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The purpose of image quality assessment

 To compare algorithms in terms of image or video quality
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The purpose of image quality assessment

 To optimize application parameters – e.g. resolution and bit-rate
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The purpose of image quality assessment

 To provide evidence of improvement over the state-of-the-art

Algorithm A Algorithm B Algorithm C
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Other application domains

 Recommendation systems

 Which movie to watch? (Netflix)

 Which product to buy? (Amazon)

 Product acceptance/rating

 Food

 Clothing

 Consumer electronics, …

 Similar techniques are used for

 Ranking of the players/gamers to match their skills in the game (TrueSkill on Xbox)
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Subjective image/video quality assessment methods

(user studies)

Subjective quality assessment

Ranking

ordinal scaling

Rating

direct interval scaling

Pair-wise 

comparisons

Rank order 

method

Single stimulus 

with hidden 

reference

Double 

stimulus
... ...
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Rating: Single stimulus + hidden reference

 With a hidden reference

 Task: Rate the quality of the image

 The categorical variables (excellent, good, 

…) are converted into scores 1-5

 Then those are averaged across all 

observers to get 

Mean-Opinion-Scores (MOS)

 To remove the effect of reference content, 

we often calculate DMOS:

𝑄𝐷𝑀𝑂𝑆 = 𝑄𝑀𝑂𝑆
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

− 𝑄𝑀𝑂𝑆
𝑡𝑒𝑠𝑡
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Rating: Double stimulus

 Task: Rate the quality of the first and the 

second image 

 The second image is typically the 

reference

 Potentially better accuracy of DMOS

 But takes more time

 The reference shown after each test image
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MOS from ratings - Subjective Recovery Analysis

 Once we have ratings, we want to find Mean Opinion Scores (MOS)

 Rating from experiment participants should not be directly used

 [bias] Because participants are unlikely to use the same quality scale

 “Good” for participant A could be “Fair” for participant B

 [inconsistency] Because participants differ in their consistency

 We want to use statistical (Bayesian) methods that eliminate bias and inconsistency

𝑈𝑖𝑗𝑟 = Φ𝑗 + Δ𝑖 + 𝑣𝑖𝑋, 𝑋 ∼ 𝑁(0,1)

 Open-source software from Netflix

 https://github.com/Netflix/sureal
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Pair-wise comparison method

 Example: video quality

 Task: Select the video sequence that has a higher quality
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Comparison matrix

 Results of pairwise comparisons can be stored in a comparison matrix

 In this example: 3 compared conditions: C1, C2, C3 

 Cij = n means that condition Ci was preferred over Cj n times

C1   C2   C3

C1

C2   

C3
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Full and reduced designs

 Full design

 Compare all pairs of conditions

 This requires 
𝑛
2

=
𝑛(𝑛−1)

2

comparisons for n conditions

 Tedious if n is large

 Reduced design

 We assume transitivity

 If C1 > C2 and C2 > C3 then C1 > C3 

 no need to do all comparisons

 There are numerous “block designs” (before computers)

 But the task is also a sorting problem

 The number comparison can be reduced to 𝑛 log(n) for a “human quick-sort”

 And many others: Swiss chess system, active sampling ...
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Pairwise comparisons vs. rating (e.g. single stimulus)

 The method of pairwise comparisons is fast

 More comparisons than rating trials, but 

 It takes less time to achieve the same sensitivity as for direct rating methods

 Has a higher sensitivity

 Less “external” variance between and within observers

 Provides a unified quality scale

 The scale (of JOD/JND) is transferrable between experiments

 Simple procedure

 Training is much easier

 Less affected by learnining effects 

 Especially suitable for non-expert participants

 E.g., crowdsourcing experiments
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Time-efficiency

From: Mantiuk et al. 

