥 ∶ 𝐴K = JΓK × J𝐴Kq
Γ, 𝑥 ∶D 𝐴

y
= JΓK × D(J𝐴K)

We can interpret variable lookups as follows:

J𝑥 ∶𝑞 𝐴 ∈ ΓK ∶ JΓK → J𝐴K
s

𝑥 ∶ 𝐴 ∈ (Γ, 𝑥 ∶ 𝐴)
{

= 𝜋2

t
𝑥 ∶ 𝐴 ∈ Γ 𝑥 ≠ 𝑦
𝑥 ∶ 𝐴 ∈ (Γ, 𝑦 ∶𝑞 𝐵)

|

= 𝜋1;
q
𝑥 ∶D? 𝐴 ∈ Γ

y

s
𝑥 ∶D 𝐴 ∈ (Γ, 𝑥 ∶D 𝐴)

{
= 𝜋2; 𝜖𝐴

t
𝑥 ∶D 𝐴 ∈ Γ 𝑥 ≠ 𝑦
𝑥 ∶D 𝐴 ∈ (Γ, 𝑦 ∶𝑞 𝐵)

|

= 𝜋1;
q
𝑥 ∶D 𝐴 ∈ Γ

y

Next, observe that there is a map dropΓ ∶ JΓK → JD(Γ)K:

dropΓ ∶ JΓK → JD(Γ)K

drop⋅ = ⟨⟩
drop(Γ,𝑥∶𝐴) = 𝜋1; dropΓ
drop(Γ,𝑥∶D𝐴) = dropΓ × idJ𝐴K

Next, note that we can lift the duplication map 𝛿𝐴 of D(−) to act over whole contexts. For any Δ such
that D(Δ) = Δ (i.e., contains only discrete hypotheses), we can give a function:

𝛿Δ ∶ JΔK → D(JΔK)

𝛿⋅ = i𝐷−1

𝛿(Δ,𝑥∶D𝐴) = (𝛿Δ × 𝛿𝐴); m𝐷

This is all the machinery we need to interpret this calculus. We give an interpretation function by recur-
sion over the structure of the typing derivation:

42

JΓ ⊢ 𝑒 ∶ 𝐴K ∶ JΓK → J𝐴K

JΓ ⊢ 𝑥 ∶ 𝐴K = J𝑥 ∶ 𝐴 ∈ ΓK

JΓ ⊢ 𝑥 ∶ 𝐴K =
q
𝑥 ∶D 𝐴 ∈ Γ

y

JΓ ⊢ ⟨⟩ ∶ 1K = ⟨⟩

JΓ ⊢ ⟨𝑒1, 𝑒2⟩ ∶ 𝐴1 × 𝐴2K = let 𝑓 = JΓ ⊢ 𝑒1 ∶ 𝐴1K in
let 𝑔 = JΓ ⊢ 𝑒2 ∶ 𝐴2K in
⟨𝑓 , 𝑔⟩

JΓ ⊢ 𝜋𝑖(𝑒) ∶ 𝐴𝑖K = JΓ ⊢ 𝑒 ∶ 𝐴1 × 𝐴2K ; 𝜋𝑖

JΓ ⊢ 𝜆𝑥 ∶ 𝐴. 𝑒 ∶ 𝐴 → 𝐵K = 𝜆(JΓ, 𝑥 ∶ 𝐴 ⊢ 𝑒 ∶ 𝐵K)

JΓ ⊢ 𝑒1 𝑒2 ∶ 𝐴 → 𝐵K = let 𝑓 = JΓ ⊢ 𝑒1 ∶ 𝐴 → 𝐵K in
let 𝑥 = JΓ ⊢ 𝑒2 ∶ 𝐴K in
⟨𝑓 , 𝑥⟩ ; eval

JΓ ⊢ 𝜄𝑖(𝑒) ∶ 𝐴1 + 𝐴2K = JΓ ⊢ 𝑒 ∶ 𝐴𝑖K ; 𝜄𝑖

JΓ ⊢ case(𝑒, 𝜄1(𝑥1) → 𝑒1, 𝜄2(𝑥2) → 𝑒2) ∶ 𝐶K = let 𝑓 = JΓ ⊢ 𝑒 ∶ 𝐴1 + 𝐴2K in
let 𝑔1 = JΓ, 𝑥1 ∶ 𝐴1 ⊢ 𝑒1 ∶ 𝐴1K in
let 𝑔2 = JΓ, 𝑥2 ∶ 𝐴2 ⊢ 𝑒2 ∶ 𝐴2K in
𝑓 ; dist; [𝑔1, 𝑔2]

