

Advanced Graphics & Image Processing

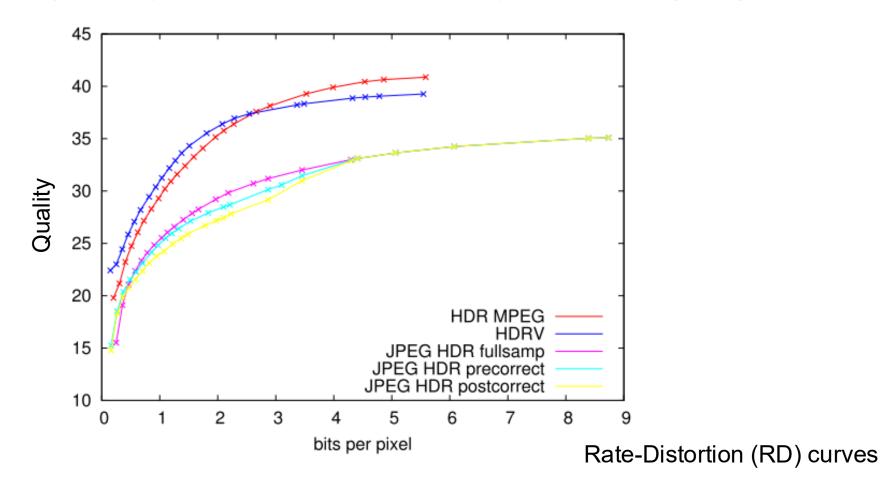
Assessing Image and Video Quality

Rafał Mantiuk

Computer Laboratory, University of Cambridge

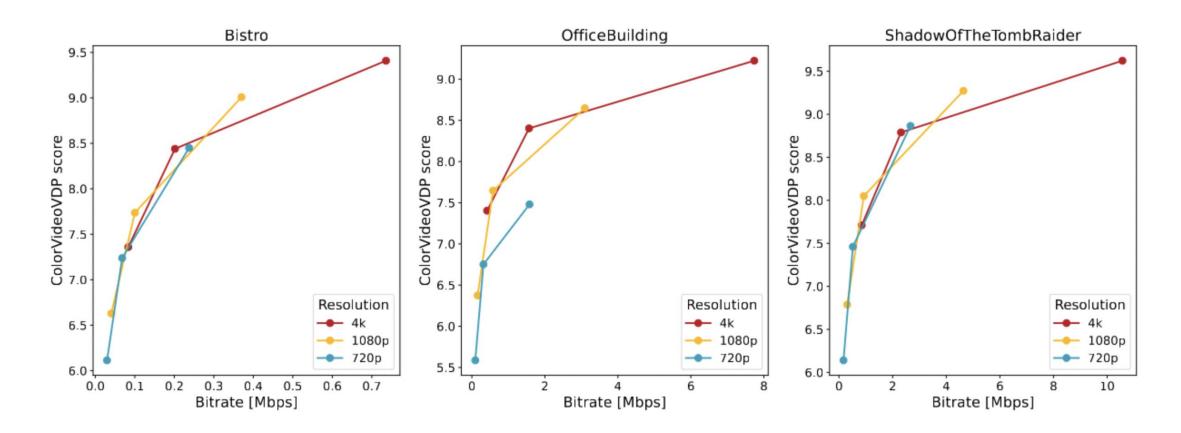
The purpose of image quality assessment

To compare algorithms in terms of image or video quality



The purpose of image quality assessment

▶ To optimize application parameters — e.g. resolution and bit-rate



The purpose of image quality assessment

▶ To provide evidence of improvement over the state-of-the-art

Algorithm A Algorithm B Algorithm C

Other application domains

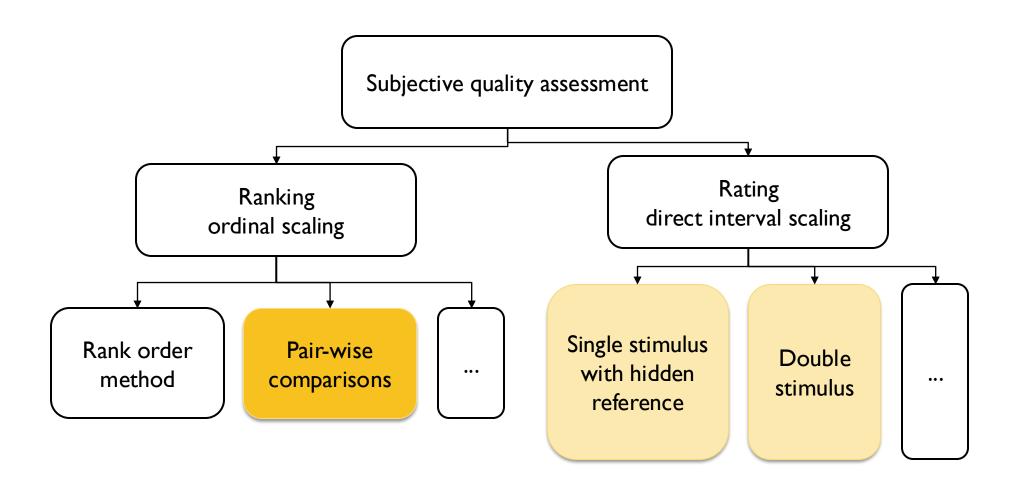
Recommendation systems

- Which movie to watch? (Netflix)
- Which product to buy? (Amazon)

Product acceptance/rating

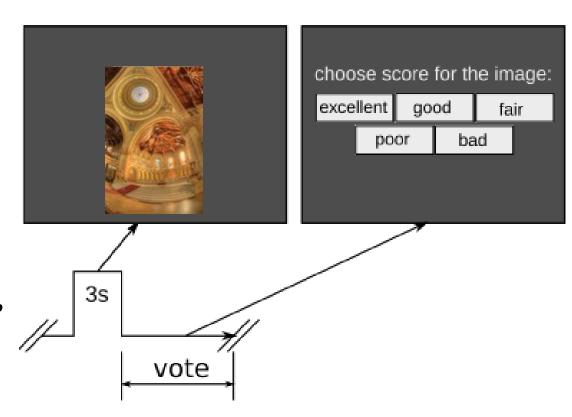
- Food
- Clothing
- Consumer electronics, ...
- Similar techniques are used for
 - Ranking of the players/gamers to match their skills in the game (TrueSkill on Xbox)

Subjective image/video quality assessment methods (user studies)



Rating: Single stimulus + hidden reference

- With a hidden reference
- ▶ Task: Rate the quality of the image
- The categorical variables (excellent, good, ...) are converted into scores 1-5
- Then those are averaged across all observers to get Mean-Opinion-Scores (MOS)
- To remove the effect of reference content, we often calculate DMOS:

