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What this talk is about?

—_—

How did we get here? - Evolution of generative methods for image synthesis
What is the state-ot-the-art? - Current industry standard

Where do we go from here? - Beyond image synthesis

What challenges do we need to overcome to get where we want to get?
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How did we get here?



Historical perspective

(early—2010s) Autoregressive Models

(2013 onward) Variational Autoencoders (VAEs)
(2014 onward) Generative Adversarial Networks (GANSs)
(2015 onward) Normalizing Flows

(2019 onward) Diffusion & Score-Based Models
(2023 onward) Flow Matching & Flux-type Models
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Autoregressive Models (early—2010s)

e Core idea: Generate an image pixel-by-pixel (or
patch-by-patch), conditioning each new element on the
previously generated ones.

e Examples:

o PixelRNN, PixelCNN [1]

o Conditional PixelCNN [2]
Strengths: Exact likelihood, sharp local structure.
Limitations: Slow sampling, struggles with global
coherence.

[1] Oord et. al, 2016. “Pixel recurrent neural networks”. ICML
[2] Oord et. al, 2016. “Conditional image generation with PixelCNN decoders”. NIPS
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Variational Autoencoders (VAEs) (2013)

e Coreidea: Learn a compressed latent space +
probabilistic decoding.
e Examples:
o Kingma & Welling’'s VAE [1]
o VQ-VAE [2] & VQ-VAE-2 [3]
Strengths: Efficient latent representations
Limitations: Blurry generations.

[1] Kingma et.al., 2014 Auto-Encoding Variational Bayes, ICLR
[2] Oord et.al 2017, “Neural Discrete Representation Learning”, NeurlPS
[3] Razavi, et.al, 2019, “Generating Diverse High-Fidelity Images with VQ-VAE-2", NeurlPS
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Core idea: A generator vs. discriminator game [1]

Milestones: i
o DCGAN [2] en
mages

o Progressive GANs [3]
o StyleGAN [4], StyleGAN-NADA [5]

Generative Adversarial Networks (GANs) (2014)

Update the generator by descending its stochastic gradient:

A ICID))

Discriminative
Network

Low Generative
. . . . . imension etwor G d
Strengths: High-quality, realistic images. i NtG ‘
. . . . . o Space
Limitations: Training instability, mode collapse, hard Update the diseriminator by ascending its stochasti gradient:
. . . . el . 1 = i) i
likelihood estimation, conditioning challenges Voum 3 [log D (o) +10g (1-0 (¢ (=)))]

[1] Goodfellow et.al. , 2014. “Generative adversarial networks”, Comms. ACM

[2] Radford et.al, 2015. “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR

[3] Karras et.al, 2018. “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR

[4] Karras et.al. 2019. “A Style-Based Generator Architecture for Generative Adversarial Networks”, CVPR

[5] Gal et.al. 2022 “StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators”, ACM ToG 7



Normalizing Flows (2015)

e Core idea: Exact likelihood modeling via invertible
transformations.
e Examples:
o RealNVP [1]
o Glow [2]
o TARFLOW [3]
e Strengths: Exact log-likelihood, invertible mapping between data
and latent space.
e Limitations: High memory/computation cost, weaker sample
quality compared to GANs.

[1] Dinh et.al., 2017, “Density Estimation Using Real NVP”, ICLR
[2] Kingma et.al, 2018, “Glow: Generative Flow with Invertible 1x1 Convolutions”, NeurlPS
[3] Zhai et.al. , 2025. “Normalizing Flows are Capable Generative Models”, ICML
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Diffusion & Score-Based Models (2019)

e Core idea: Learn to reverse a gradual noise process to sl
generate clean images. @ — ver — @ @ —% = —> ‘
e Examples: ol
o DDPM [1]
o  Score-based generative models [2]
o LDM [3]
e Strengths: State-of-the-art quality, stable training, flexible
conditioning.
e Limitations: Slow sampling.