JΓ ⊢ D(𝑒) ∶ D(𝐴)K = dropΓ; 𝛿D(Γ); 𝐷(JD(Γ) ⊢ 𝑒 ∶ 𝐴K)

JΓ ⊢ let D(𝑥) = 𝑒1 in 𝑒2 ∶ 𝐶K = let 𝑓 = JΓ ⊢ 𝑒1 ∶ D(𝐴)K in
= let 𝑔 =

q
Γ, 𝑥 ∶D 𝐴 ⊢ 𝑒2 ∶ 𝐶

y
in

⟨idJΓK, 𝑓⟩ ; 𝑔

JΓ ⊢ ⊥𝐿 ∶ 𝐿K = ⟨⟩; ⊥𝐿

JΓ ⊢ 𝑒1 ∨𝐿 𝑒2 ∶ 𝐿K = let 𝑓 = JΓ ⊢ 𝑒1 ∶ 𝐿K in
let 𝑔 = JΓ ⊢ 𝑒2 ∶ 𝐿K in
⟨𝑓 , 𝑔⟩ ; ∨𝐿

JΓ ⊢ [𝑒1 ∣ 𝑥 ∈ 𝑒2] ∶ 𝐿K = let 𝑓 = JΓ ⊢ 𝑒2 ∶ 𝒫(𝑇)K in
let 𝑔 =

q
Γ, 𝑥 ∶D 𝑇 ⊢ 𝑒1 ∶ 𝐿

y
in

⟨idJΓK, 𝑓⟩ ; ⋁𝑋 𝑔

JΓ ⊢ fix 𝑥 ∶ 𝐿. 𝑒 ∶ 𝐿K = let 𝑓 = JD(Γ), ℎ𝑦𝑝𝑥𝐿 ⊢ 𝑒 ∶ 𝐿K in
𝛿Δ; fix((𝜖 × idJ𝐿K); 𝑓)

43

4.4 Incrementalizing Fixed Point Algorithms

4.5 The Category of Change Structures

4.6 Interpreting Functional Programs

44

Chapter 5

Graph Algorithms

5.1 Semirings and Kleene Algebras

5.2 Modules over Kleene Algebras

5.2.1 Square Matrices over a Kleene Algebras

5.3 Graphs and Matrices

5.3.1 Adjacency Matrices

45

Chapter 6

Bonus Material

6.1 Inductive Types More Categorically
Consider the following diagram in ℂ:

𝑋0 𝑋1 𝑋2 …
𝑓0 𝑓1 𝑓2

For 𝑖 ≤ 𝑗, we can define that map 𝑓(𝑖,𝑗) ∶ 𝑋𝑖 → 𝑋𝑗 as follows:

𝑓(𝑖,𝑗) ∶ 𝑋𝑖 → 𝑋𝑗
𝑓(𝑖,𝑖) = id𝑋𝑖
𝑓(𝑖,𝑗+1) = 𝑓(𝑖,𝑗); 𝑓𝑗

A cocone for this diagram is an object 𝐷 and a family of maps 𝑑𝑖 ∶ 𝑋𝑖 → 𝐷 such that the following diagram
commutes:

𝑋0 𝑋1 𝑋2 …

…

𝐷

𝑓0

𝑑0

𝑓1

𝑑1

𝑓2

𝑑2

In equations, this means that for all 𝑖 and 𝑗 such that 𝑖 ≤ 𝑗, we have 𝑑𝑖 = 𝑓(𝑖,𝑗); 𝑑𝑗.
A cocone (𝐷, {𝑑𝑖}𝑖∈ℕ) is a 𝜔-colimit if for every cocone (𝐶, {𝑐𝑖}𝑖∈ℕ) there is a uniquemediatingmorphism

ℎ ∶ 𝐶 → 𝐷:

46

𝑋0 𝑋1 𝑋2 …

…

𝐷

𝐶

𝑓0

𝑑0

𝑐0

𝑓1

𝑑1

𝑐1

𝑓2

𝑑2

𝑐2

ℎ

(As an aside, 𝜔-colimits were historically called “direct limits” in the literature. This is confusing termi-
nology, since it is actually a colimit of this diagram rather than a limit)