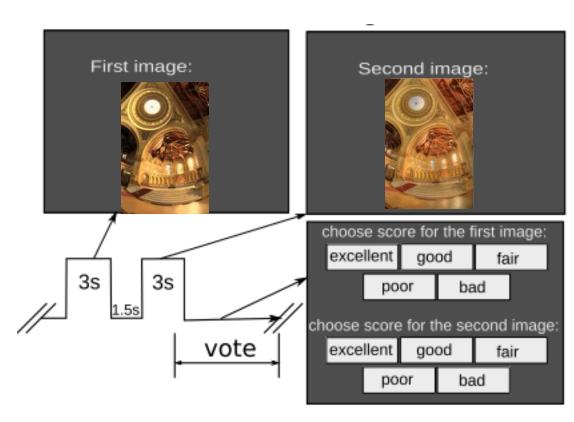


Rating: Double stimulus

Task: Rate the quality of the first and the second image

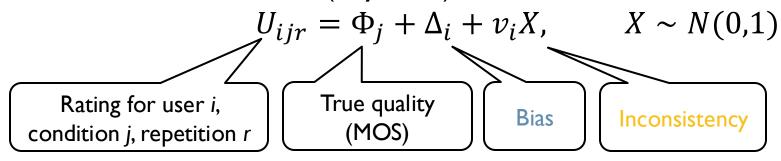
The second image is typically the reference

- Potentially better accuracy of DMOS
- But takes more time
 - The reference shown after each test image



MOS from ratings - Subjective Recovery Analysis

- Once we have ratings, we want to find Mean Opinion Scores (MOS)
- Rating from experiment participants should not be directly used
 - bias] Because participants are unlikely to use the same quality scale
 - "Good" for participant A could be "Fair" for participant B
 - [inconsistency] Because participants differ in their consistency
- We want to use statistical (Bayesian) methods that eliminate bias and inconsistency



- Open-source software from Netflix
 - https://github.com/Netflix/sureal

Pair-wise comparison method

Example: video quality

Task: Select the video sequence that has a higher quality

Comparison matrix

Results of pairwise comparisons can be stored in a comparison matrix

$$C = \begin{bmatrix} 0 & 3 & 1 \\ 3 & 0 & 2 \\ 5 & 4 & 0 \end{bmatrix}$$
C1
$$C = \begin{bmatrix} 0 & 3 & 1 \\ 3 & 0 & 2 \\ 5 & 4 & 0 \end{bmatrix}$$
C2

- ▶ In this example: 3 compared conditions: C1, C2, C3
- $C_{ii} = n$ means that condition Ci was preferred over Cj n times

Full and reduced designs

Full design

- Compare all pairs of conditions
- This requires $\binom{n}{2} = \frac{n(n-1)}{2}$ comparisons for n conditions
- Tedious if *n* is large

Reduced design

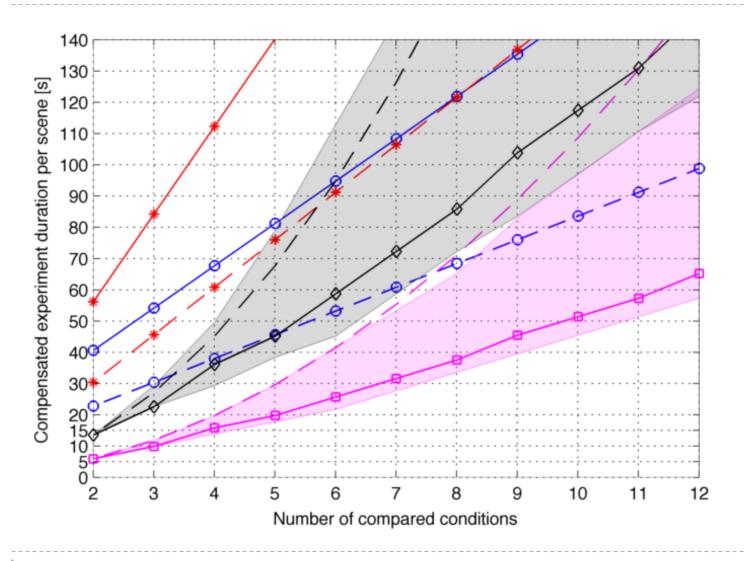
- We assume transitivity
 - \rightarrow If CI > C2 and C2 > C3 then CI > C3
 - □ no need to do all comparisons
- There are numerous "block designs" (before computers)
- But the task is also a sorting problem
 - The number comparison can be reduced to $n \log(n)$ for a "human quick-sort"
- And many others: Swiss chess system, active sampling ...

$$C = \begin{bmatrix} 0 & 3 & 1 \\ 3 & 0 & 2 \\ 5 & 4 & 0 \end{bmatrix}$$
C1
$$C_{3}$$
C2
$$C_{3}$$
C2

Pairwise comparisons vs. rating (e.g. single stimulus)

- ▶ The method of pairwise comparisons is **fast**
 - More comparisons than rating trials, but
 - It takes less time to achieve the same sensitivity as for direct rating methods
- Has a higher sensitivity
 - Less "external" variance between and within observers
- Provides a unified quality scale
 - The scale (of JOD/JND) is transferrable between experiments
- **Simple** procedure
 - Training is much easier
 - Less affected by learnining effects
- Especially suitable for non-expert participants
 - E.g., crowdsourcing experiments

Time-efficiency



The results show how long (on average) it took participants to complete the experiment

── — Single stimulus, decision only

Double stimulus

→ Double stimulus, decision only

Pairwise comparisons full design

Pairwise comparisons reduced design

→ Similarity judgements reduced

— Similarity judgements full

From: Mantiuk et al. CGF 2012

Active sampling can make the experiments even faster

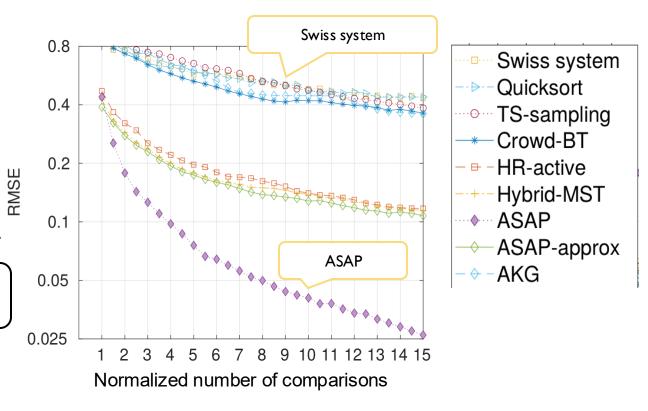
Active sampling

 For each trial, select a pair of conditions that maximizes the information gain

 Information gain is the DK-divergence between the prior and posterior distributions

