Advanced Graphics and Image Processing —
Lecture notes

Rafal Mantiuk
Michaelmas term 2025 /26

1 Light field rendering using homographic trans-
formation

This section explains how to render a light field for a novel view position
using a parametrization with a focal plane. The method is explained on a
rather high level in [I]. These notes are meant to provide a practical guide
on how to perform the required calculations and in particular how to find a
homographic transformation between the virtual and array cameras.

The scenario and selected symbols are illustrated in Figure[I, We want to
render our light field ”as seen” by camera K. We have N images captured by
N cameras in the array (only 4 shown in the figure), all of which have their
apertures on the camera array plane C. We further assume that our array
cameras are pin-hole cameras to simplify the explanation. The novel view
is rendered assuming focal plane F'. The focal plane has a similar function
as the focus distance in a regular camera: objects on the focal plane will
be rendered sharp, while objects that and in front or behind that plane will
appear blurry (in practice they will appear ghosted because of the limited
number of cameras). The focal plane F' does not need to be parallel to
the camera plane; it can be titled, unlike in a traditional camera with a
regular lens. Because we have a limited number of cameras, we need to
use reconstruction functions Ay, ..., 4; (only two shown) for each camera.
The functions shown contain the weights in the range 0-1 that are used to
interpolate between two neighboring views.

To intuitively understand how light field rendering is performed, imagine
the following hypothetical scenario. Each camera in the array captures the

1

3D object

F
Po, p:
1 c
Ao — o~
T T

Figure 1: Light field rendering for the novel view represented by camera K.
The pixels Pk in the rendered image is the weighted average of the pixels
values pi, ..., py from the images captured by the camera array.

image of the scene. Then, all objects in the scene are removed and you
put a large projection screen where the focal plane F' should be. Then, you
swap all cameras for projectors, which project the captured images on the
projection screen F'. Finally, you put a new camera K at the desired location
and capture the image of the projection screen. The projection screen (focal
plane) is needed to form an image. Ideally, to obtain a sharp image, we
would like to project the camera array images on a geometry. However, such
a geometry is not readily available when capturing scenes with a camera
array. In this situation a single plane is often a good-enough proxy, which
has its analogy in physical cameras (focal distance). More advanced light field
rendering methods attempt to reconstruct a more accurate proxy geometry
using multi-view stereo algorithms and then project camera images on that
geometry [3].

This simplified scenario misses one step, which is modulating each pro-
jected image by the reconstruction function A, as such modulation has no
physical counterpart. However, this scenario should give you a good idea
what operations need to be performed in order to render a light field from a

Data: Camera array images Ji, Jo, ..., Jy

Result: Rendered image I

for each pixel at the coordinates px in the novel view do
I(px)<=0;

w(pK)<—0;

for each camera i in the array do

Find the coordinates p; in the i-th camera image

corresponding to the pixel pg ;

Find the coordinates p4 on the aperture plane A
corresponding to the pixel pg ;

I(px)< 1(px) + A(pa) Ji(pi) ;

W (px)W (pr) + Alpa) ;

end

I(pr)<1(px)/W(pPK) ;

end

Algorithm 1: Light field rendering algorithm

novel view position.

Now let us see how we can turn such a high-level explanation into a
practical algorithm. One way to render a light field is shown in Algorithm [I]
The algorithm iterates over all pixels in the rendered image, then for each
pixel it iterates over all cameras in the array. The resulting image is the
weighted average of the camera images that are warped using homographic
transformations. The weights are determined by the reconstruction functions
A;. The algorithm is straightforward, except for the mapping from pixel
coordinates in the novel view pg to coordinates in each camera image p; and
the coordinates on the aperture plane p4. The following paragraphs explain
how to find such transformations.

1.1 Homographic transformation between the virtual
and array cameras

The text below assumes that you are familiar with homogeneous coordinates
and geometric transformations, both commonly used in computer graphics
and computer vision. If these topics are still unclear, refer to Section 2.1 in
[4] (this book is available online) or Chapter 6 in [2].

We assume that we know the position and pose of each camera in the

http://szeliski.org/Book/

array, so that homogeneous 3D coordinates of a point in the 3D word co-
ordinate space w can be mapped to the 2D pixel coordinates p; of camera
i

where V' is the view transformation, P is the projection matrix and K is the
intrinsic camera matrix. Note that we will use bold lower case symbols to
denote vectors, uppercase bold symbols for matrices and a regular font for
scalars. The operation is easier to understand if the coordinates and matrices
are expanded:

V11 V12 V13 V14 X

T fe 0 ¢ |1 0 0 O
wl=10 £ ¢llo1 00 Vg1 Uga U3 Uag| |V ()
wl' 0 Oy 1y 0010 V31 Us2 U33 Us4 Z

0 0 0 1 1

The view matrix V translates and rotates the 3D coordinates of the 3D point
w so that the origin of the new coordinate system is at the camera centre,
and camera’s optical axis is aligned with the z-axis (as the view matrix in
computer graphics). This matrix can be computed using a LookAt function,
often available in graphics matrix libraries.

The projection matrix P may look like an odd version of an identity
matrix, but it actually drops one dimension (projects from 3D to 2D) and
copies the value of Z coordinate into the additional homogeneous coordinate
w;. Note that to compute Cartesian coordinates of the point from the homo-
geneous coordinates, we divide z;/w; and y;/w;. As w; is now equal to the
depth in the camera coordinates, this operation is equivalent to a perspec-
tive projection (you can refer to slides 88-92 in the Introduction to Graphics
Course).