[1] Ho et.al, 2020, “Denoising Diffusion Probabilistic Models”, NeurlPS
[2] Song et.al. 2021, “Score-based Generative Modeling Through Stochastic Differential Equations®, ICLR
[3] Rombach et.al, 2022, “High-Resolution Image Synthesis with Latent Diffusion Models”, CVPR



Flow Matching & Flux-type Models (2023)

e Core idea: Unify ODE-based generative modeling @
(e.g., flows & diffusion) with efficient training via flow .
matching or rectified flows. Po
e Examples: t=00  t=is t=7s
. Diffusion path — conditional score function
o  Flow Matching Models [1] - < s SN SN
o  Rectified Flow Transformers [2] éi\\\\\‘ /- §§N///é §\\\Vz §N v
o Flux[3] = \7/\\§77 §7
e Strengths: Faster generation, continuous bridge /n\\\\ ////

t=0.0 t=13 t=12/3 t=1.0
OT path — conditional vector field

¥

Diffusion oT

between data & noise distributions.
e Limitations: Still emerging, not as widely
benchmarked as diffusion yet.

[1] Lipman et.al ,2023, “Flow Matching For Generative Modeling” ICLR

[2] Esser et.al. 2024, “Scaling Rectified Flow Transformers for High-Resolution Image Synthesis”

[3] Black Forest Labs, 2025. “FLUX.1 Kontext: Flow Matching for In-Context Image Generation and Editing in Latent Space”, arxiv

[4] https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html 10



https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html

Where are we now?
Diffusion Models
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Image based diffusion models

s . . . Do xt—llxt)
Two stage training - corruption and reconstruction @ — s —> — @

(
. R . . )(\\ _____
In the corruption stage: sequentially add noise to . .

Q(Xt|xt—1)

an image;

e In reconstruction stage: learn to reconstruct the q(x¢|xi—1) = N (x4; /1 — Bixs—1, BeI)
added noise at each step;

= = 2
o Because we control the noise generation Lgimple(8) = E¢,x,e [||€ — (v axo + V1 — aye, t)| ]

process, we have the exact formula for the
noisy image at any given time step t.
e During inference: start with a noisy image and
gradually reconstruct:
o  The quality of the final image depends on the
number of steps we take in the noise removal
process.

ap =1-p

a; = H§=1 g

Recommended tutorial: https://www.chenyang.co/diffusion.html
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https://www.chenyang.co/diffusion.html

Inference and choosing the right noise schedule

The way we add noise impacts how well we can reconstruct the image:
o  The bigger the steps, the harder it is to accurately predict the noise;
o The smaller the noise, the more steps we need to denoise.
e How much noise shall we add at each step?
o  Shall we add less noise in the earlier stages and more in the later?
o  Or shall we add more noise in the earlier and less in the later?

This is an active area of research. — scheduleLoglinear

102 4 —— ScheduleDDPM

Common schedules: LogLinear, DDPM, LDM — scheduleLoM
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Image based latent denoising diffusion models

In practice we train a U-Net architecture to
predict amount of noise at each timestep

repeat N\
X0 ~ q(xo)
t ~ Uniform({1,...,7}) £
e ~N(0,I) 5
Take gradient descent step on @
— = 2 3
Vo He — €9(v/autxo + /1 — au€, t)|| 3
until converged “
Q(Xt|X0) = N(xt, V (_ItXO, (]. — dt)I) ‘~»
i v = [[
Xt 'Bt . Hs_l . ' Convolution Max- Poolmg Up-Sampling Skip
Layer Layer Layer Connection
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Controlling generation

15



Classifier guidance

Classifier guidance:

e Use a separate pre-trained classifier gradients
as guidance in denoising process.
e |[ssues:
o Need a separate classifier trained on
noisy images;
o Classifier gradients perturb the image;
o Limited number of classes.

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model (ug(zt), Xo(z+)), classi-
fier pg(y|z¢), and gradient scale s.

Input: class label y, gradient scale s
z7 <+ sample from N (0,T)
for all ¢ from 7" to 1 do
s Z 4= po(zt), Zo(24)
z4—1 < sample from N (p + sX Vy, log py(y|z:), X)
end for
return zg

Diffusion Model | = &g (x¢,t)

_
~ -

Classifier — Y, logp(ylx,)

Dhariwal et.al, 2021, “Diffusion Models Beat GANs on Image Synthesis”, NeurlPS 16


https://openreview.net/profile?id=~Prafulla_Dhariwal1

Classifier-free guidance

Algorithm 1 Joint training a diffusion model with classifier-free guidance

Classifier-free g uidance: Require: py,cong: probability of unconditional training