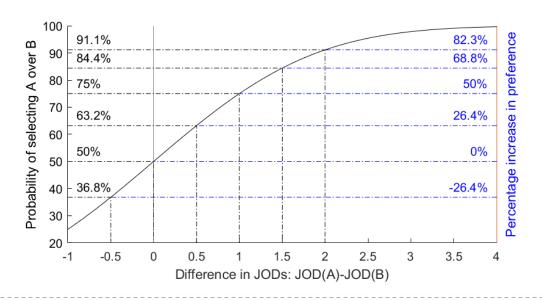
Estimation error

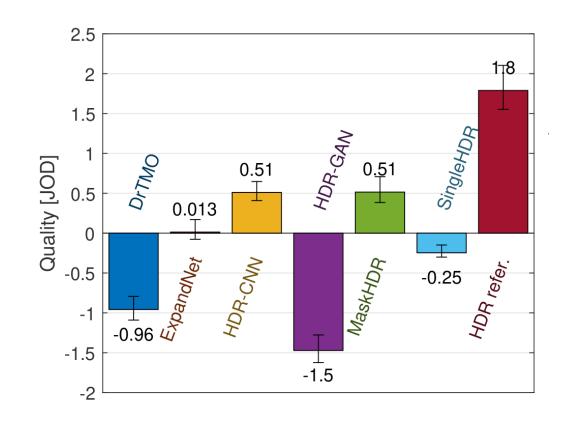
Mikhailiuk, A., C. Wilmot, M. Perez-Ortiz, D. Yue, and R.K. Mantiuk. "ASAP: Active Sampling for Pairwise Comparisons via Approximate Message Passing and Information Gain Maximization." In *International Conference on Patter Recognition*, 2020.



Practical significance - scaling

- Scaling: to map user judgments into meaningful interval scale
- ▶ Typically that scale is in just-noticeable-difference units
 - The difference of I JND means that 75% of observers would choose one condition over another
 - Useful to show "practical" significance





Scaling pairwise comparison data

Given a matrix of comparisons, for example

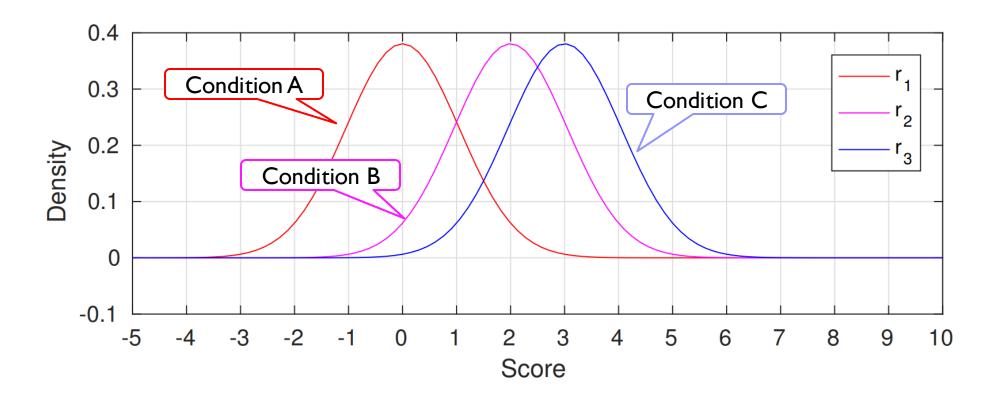
$$\mathbf{C} = \begin{bmatrix} 0 & 3 & 0 \\ 27 & 0 & 7 \\ 30 & 23 & 0 \end{bmatrix}$$

- Infer the quality scores for all compared conditions
 - Using Maximum Likelihood Estimation (MLE)
- We start from an observer model, then link it to the observations

Thurstone (observer) model - Case V

Two assumptions:

- Quality scores for a given condition are normally distributed across the population
- The variance of that distribution is the same for each condition and the judgements are independent



From the observer model to probabilities

Given the observer model for two conditions:

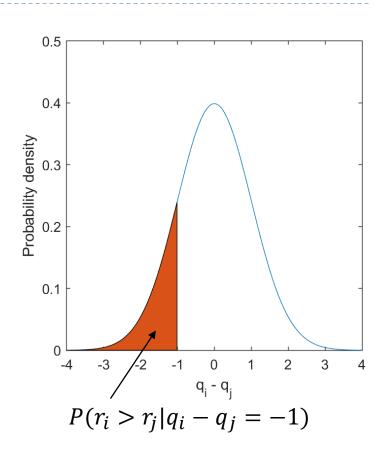
$$r_i = N(q_i, \sigma^2)$$
 $r_j = N(q_j, \sigma^2)$

▶ The difference between two quality scores is:

$$r_i - r_j = N(q_i - q_j, 2\sigma^2)$$

Then, the probability of the judgment is explained by the cumulative normal distribution

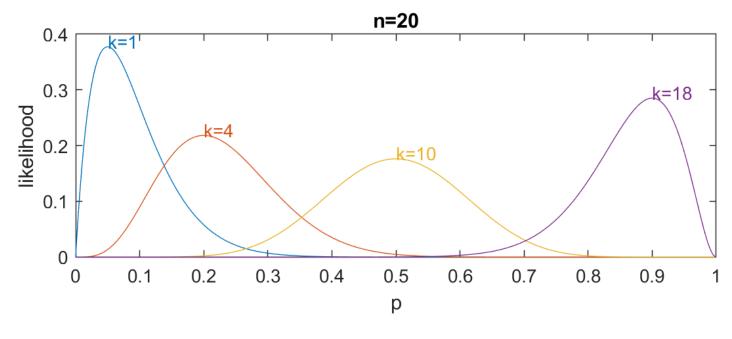
$$P(r_i > r_j) = P(r_i - r_j > 0) = \Phi\left(\frac{q_i - q_j}{\sigma_{ij}}\right)$$
$$= \frac{1}{\sigma_{ij}\sqrt{2\pi}} \int_{-\infty}^{q_i - q_j} e^{\left(\frac{-x^2}{2\sigma_{ij}^2}\right)} dx.$$



where
$$\sigma_{ij} = \sqrt{2}\sigma$$

Binomial distribution

• Given that k out of n observers selected A over B, what is the probability distribution of selecting A over B



$$P(r_i > r_j | n, k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Maximum Likelihood Estimation

• Given our observations (comparison matrix) what is the likelihood of the quality values q_i :

$$L(\hat{q}_i - \hat{q}_j | c_{ij}, n_{ij}) = \binom{n_{ij}}{c_{ij}} P(r_i > r_j)^{c_{ij}} (1 - P(r_i > r_j))^{n_{ij} - c_{ij}}$$