Lemma 6.1.1. Suppose that:

1. We have a diagram 𝑋0 𝑋1 𝑋2 …
𝑓0 𝑓1 𝑓2

2. (𝐷, {𝑑𝑖}𝑖∈ℕ) is a 𝜔-colimit over this diagram,

3. (𝐶, {𝑐𝑖}𝑖∈ℕ) is a cocone with a mediating morphism 𝑔 ∶ 𝐷 → 𝐶

4. ℎ ∶ 𝐶 → 𝐵

Then (𝐵, {𝑐𝑖; ℎ}𝑖∈ℕ) is a cocone whose mediating morphism is 𝑔; ℎ.

Definition 6.1.2 (Functors Preserving 𝜔-colimits). We say that 𝐹 ∶ ℂ → ℂ preserves 𝜔-colimits, when,
given a diagram

𝑋0 𝑋1 𝑋2 …
𝑓0 𝑓1 𝑓2

with 𝜔-colimit (𝑋, {𝑖𝑖}𝑖∈ℕ), the 𝜔-colimit of the diagram

𝐹(𝑋0) 𝐹(𝑋1) 𝐹(𝑋2) …
𝐹(𝑓0) 𝐹(𝑓1) 𝐹(𝑓2)

has 𝜔-colimit (𝐹(𝑋), {𝐹(𝑖𝑖)}𝑖∈ℕ).

Theorem 6.1.3 (Adámek’s Lemma). Suppose 𝐹 ∶ ℂ → ℂ is a functor preserving 𝜔-colimits, and ℂ has an initial
object 0 and all 𝜔-colimits. Then, the 𝜔-colimit of the diagram

0 𝐹(0) 𝐹2(0) …
! 𝐹(!) 𝐹2(!)

has the structure of an initial 𝐹-algebra.

Proof. 1. Write 𝜇𝐹 for the 𝜔-colimit of this diagram, and 𝜄𝑖 ∶ 𝐹𝑖(0) → 𝜇𝐹 for the injections.

2. Now, we show that 𝜇𝐹 ≅ 𝐹(𝜇𝐹).

47

(a) Next, we consider the diagram obtained by applying 𝐹 to this diagram:

𝐹(0) 𝐹2(0) 𝐹3(0) …𝐹(!) 𝐹2(!) 𝐹3(!)

(b) Since 𝐹 preserves 𝜔-colimits, this means that (𝐹(𝜇𝐹), {𝐹(𝜄𝑖)} 𝑖 ∈ ℕ) is the 𝜔-colimit of this dia-
gram.

(c) Next, construct the cocone (𝜇𝐹, {𝜄𝑖+1 ∶ 𝐹𝑖+1(0) → 𝐹𝑖+2}𝑖∈ℕ) over the second diagram. The univer-
sal property of 𝐹(𝜇𝐹) gives us a map in ∶ 𝐹𝜇𝐹 → 𝜇𝐹, such that for every 𝑖, we have 𝜄𝑖+1 = 𝐹(𝜄𝑖); in.

(d) Next, construct the cocone (𝐹(𝜇𝐹), {𝑐𝑖 ∶ 𝐹𝑖(0) → 𝐹(𝜇𝐹)}𝑖∈ℕ) over the first diagram by setting 𝑐0
to !𝐹(𝜇𝐹), and 𝑐𝑖+1 to be 𝐹(𝜄𝑖) ∶ 𝐹𝑖+1(0) → 𝐹(𝜇𝐹). By the universal property of 𝜇𝐹, we have a map
out ∶ 𝜇𝐹 → 𝐹𝜇𝐹, with the property that 𝑐𝑖 = 𝜄𝑖; out. Unrolling the definition of 𝑐𝑖, we get that
𝐹(𝜄𝑖) = 𝜄𝑖+1; out.

(e) Putting the two together, we get the equations 𝜄𝑘+1 = 𝜄𝑘+1; out and 𝐹(𝜄𝑛) = 𝐹(𝜄𝑛); in; out.
(f) The universal property of 𝜔-colimits lets us conclude that in; out = id.
(g) The universal property of 𝜔-colimits plus initiality of 0 lets us conclude that out; in = id.
(h) Hence they form an isomorphism.