1: repeat
e : : : 2: (x,¢) ~ p(x,c) > Sample data with conditioning from the dataset
® Add Condltlonlng into the diffusion Iaye rs 3: ¢ <+ @ with probability puncond > Randomly discard conditioning to train unconditionally
and train the model with and without by 2:%2\3 I > Sample log SNR value
Conditioning; 6: zZ) = oo\)’c+a)\e > Corrupt data to the sampled log SNR value
. . . . 7 Take gradient step on Vi ||€g (2, ¢) — €| > Optimization of denoising model
e During inference combine conditional and 8: until converged

unconditional generation.
€9 (Xt' Y, t) = 169 (Xt' Y, t); 2 S(lfe (th Y, t), § \EB (Xt' t?) = €y (th Y, t) o SAt
|l

Y Y
Conditional Conditional Unconditional
Model Model Model

Xt-1

Ho et.al, 2021, “Classifier-Free Diffusion Guidance”, NeurlPS #°N 17



Text-to-image models and latent diffusion models

e Images can have high resolution and ( Q) Latent Space ") (Conditioning)
. . s -
hence training and inference are slow. € Diffusion Process femg.q
o  Move from pixel space to latent z ( Denoising U-Net €¢ \ar Text
. Repres
Space; ﬂ entations
e Introduce cross-attention layers in the D
U-net, allowing for conditioning;
e Introduce an additional encoder for Pixel Space

conditioning.

denoising step crossattention  switch  skip connection concat

s

[1] Saharia, et.al. 2022. “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding*“, NeurlPS
[2] Rombach et.al, 2022, “High-Resolution Image Synthesis with Latent Diffusion Models”, CVPR
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Attention mechanism and transformers

Have trainable parameter matrices W to get query (Q),
key (K) and value (V)

Compute attention matrix from multiplication of Q and
K and softmax (to scale to 0-1) - telling us about
relationships between inputs

Compute the final output by multiplying attention by
value

Embedding
size
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Fine-tuning

e Once we have a high-quality model we might want to extend it, for example to model well:
o A specific person;
o  Anew style;
e Re-training is expensive, we want to have a cheap way to adapt the model to our use-case;
e How can we do that?

Cubism style Surrealism style

20



Dreambooth

e Take a rare word; e.g. {SKS} and
teach the model to map the word
{SKS} to a target feature;

e That might, for example, be a style
that the model has never seen;

e \We would show a dozen of images
in this style and fine-tune to the
phrase “A painting of X in the
{SKS} style”.

Text-encoder

Hand holding flowers in SKS

Ruiz et.al. 2023.“DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation”. CVPR



Textual inversion

e Instead of fine-tuning the model to
reproduce the desired output with rare
words, we are optimizing a special
textual embedding responsible for the
change.

e Assumption - the knowledge stored in
the latent space of diffusion models is
vast. The condition we want to
reproduce with the model is already
known to it, but we just don’t have the
token to access it.

Text-encoder

Hand holding flowers in SKS

Gal et.al. 2023.“An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion”. ICLR



LoRA

Hu et.al. 2022.“LoRA: Low-Rank Adaptation of Large Language Models”

Instead of fine-tuning the whole model,
which can be rather costly, we can blend a
fraction of new fine-tuned weights into the
original model.

In diffusion models, LoRA is applied to
cross-attention layers.

= Low rank

r<<w T

71rrrm
EE0 ]r

frozen troanable

.

Text-encoder

.ICLR

Hand holding flowers
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|IP-Adaptor

e The core idea behind the IP adapter is a /
decoupled cross-attention mechanism .

that allows the combination of source
images with text and generated image
features.

e This is achieved by adding a separate
cross-attention layer, allowing the model
to learn image-specific features.

::::::FI—F \

0.2| |03
0.3(/0.2
0.1 0.5
0.4|(0.1 b
0.5/ |0.1||0.7
Text-encoder

Hand holding flowers

-

Ye et.al. 2023.“IP-Adapter: Text Compatible Image Prompt Adapter for Text-to-Image Diffusion Models”. arXiv




Generation control Image-to-Image models

e DreamBooth: Full fine-tuning of models for custom subjects of styles, high control level; however, it takes
long time to train and are fit for one purpose only.

e Textual Inversion: Embedding-based learning for new concepts, low level of control, fast to train.

e LoRA: Lightweight fine-tuning of models for new styles/characters, medium level of control, quick to train.

e |P-Adapter: Soft style/content guidance via reference images, medium level of stylistic control, lightweight and
efficient.
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Eliminating bias in practical applications

e Biases from the data propagate to models.
o Clean the training dataset;

o  Augment the data with diverse examples.
Add adaptors to augment user prompts for diversity;
Post-process the results to make them more diverse.