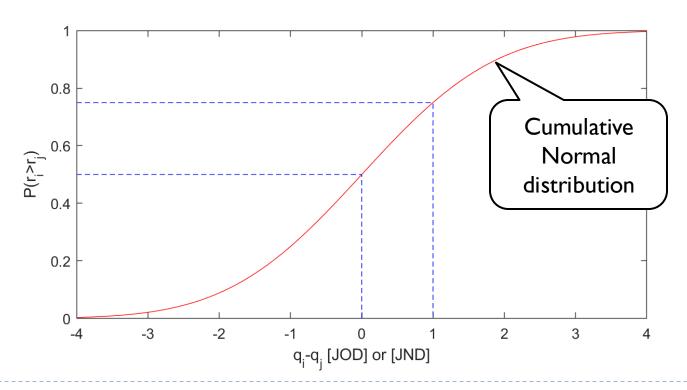
$$= \binom{n_{ij}}{c_{ij}} \Phi\left(\frac{\hat{q}_i - \hat{q}_j}{\sigma_{ij}}\right)^{c_{ij}} \left(1 - \Phi\left(\frac{\hat{q}_i - \hat{q}_j}{\sigma_{ij}}\right)\right)^{n_{ij} - c_{ij}}$$
Cumulative Normal

- where $n_{ij} = c_{ij} + c_{ji}$
- \blacktriangleright To estimate the values of q_i , we maximize:

$$\underset{\hat{q}_2,\dots,\hat{q}_n}{\operatorname{arg\,max}} \prod_{i,j\in\Omega} L(\hat{q}_i - \hat{q}_j | c_{ij}, n_{ij})$$

JND/JOD = 1

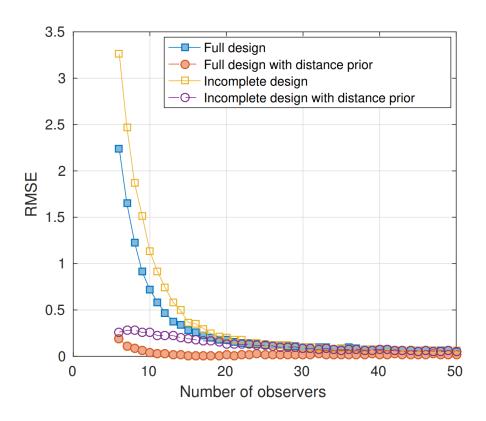
- Just Noticeable Differences
- Just Objectionable Differences
- We want $q_i q_j = 1$ when 75% of observers prefer condition "i" over "j"

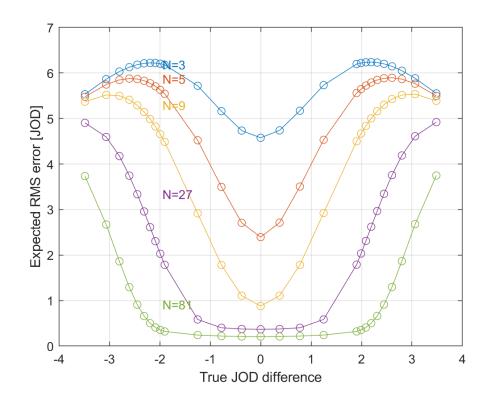


- This happens when $\sigma_{ii} = 1.4826$
- This is an arbitrarily selected scaling, made for easier interpretation of the results

Practicalities of MLE scaling

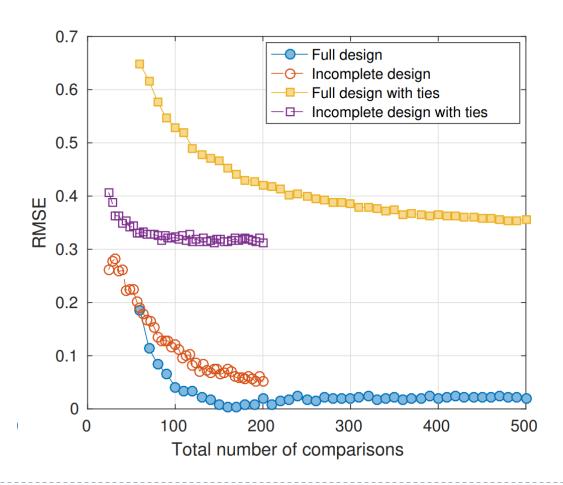
At least 15-20 comparisons per each pair are needed to obtain stable results (prior helps)





Forced choice vs. comparison with ties

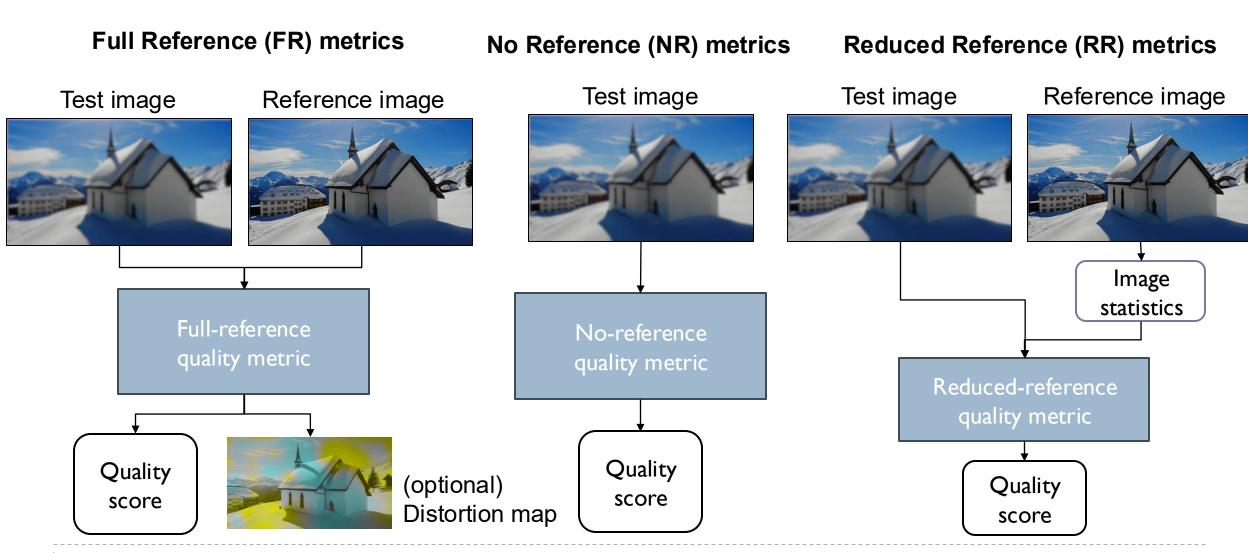
• Giving a "tie" option is usually a bad idea



Scaling the results with ties requires a more complex observer model with more parameters to estimate

Objective (image/video) quality metrics

Types of objective (image/video) quality metrics



Main use cases of objective quality metrics

(I) Evaluation

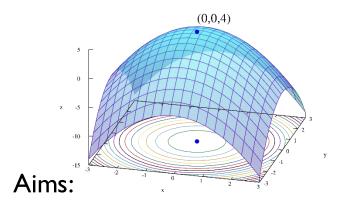
Which method is the best?