The intrinsic camera matrix K maps the projected 3D coordinates into
pixel coordinates. f, and f, are focal lengths and ¢, and ¢, are the coordi-
nates of optical center expressed in pixel coordinates. We assume that the
intrinsic matrix is the same for all the cameras in the array.

Besides having all matrices for all cameras in the array, we also have a
similar transformation for our virtual camera K, which represents the cur-
rently rendered view:

Our first task is to find transformation matrices that could transform from
pixel coordinates px in the virtual camera image into pixel coordinates p;

4

https://www.cl.cam.ac.uk/teaching/1819/Graphics/Introduction_to_Graphics_2018_6pp.pdf

for each camera ¢. This is normally achieved by inverting the transformation
matrix for the novel view and combining it with the camera array transforma-
tion. However, the problem is that the product of K PV g is not a square
matrix that can be inverted — it is missing one dimension. The dimension is
missing because we are projecting from 3D to 2D and one dimension (depth)
is lost.

Therefore, to map both coordinates, we need to reintroduce missing in-
formation. This is achieved by assuming that the 3D point lies on the focal
plane F'. Note that the plane equation can be expressed as N-(w —wp) = 0,
where N is the plane normal, and wr specifies the position of the plane in
the 3D space. Operator - is the dot product. If the homogeneous coordinates
of the point w are [X Y Z 1], the plane equation can be expressed as

X
(4)

d:[nx Ny Ny —N-'wp]

- N <

where d is the distance to the plane and N = [nm Ny nz} . We can introduce
the plane equation into the projection matrix from Equation [2}

T f= 0 0 ¢ 1 0 0 0 Uil Uiz V13 Ui
vi| _ |0 fy 0 ¢ o 1 0 0 Vg1 Uzg Uz U
d; 0 0 1 0f [nY ng(f) n'¥ _N©. wg) U3] U3z U3z U3
w; 0O 0 0 1 0 0 1 0 0 0 0 1

(5)
The product of the matrices in above is a full 4x4 transformation matrix,
which is not rank-deficient and can be inverted. Note that the pixel coordi-
nates px and p; now have an extra dimension d, which should be set to 0
(because we constrain 3D point w to lie on the focal plane).

It should be noted that the normal and the point in the plane equation
have superscript (), which denotes that the plane is given in the camera co-
ordinate system, rather than in the world coordinate system. This is because
the point [X Y 7 1} is transformed from the world to the camera coordi-
nates by the view matrix V; before it is multiplied by our modified projection
matrix. This could be a desired behavior for the virtual camera, for example
if we want the focal plane to follow the camera and be perpendicular to the
camera’s optical axis. But, if we simply want to specify the focal plane in the

- N <

world coordinates, we have two options: either replace the third row in the
final matrix (obtained after multiplying the three matrices in Equation
with our plane equation in the world coordinate system; or to transform the
plane to the camera coordinates:

and o
N9 =V,N. (7)

V; is the "normal” or direction transformation for the view matrix V;, which
rotates the normal vector but it does not translate it. It is obtained by
setting to zero the translation coefficients wyy4, woy, and wsy.

Now let us find the final mapping from the virtual camera coordinates py
to the array camera coordinates p;. We will denote the extended coordinates
(with extra d) in Equation 5 as px and p;. We will also denote our new
projection and intrinsic matrices in Equation || as P and K. Given that, the
mapping from px to p; can be expressed as:

pi=K,PV, V2 P 'K pi. (8)
The position on the aperture plane w4 can be readily found from:
wa =V Py K'pic (9)

where the projection matrix P, is modified to include the plane equation of
the aperture plane, the same way as done in Equation [5

1.2 Reconstruction functions

The choice of the reconstruction function A; will determine how images from
different cameras are mixed together. The functions shown in Figure [1] will
perform bilinear-interpolation between the views. Although this could be a
rational choice, it will result in ghosting for the parts of the scene that are
further away from the focal plane F. Another choice is to simulate a wide-
aperture camera and include all cameras in the generated view (set A; = 1).
This will produce an image with a very shallow depth of field. Another
possibility is to use the nearest-neighbor strategy and a box-shaped recon-
struction filter (the width of the boxes being equal to the distance between
the cameras). This approach will avoid ghosting but will cause the views

6

to jump sharply as the virtual camera moves over the scene. It is worth
experimenting with different reconstruction startegies to choose the best for
a given application but also for the given angular resolution of the light field
(number of views).

References

[1] Aaron Isaksen, Leonard McMillan, and Steven J. Gortler. Dynamically
reparameterized light fields. In Proc of SIGGRAPH 00, volume 7, pages
297-306, New York, New York, USA, 2000. ACM Press.

2] Steve Marschner and Peter Shirley. Fundamentals of Computer Graphics.
A K Peters/CRC Press, 4 edition edition, 2016.

[3] Ryan S. Overbeck, Daniel Erickson, Daniel Evangelakos, Matt Pharr,
and Paul Debevec. A system for acquiring, processing, and rendering
panoramic light field stills for virtual reality. ACM Transactions on
Graphics, 37(6):1-15, dec 2018.

[4] Richard Szeliski. Computer Vision: Algorithms and Applications.
Springer-Verlag New York Inc, 2010.

	Light field rendering using homographic transformation
	Homographic transformation between the virtual and array cameras
	Reconstruction functions