CGF 2012

The results show how long (on 

average) it took participants to 

complete the experiment

Pairwise comparisons reduced design

Pairwise comparisons full design
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Active sampling can make the experiments even faster

 Active sampling

 For each trial, select a pair of 

conditions that maximizes the 

information gain

 Information gain is the DK-divergence 

between the prior and posterior 

distributions

 Mikhailiuk, A., C. Wilmot, M. Perez-Ortiz, D. Yue, and 

R.K. Mantiuk. “ASAP: Active Sampling for Pairwise 

Comparisons via Approximate Message Passing and 

Information Gain Maximization.” In International 

Conference on Patter Recognition, 2020.

Normalized number of comparisons

ASAP

Swiss system

Estimation error
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Practical significance - scaling

 Scaling: to map user judgments into meaningful interval scale

 Typically that scale is in just-noticeable-difference units

 The difference of 1 JND means that

75% of observers would choose 

one condition over another 

 Useful to show “practical” significance
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Scaling pairwise comparison data

 Given a matrix of comparisons, for example

 Infer the quality scores for all compared conditions

 Using Maximum Likelihood Estimation (MLE)

 We start from an observer model, then link it to the observations
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Thurstone (observer) model - Case V

 Two assumptions:

 Quality scores for a given condition are normally distributed across the population

 The variance of that distribution is the same for each condition and the judgements are independent

Condition A
Condition C

Condition B
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From the observer model to probabilities

 Given the observer model for two conditions:

 The difference between two quality scores is: 

 Then, the probability of the judgment is explained 

by the cumulative normal distribution

𝑟𝑖 = 𝑁(𝑞𝑖 , 𝜎2) 𝑟𝑗 = 𝑁(𝑞𝑗 , 𝜎2)

𝑟𝑖 − 𝑟𝑗 = 𝑁(𝑞𝑖 − 𝑞𝑗 , 2𝜎2)

where  𝜎𝑖𝑗 = 2𝜎

𝑃(𝑟𝑖 > 𝑟𝑗|𝑞𝑖 − 𝑞𝑗 = −1)
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 Given that k out of n observers selected A over B, what is the probability 

distribution of selecting A over B

𝑃 𝑟𝑖 > 𝑟𝑗|𝑛, 𝑘 =
𝑛
𝑘

𝑝𝑘(1 − 𝑝)𝑛−𝑘

Binomial distribution
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Maximum Likelihood Estimation

 Given our observations (comparison matrix) what is the likelihood of the 

quality values 𝑞𝑖 :

 where 𝑛𝑖𝑗 = 𝑐𝑖𝑗 + 𝑐𝑗𝑖

 To estimate the values of 𝑞𝑖 , we maximize:

Cumulative Normal
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JND/JOD = 1

 Just Noticeable Differences

 Just Objectionable Differences

 We want 𝑞𝑖 − 𝑞𝑗 =1 when 75% of observers prefer condition “i” over “j”

Cumulative 

Normal 

distribution

▪ This happens when 

𝜎𝑖𝑗 = 1.4826

▪ This is an arbitrarily 

selected scaling, made 

for easier interpretation 

of the results
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Practicalities of MLE scaling

 At least 15-20 comparisons per each pair are needed to obtain stable results 

(prior helps)
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Forced choice vs. comparison with ties

 Giving a “tie” option is usually a bad idea

Scaling the results with 

ties requires a more 

complex observer 

model with more 

parameters to estimate
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Objective (image/video) quality metrics



Types of objective (image/video) quality metrics

Test image Reference image

Full Reference (FR) metrics

Full-reference

quality metric

Quality 

score
(optional)

Distortion map

Test image

No Reference (NR) metrics

No-reference

quality metric

Quality 

score

Test image Reference image

Reduced Reference (RR) metrics

Reduced-reference

quality metric

Quality 

score

Image 

statistics
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Main use cases of objective quality metrics

(I) Evaluation

Which method is the best?

Aims:

 To demonstrate the difference in 

quality

 To replace subjective experiments

(II) Optimization

What are the best parameter values? 