Dataset	Scale	Bicubic	A+ [27]	SRCNN [4]	VDSR [11]
Set5	×2	33.66 / 0.9299	36.54 / 0.9544	36.66 / 0.9542	37.53 / 0.9587
	$\times 3$	30.39 / 0.8682	32.58 / 0.9088	32.75 / 0.9090	33.66 / 0.9213
	$\times 4$	28.42 / 0.8104	30.28 / 0.8603	30.48 / 0.8628	31.35 / 0.8838
Set14	$\times 2$	30.24 / 0.8688	32.28 / 0.9056	32.42 / 0.9063	33.03 / 0.9124
	$\times 3$	27.55 / 0.7742	29.13 / 0.8188	29.28 / 0.8209	29.77 / 0.8314
	$\times 4$	26.00 / 0.7027	27.32 / 0.7491	27.49 / 0.7503	28.01 / 0.7674
B100	$\times 2$	29.56 / 0.8431	31.21 / 0.8863	31.36 / 0.8879	31.90 / 0.8960
	$\times 3$	27.21 / 0.7385	28.29 / 0.7835	28.41 / 0.7863	28.82 / 0.7976
	$\times 4$	25.96 / 0.6675	26.82 / 0.7087	26.90 / 0.7101	27.29 / 0.7251
Urban100	$\times 2$	26.88 / 0.8403	29.20 / 0.8938	29.50 / 0.8946	30.76 / 0.9140
	$\times 3$	24.46 / 0.7349	26.03 / 0.7973	26.24 / 0.7989	27.14 / 0.8279
	$\times 4$	23.14 / 0.6577	24.32 / 0.7183	24.52 / 0.7221	25.18 / 0.7524

Aims:

- To demonstrate the difference in quality
- To replace subjective experiments

(II) Optimization What are the best parameter values?



- To replace manual parameter tweaking
- Especially in multi-dimensional problems

Pixel-wise quality metrics

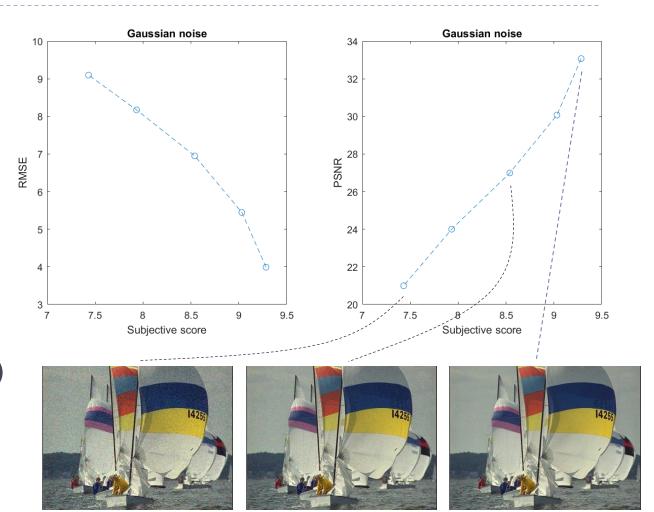
Root Mean Square Error (RMSE)

$$E_{RMSE} = \sqrt{\frac{1}{w \cdot h} \sum_{x,y} (t(x,y) - r(x,y))^{2}}$$
Test image Reference image

Peak Signal to Noise Ratio

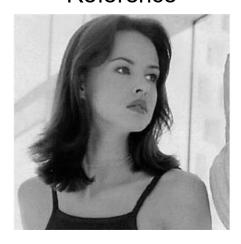
$$E_{PSNR} = 20 \frac{I_{peak}}{E_{RMSE}} [dB]$$

- ▶ I_{peak} the peak pixel value (e.g. 255 or I)
- If the error is normally distributed and its mean is $0, E_{RMSE}$ is the standard deviation of the distortion (noise)



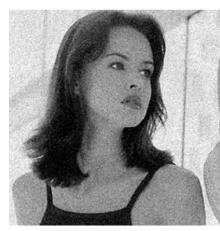
The shortcomings of pixel-wise metrics

Reference



JPEG-encoded PSNR=24.7

Blur PSNR=24.8

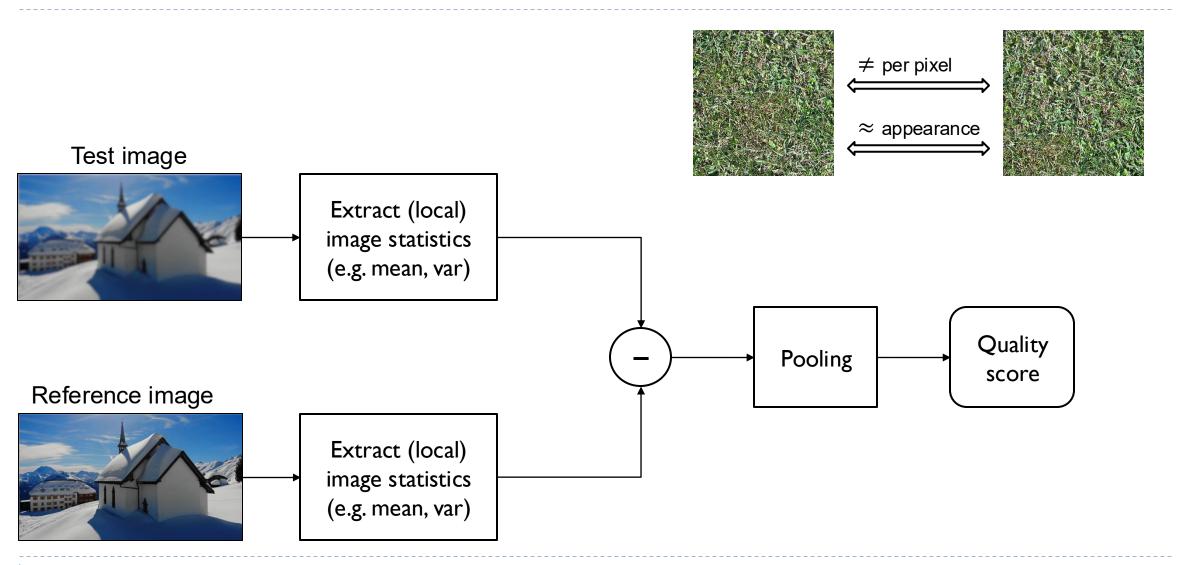


Noise PSNR=24.8

Rotation (1.3 deg) PSNR=23.4

[Examples from: 10.1109/TIP.2008.926161]

Texture quality metrics



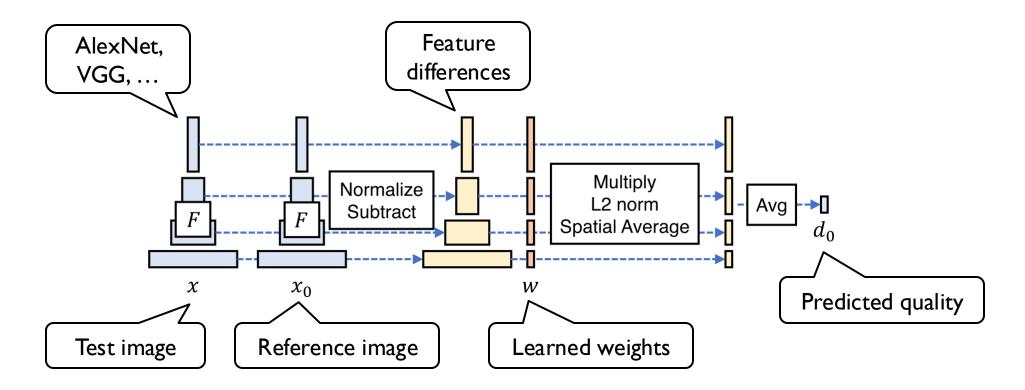
Structural Similarity Index (SSIM)