3. Now, we need to show that (𝜇𝐹, in) is an initial 𝐹-algebra.

4. Suppose that (𝐴, 𝛼 ∶ 𝐹(𝐴) → 𝐴) is an 𝐹-algebra.

5. To establish initiality, we need to show that there is a unique algebra map (|𝛼|) ∶ (𝜇𝐹, in) → (𝐴, 𝛼).

6. We establish existence as follows:

(a) We now recursively define maps 𝑓𝑛 ∶ 𝐹𝑛(0) → 𝐴 as follows.

𝑓0 ∶ 0 → 𝐴 = !𝐴
𝑓𝑛+1 ∶ 𝐹𝑛+1 → 𝐴 = 𝐹(𝑓𝑛); 𝛼

(b) We want to show that these maps make 𝐴 into a cocone over the 𝜔-colimit diagram. It suffices to
show that the following family of diagrams commutes:

𝐹𝑛+1(0) 𝐹𝑛(0)

𝐴

𝐹𝑛(!)

𝑓(𝑛+1) 𝑓𝑛

Using the definition of 𝑓𝑛+1, this is equivalent to showing:

𝐹𝑛+1(0) 𝐹𝑛(0)

𝐹(𝐴) 𝐴

𝐹𝑛(!)

𝐹(𝑓𝑛) 𝑓𝑛

𝛼

This can be proved by induction on 𝑛.

48

(c) The universal property of 𝜇𝐹 yields a unique map (|𝛼|) ∶ 𝜇𝐹 → 𝐴.
(d) To show that this map is an 𝐹-algebra homomorphism, we need to show that 𝐹((|𝛼|)); 𝛼 = (|𝛼|) ; in.

i. First, note that applying 𝐹 to the 𝑓𝑖 yields a cocone over the second diagram whose limit is
𝐹(𝜇𝐹). Since 𝐹 preserves 𝜔-colimits, 𝐹((|𝛼|)) ∶ 𝐹(𝜇𝐹) → 𝐹(𝐴) is the mediating morphism.

ii. Therefore, themediatingmorphismof the cocone (𝐴, {𝐹(𝑓𝑖); 𝛼 ∶ 𝐹𝑖+1(0) → 𝐴}𝑖∈ℕ)must equal
𝐹((|𝛼|)); 𝛼.

iii. Observe that the cocone (𝐴, {𝐹(𝑓𝑖); 𝛼 ∶ 𝐹𝑖+1(0) → 𝐴}𝑖∈ℕ) is equal to (𝐴, {𝑓𝑖+1 ∶ 𝐹𝑖+1(0) → 𝐴}𝑖∈ℕ).
Thus we can extend it to a cocone over the original diagram.

iv. Therefore 𝐹 (|𝛼|) ; 𝛼 = in; (|𝛼|).

7. Now, we need to establish uniqueness.

8. Suppose there is another ℎ ∶ 𝜇𝐹 → 𝐴 such 𝐹(ℎ); 𝛼 = in; ℎ. Observe that this means ℎ = out; 𝐹(ℎ); 𝛼.

9. Now define ℎ𝑛 ∶ 𝐹𝑛(0) → 𝐴 = 𝜄𝑛; ℎ.

10. We can show by induction that ℎ𝑛 = 𝑓𝑛.

• Case 𝑛 = 0: Observe that ℎ0 = 𝜄0; ℎ =!; ℎ =! = 𝑓0.
• Case 𝑛 = 𝑘 + 1:

ℎ𝑛+1 = 𝜄𝑛+1; ℎ
= 𝜄𝑛+1; out; 𝐹(ℎ); 𝛼
= 𝐹(𝜄𝑛); 𝐹(ℎ); 𝛼
= 𝐹(𝜄𝑛; ℎ); 𝛼
= 𝐹(ℎ𝑛); 𝛼
= 𝐹(𝑓𝑛); 𝛼
= 𝑓𝑛+1

Then the uniqueness of the mediating morphism means ℎ = (|𝛼|).