A Cambridge
student

User prompt

Large
Language
Model

A female Cambridge
student of Asian
descent

Augment the prompt to
make it safe and diverse

System instruction

Generated prompt

[
L

Image
Generation
Model
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Evaluation (conventional)

e Frechet Inception Distance (FID) looks how well the generated ~ dr(N (s, Z), N (', £))? = ||ln — 4'l13 +tr<2 +E = 2(22’)%)
images fit into the natural image manifold by comparing
generated image feature statistics to the original dataset.
o Run training and generated images through a pre-trained
image classification model (inception)
o Extract and compare feature statistics for both sets
e Inception score looks at whether the generated image (x) is T8 (0 i) = exp<Em~,,gm {DKL <pdi3('|m)|| / pdi3(~|m)pgen(z)dx>:|>
clearly coming from the expected class (y).
o If p(ylx) is sharp (i.e. concentrated on one class), the
image is likely clear and meaningful.
o Ifp(y) is diverse (i.e. spread across many classes), the
set of images is varied.

27



Evaluation

Neither FID nor Inception catch generation artifacts;
Neither FID nor Inception can tell you about biases in the generations;
LLMs are not great with that either;

You need manual verification and benchmark prompt / image datasets to test models;

In practice you need multiple generations per prompt to catch issues.

i \ «"]l

)

(D "I' 7
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Image Generation Models Challenges

Quality of generations at scale;

Biases propagating to the model outputs;
Vast compute resources required to train;
Fairly slow inference still;

Models are too big to run on edge devices.
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Beyond image generation

30



3D & Graphics

move forward. open door. attack move forward

&m

an orangutan making a clay bowl on a throwing wheel* a raccoon astronaut holding his helmet’

attack, turn right run back.
a corgi taking a selfie* a table with dim sum on it"

Valevski et.al. 2025, “Diffusion Models Are Real-Time Game Poole et.al. 2022. "DreamFusion: Text-to-3D using 2D

Engines”, ICLR Diffusion”. ICLR

. . “a small red cube is sitting “a pair of 3d glasses, i Osad i 3 ki ) )

‘a vase of purple flowers’ roel‘li 13'1: :!:; ll’:;;geeo';lu :l:“e left le?ssguf? right imitating an avocado” “a bowl of food” “a penguin” “a voxelized dog” “a campfire”

Nichol, et.al. 2022. “Point-E: A System for Generating 3D Point Clouds  Jun et.al. 2023. “Shap-E: Generating Conditional 3D Implicit
from Complex Prompts”, arXiv Functions®, arXiv
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More applications

Video:

Imagen Video (Google, 2022);
Make-A-Video (Meta, 2022);

Stable Video Diffusion (StabilityAl, 2023);
MagicVideo-V2 (Bytedance, 2023);
SoRA (OpenAl, 2024).

SoRA 2 (OpenAl, 20245).

Diffusion for science:

e Diffusion for molecule generation:
o Xuet.al., 2022. “GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation”, ICLR
o  Whatson et.al. 2023. “De novo design of protein structure and function with RFdiffusion”. Nature

e Diffusion for weather/climate:
o Pathak et.al. 2022, “FourCastNet: A Global Data-driven High-resolution Weather Model using

Adaptive Fourier Neural Operators”, arXiv

32



Questions?

—_—

Diffusion models are current industry state-of-the-art for large-scale applications;

)
2) Fine-tuning unlocks personalization — IP Adaptors, LoRA, etc. enable custom styles & subjects cheaply;
3) Dataset bias propagates to models - need to always beware and have mechanisms of dealing with it;
4) Don’t blindly trust the metrics - check results manually and run A/Bs with customers;
5) Don't trust results in the papers re-run yourself to be sure the results are as reported;
6) There are open-challenges and a new fleet of models coming, so the area is still hot!

H
[m] St [m]
Website: https:/mikhailiuk.github.io/ T
LinkedIn: https://www.linkedin.com/in/aliakseimikhailiuk/

Blog: https://medium.com/@mikhailiuk 51:_@
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