- \blacktriangleright Split test and reference images into 11×11 px overlapping patches
- For each patch, calculate mean μ_T , μ_R , std $\sigma_T \sigma_R$ and covariance σ_{TR}
 - of each patch, weighted by a Gaussian window
- Calculate three terms (per patch)
 - "Luminance": $l_x = \frac{2\mu_T \mu_R + C_0}{\mu_T^2 + \mu_R^2 + C_0}$

 - Structure: $S_{\chi} = \frac{\sigma_{TR} + C_2}{\sigma_T \sigma_R + C_2}$ (cross-correlation)
- Multiply them together: $q_x = l_x \cdot c_x \cdot s_x$
- And pool: $q_{SSIM} = \frac{1}{N} \sum_{x} q_{x}$

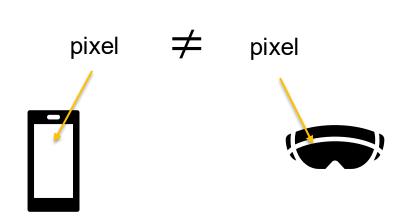
Learned Perceptual Image Patch Similarity (LPIPS)

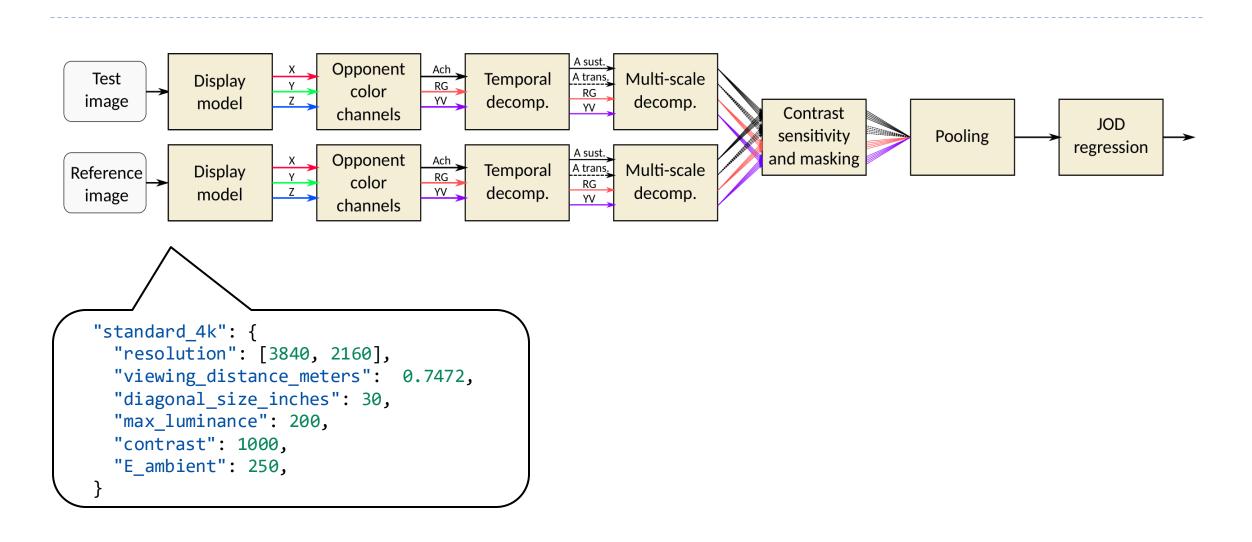
Use a pre-trained CNN as a feature extractor