Definition 6.1.4. 𝜔-Colimits in Set
Given a diagram ({𝑋𝑖}𝑖∈ℕ , {𝑓𝑖 ∶ 𝑋𝑖 → 𝑋𝑖+1}𝑖∈ℕ), the 𝜔-colimit (𝑋, {𝜄𝑖 ∶ 𝑋𝑖 → 𝑋}𝑖∈ℕ) can be defined con-

cretely as follows. First, we define the set of pairs ⨆𝑖∈ℕ 𝑋𝑖:

⨆
𝑖∈ℕ

𝑋𝑖 = {(𝑖, 𝑥) ∣ 𝑖 ∈ ℕ and 𝑥 ∈ 𝑋𝑖}

Then we define the equivalence relation ≈ as a subset of ⨆𝑖∈ℕ 𝑋𝑖 × ⨆𝑖∈ℕ 𝑋𝑖:

(𝑖, 𝑥𝑖) ≈ (𝑗, 𝑥𝑗) when ∃𝑘 ≥ max(𝑖, 𝑗). 𝑓(𝑖,𝑘)(𝑥𝑖) = 𝑓(𝑗,𝑘)(𝑥𝑗)

Finally, we define 𝑋 as the quotient of ⨆𝑖∈ℕ 𝑋𝑖 by ≈:

𝑋 = ⎛⎜
⎝

⨆
𝑖∈ℕ

𝑋𝑖⎞⎟
⎠

/ ≈

The injections 𝜄𝑖 ∶ 𝑋𝑖 → 𝑋 can be defined as follows:

𝜄𝑖 ∶ 𝑋𝑖 → 𝑋
𝜄𝑖(𝑥) = [(𝑖, 𝑥)]≈

where we write [(𝑖, 𝑥)]≈ for the equivalence class of (𝑖, 𝑥) in ≈.

Lemma 6.1.5. 1. The identity functor IdSet preserves 𝜔-colimits.

49

2. The constant functor 𝐴(𝑋) = 𝐴 preserves 𝜔-colimits.

3. The product functor (⊗) ∶ Set × Set → Set preserves 𝜔-colimits.

4. The product functor (⊕) ∶ Set × Set → Set preserves 𝜔-colimits.

Proof.

Theorem 6.1.6. (Polynomial Functors Preserve Ω-Colimits) Suppose we have a polynomial functor 𝐹 and a se-
quence diagram ({𝑋𝑖}𝑖∈ℕ , {𝑓𝑖 ∶ 𝑋𝑖𝑖 → 𝑋𝑖𝑖+1}𝑖∈ℕ), with a 𝜔-colimit (𝑋, {𝜄𝑖}𝑖∈ℕ). Then the 𝜔-colimit of the diagram

({𝐹(𝑋𝑖)}𝑖∈ℕ , {𝐹𝑓𝑖 ∶ 𝐹(𝑋𝑖)𝑖 → 𝐹(𝑋𝑖)𝑖+1}𝑖∈ℕ) is (𝐹(𝑋), {𝐹(𝜄𝑖)}𝑖∈ℕ).

Proof. This follows by an induction on the shape of 𝐹, and is essentially trivial given the previous lemmas.

Theorem 6.1.7 (Lambek’s Theorem). If 𝐹 ∶ ℂ → ℂ has an initial algebra (𝑋, 𝛼 ∶ 𝐹(𝑋) → 𝑋), then𝑋 is isomorphic
to 𝐹(𝑋) via 𝛼.

Proof. We proceed as follows:

1. We equip 𝐹(𝑋) with the algebra structure 𝐹(𝛼) ∶ 𝐹2(𝑋) → 𝐹(𝑋).

2. By initiality, there exists a map 𝑖 ∶ (𝑋, 𝛼) → (𝐹(𝑋), 𝐹(𝛼)) such that 𝐹(𝑖); 𝐹(𝛼) = 𝛼; 𝑖.

3. (a) Both 𝑖; 𝛼 ∶ (𝑋, 𝛼) → (𝑋, 𝛼) and id𝑋 ∶ (𝑋, 𝛼) → (𝑋, 𝛼) are maps from (𝑋, 𝛼) to (𝑋, 𝛼).
(b) By the initiality of (𝑋, 𝛼), this means that 𝑖; 𝛼 = id𝑋.

4. (a) This means that 𝐹(𝑖); 𝐹(𝛼) = 𝐹(𝑖; 𝛼) = 𝐹(id𝑋) = id𝐹(𝑋).
(b) Since 𝛼; 𝑖 = 𝐹(𝑖); 𝐹(𝛼), we know that 𝛼; 𝑖 = id𝐹(𝑋).

5. Since 𝑖; 𝛼 = id𝑋 and 𝛼; 𝑖 = id𝐹(𝑋), this means that (𝑖, 𝛼) ∶ 𝑋 ≅ 𝐹(𝑋).

50