Aims:

▪ To replace manual parameter 

tweaking

▪ Especially in multi-dimensional 

problems
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Pixel-wise quality metrics

 Root Mean Square Error (RMSE)

𝐸𝑅𝑀𝑆𝐸 =
1

𝑤 ∙ ℎ
෍

𝑥,𝑦

𝑡 𝑥, 𝑦 − 𝑟 𝑥, 𝑦
2

 Peak Signal to Noise Ratio

𝐸𝑃𝑆𝑁𝑅 = 20
𝐼𝑝𝑒𝑎𝑘

𝐸𝑅𝑀𝑆𝐸
 [𝑑𝐵]

 𝐼𝑝𝑒𝑎𝑘 - the peak pixel value (e.g. 255 or 1)

 If the error is normally distributed and its 

mean is 0, 𝐸𝑅𝑀𝑆𝐸 is the standard 

deviation of the distortion (noise)

Reference 

image

Test

image
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The shortcomings of pixel-wise metrics

Reference

JPEG-encoded

PSNR=24.7

Blur

PSNR=24.8

Noise

PSNR=24.8
Rotation (1.3 deg)

PSNR=23.4

[Examples from: 10.1109/TIP.2008.926161]
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Texture quality metrics

Test image

Reference image

Quality 

score

Extract (local) 

image statistics 

(e.g. mean, var)

Extract (local) 

image statistics 

(e.g. mean, var)

Pooling

≠ per pixel

≈ appearance
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Structural Similarity Index (SSIM)

 Split test and reference images into 11 × 11 px overlapping patches

 For each patch, calculate mean 𝜇𝑇 , 𝜇𝑅 , std 𝜎𝑇𝜎𝑅 and covariance 𝜎𝑇𝑅 

 of each patch, weighted by a Gaussian window

 Calculate three terms (per patch)

 “Luminance”:   l𝒙 =
2𝜇𝑇𝜇𝑅+𝐶0

𝜇𝑇
2+𝜇𝑅

2 +𝐶0

 Contrast:  𝑐𝒙 =
2𝜎𝑇𝜎𝑅+𝐶1

𝜎𝑇
2+𝜎𝑅

2+𝐶1

 Structure:    𝑠𝒙 =
𝜎𝑇𝑅+𝐶2

𝜎𝑇𝜎𝑅+𝐶2
 (cross-correlation)

 Multiply them together: 𝑞𝒙 = 𝑙𝒙 ∙ c𝒙 ∙ s𝒙

 And pool:    𝑞𝑆𝑆𝐼𝑀 =
1

𝑁
σ𝒙 𝑞𝒙
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Learned Perceptual Image Patch Similarity (LPIPS)

 Use a pre-trained CNN as a feature extractor

Test image Reference image

Feature 

differences

Learned weights

AlexNet, 

VGG, …

Predicted quality
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Metrics and viewing conditions

 Majority of image/video metrics disregard 

viewing conditions

 Display size

 Display resolution

 Viewing distance

 Display peak luminance

 Colour gamut

 PSNR, SSIM, LPIPS operate on 0-255 pixel values

 Cannot handle HDR images/video

 To account for the viewing conditions, we need 

metrics based on psychophysical models

 known as visual difference predictors (VDPs)

pixel pixel≠
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Perceptual metrics (Visual Difference Predictors)

"standard_4k": {
"resolution": [3840, 2160],
"viewing_distance_meters": 0.7472,
"diagonal_size_inches": 30,
"max_luminance": 200,
"contrast": 1000,
"E_ambient": 250,

}
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Perceptual metrics (Visual Difference Predictors)
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Perceptual metrics (Visual Difference Predictors)
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Perceptual metrics (Visual Difference Predictors)
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Perceptual metrics (Visual Difference Predictors)

Contrast

masking

T
e

s
t 
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a
s
t

Mask contrast

castleCSF

minimum

detectable

contrast

difference
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Perceptual metrics (Visual Difference Predictors)

The quality is scaled in the units of

Just Objectionable Differences [JOD]

1 JOD difference ≈ 50% increase in preference

Can express supra-threshold (well-visible)
differences
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Metric performance on band-limited noise

Spatial frequency

C
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n
tr

a
s
t

Violet – large difference; Orange – small difference41



Metric performance on masking patterns

Violet – large difference; Orange – small difference Contrast of the masker
C
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G

a
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