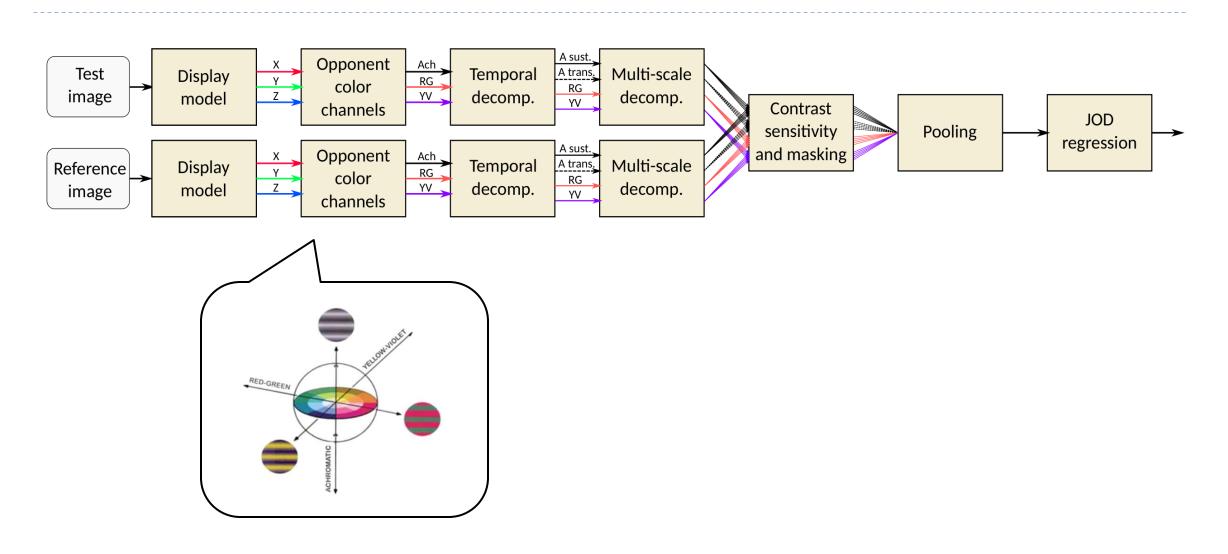


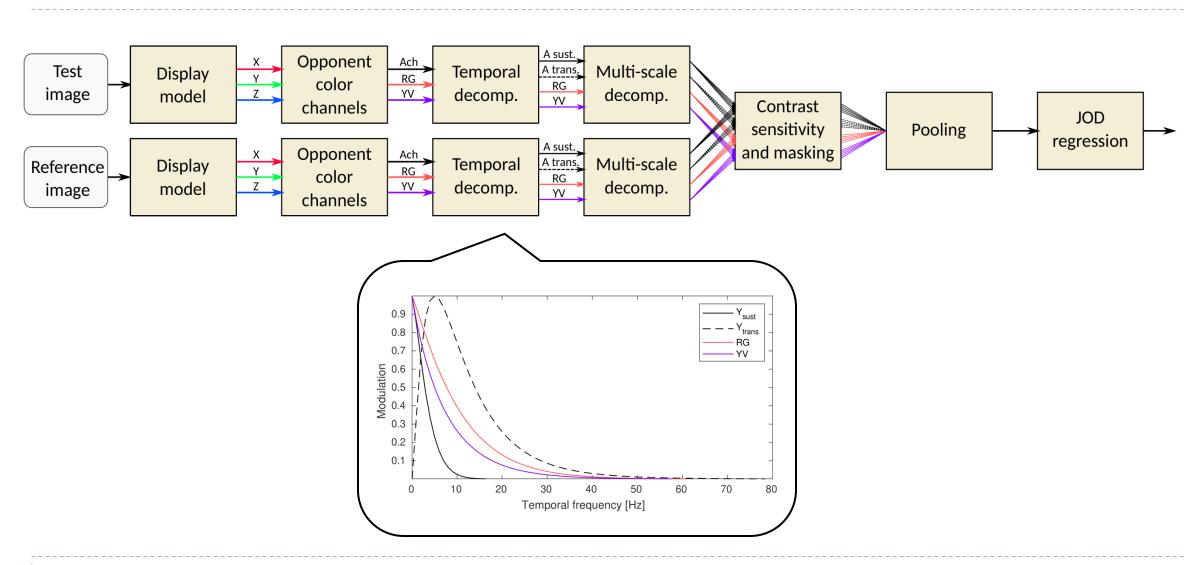
Metrics and viewing conditions

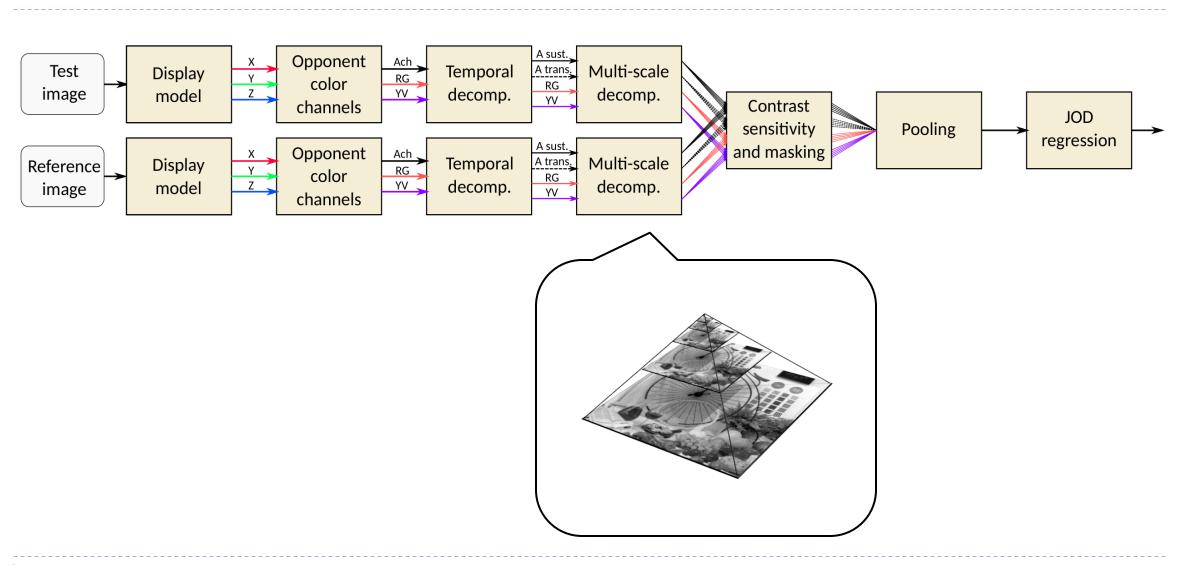
- Majority of image/video metrics disregard viewing conditions
 - Display size
 - Display resolution
 - Viewing distance
 - Display peak luminance
 - Colour gamut
- ▶ PSNR, SSIM, LPIPS operate on 0-255 pixel values
 - Cannot handle HDR images/video
- To account for the viewing conditions, we need metrics based on psychophysical models
 - known as visual difference predictors (VDPs)

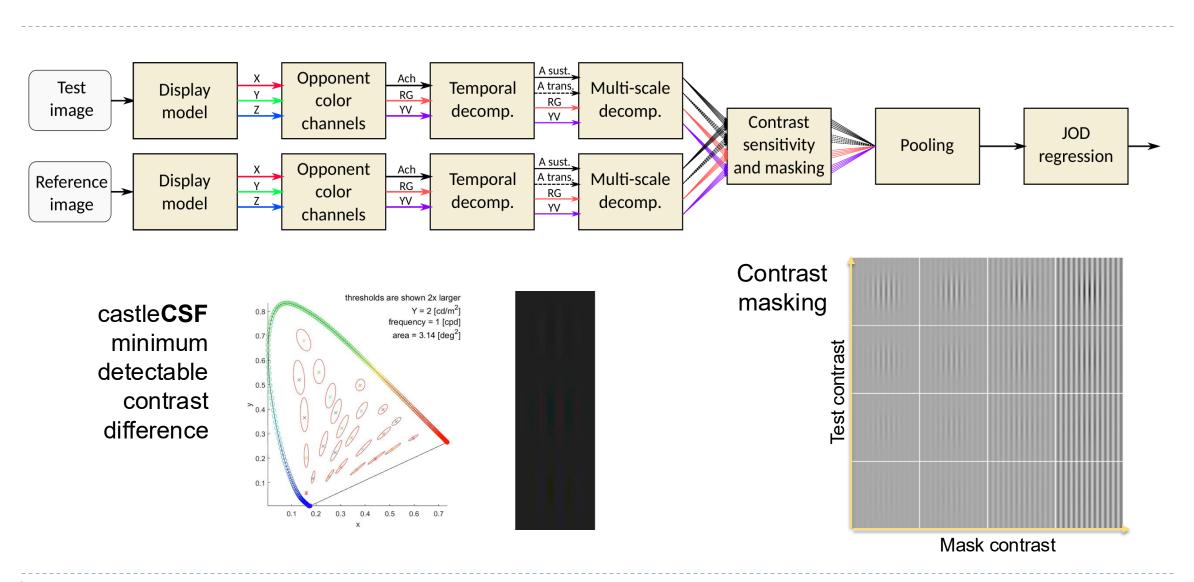


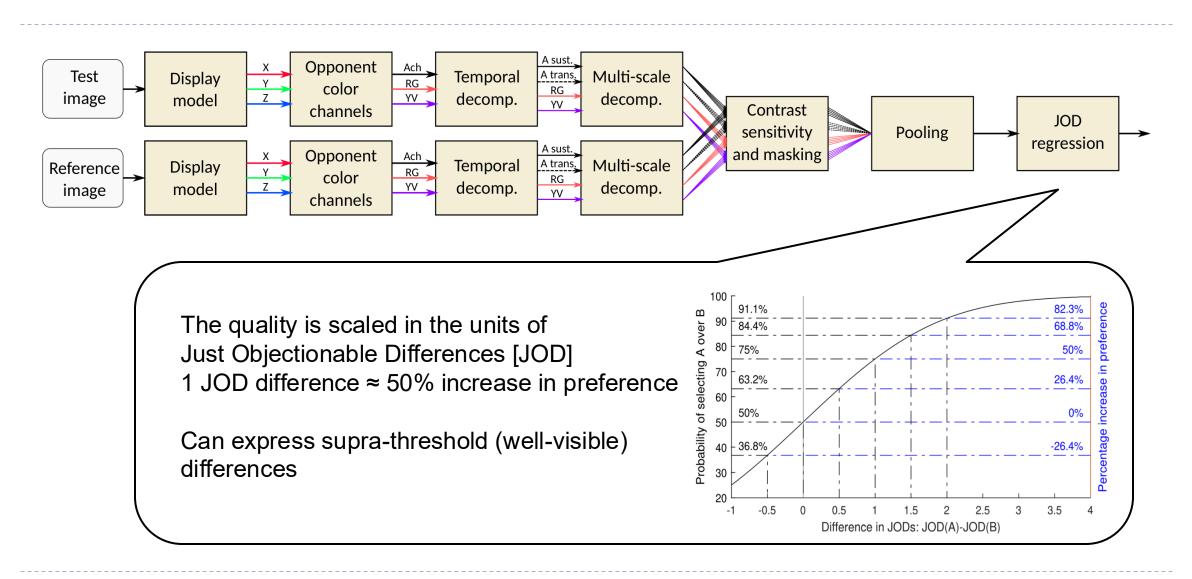




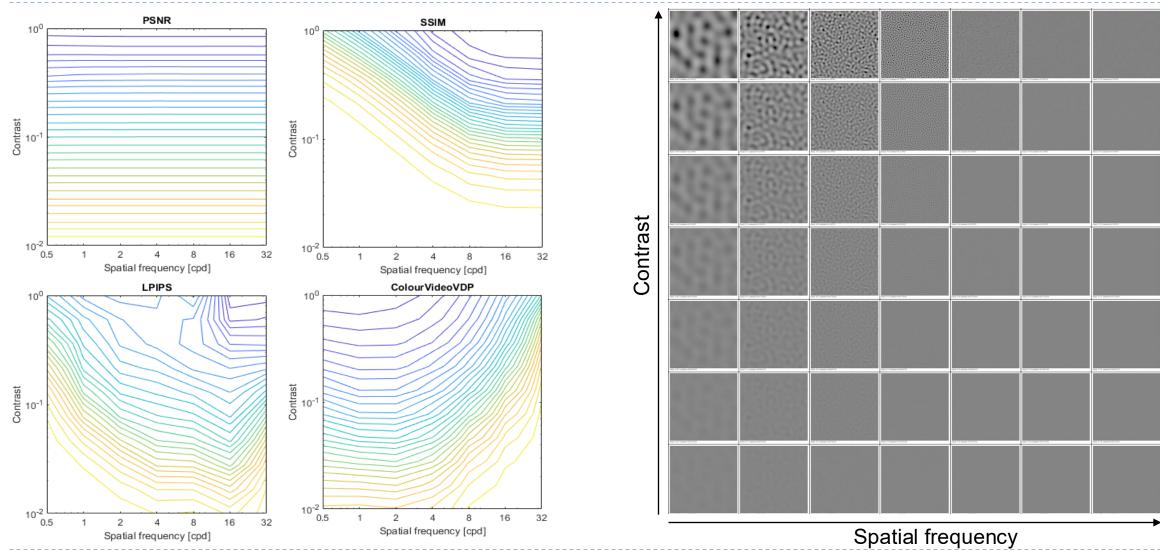






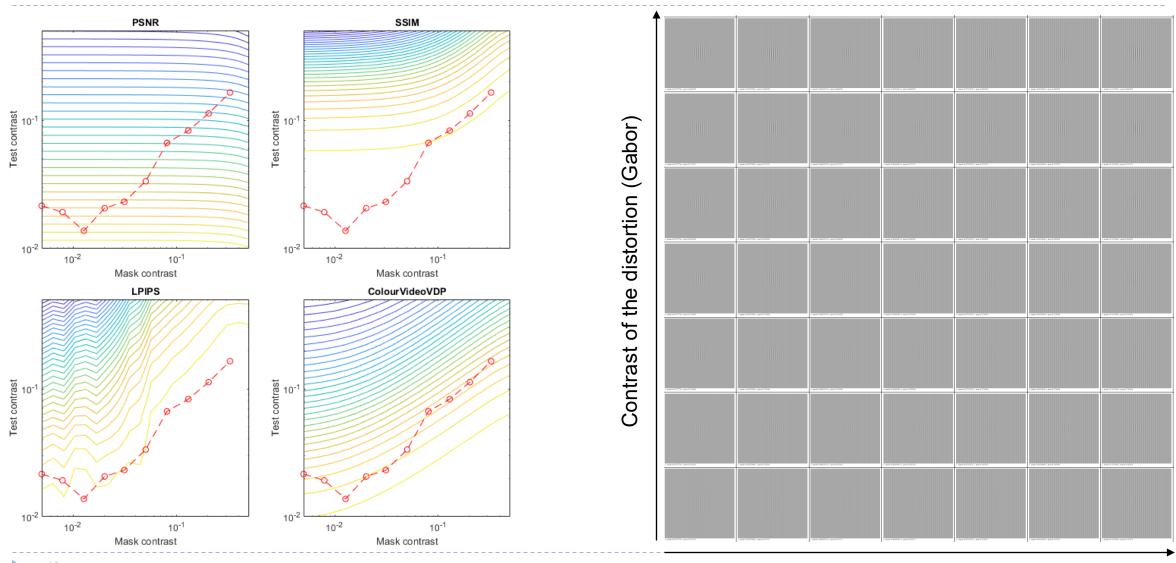


Metric performance on band-limited noise



Violet – large difference; Orange – small difference

Metric performance on masking patterns



References

Scaling of pairwise comparison data

- pwcmp https://github.com/mantiuk/pwcmp
- A practical guide and software for analysing pairwise comparison experiments https://arxiv.org/abs/1712.03686

Active sampling

ASAP - https://github.com/gfxdisp/asap

► SSIM

A Hitchhiker's Guide to Structural Similarity - https://doi.org/10.1109/ACCESS.2021.3056504

VDP metrics

- ▶ HDR-VDP https://hdrvdp.sourceforge.net/
- FovVideoVDP https://github.com/gfxdisp/FovVideoVDP
- ColorVideoVDP https://github.com/gfxdisp/ColorVideoVDP