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Assessing Image and Video Quality
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The purpose of image quality assessment

» To compare algorithms in terms of image or video quality
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The purpose of image quality assessment

» To optimize application parameters — e.g. resolution and bit-rate
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The purpose of image quality assessment

» To provide evidence of improvement over the state-of-the-art

Algorithm A Algorithm B Algorithm C



Other application domains

» Recommendation systems

Which movie to watch?! (Netflix)
Which product to buy? (Amazon)

» Product acceptance/rating

Food
Clothing

Consumer electronics, ...

» Similar techniques are used for
Ranking of the players/gamers to match their skills in the game (TrueSkill on Xbox)



Subjective image/video quality assessment methods
(user studies)

{ Subjective quality assessment J
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Rating: Single stimulus + hidden reference

» With a hidden reference
» Task: Rate the quality of the image

choose score for the iImage:

excelent| good | far

» The categorical variables (excellent, good,
...) are converted into scores |-5

» Then those are averaged across all

observers to get
Mean-Opinion-Scores (MOYS)

» To remove the effect of reference content, 3s
we often calculate DMOS: /"’f 7/
vote |
- g
reference test

Qpmos = MOS — UMmos



Rating: Double stimulus

» Task: Rate the quality of the first and the
second image .

First image: Second image;
. . . (@) <a ) )
» The second image is typically the =/ A
0, - W i
reference Lt
choose score for the first image:
» Potentially better accuracy of DMOS
Y
1.55
choose score for the second image:

» But takes more time

The reference shown after each test image



MOS from ratings - Subjective Recovery Analysis

» Once we have ratings, we want to find Mean Opinion Scores (MOS)

» Rating from experiment participants should not be directly used

[bias] Because participants are unlikely to use the same quality scale
“Good” for participant A could be “Fair” for participant B

[ ] Because participants differ in their consistency

» We want to use statistical (Bayesian) methods that eliminate bias and
Uij?‘ =(Dj+Ai+UiX, XNN(O,l)

True quality :
e

» Open-source software from Netflix
https://github.com/Netflix/sureal

Rating for user i,
condition j, repetition r




Pair-wise comparison method

» Example: video quality

» Task: Select the video sequence that has a higher quality




Comparison matrix

» Results of pairwise comparisons can be stored in a comparison matrix

C1 C2 C3

0 3 1|c¢
C=|3 0 2|c

5 4 0]cs

» In this example: 3 compared conditions: C|, C2, C3

» C; = n means that condition Ci was preferred over Cj n times



Full and reduced designs

» Full design
C1 C2 C3

Compare all pairs of conditions

g 0 3 1]c¢

This requires (2 .
comparisons for n conditions C=1|3 (0 2]|¢2

Tedious if n is large
5 4 0fcs

» Reduced design

We assume transitivity
If Cl > C2and C2 > C3 then C| > C3

no need to do all comparisons
There are numerous “block designs” (before computers)
But the task is also a sorting problem

The number comparison can be reduced to n log(n) for a “human quick-sort”

And many others: Swiss chess system, active sampling ...



Pairwise comparisons vs. rating (e.g. single stimulus)

v

The method of pairwise comparisons is fast
More comparisons than rating trials, but

It takes less time to achieve the same sensitivity as for direct rating methods

v

Has a higher sensitivity

Less “external”’ variance between and within observers

v

Provides a unified quality scale
The scale (of JOD/JND) is transferrable between experiments

v

Simple procedure
Training is much easier

Less affected by learnining effects

v

Especially suitable for non-expert participants

E.g., crowdsourcing experiments



Time-efficiency

140,

Compensated experiment duration per scene [s]

Number of compared conditions

The results show how long (on
average) it took participants to
complete the experiment

—&— Single stimulus
—© — Single stimulus, decision only
—#— Double stimulus
—#* — Double stimulus, decision only
——8—— Pairwise comparisons full design |
— — Pairwise comparisons reduced design
—©— Similarity judgements reduced
— — Similarity judgements full

From: Mantiuk et al.
CGF 2012



» Active sampling

Swiss system

Active sampling can make the experiments even faster

: : 0.8 P —
For each trial, select a pair of Swiss system
conditions that maximizes the 0l >~ Quicksort
information gain Reg o TS-sampling
* e ——Crowd-BT
w 027, TR, ~=-HR-active
. . . 2} ¥ s DR ﬂ .
Information gain is the DK-divergence = Y faasas-tETINN| Hybrid-MST
. . 0.1 ‘o © | e ASAP
between the prior and posterior ‘. ,
IR % —— ASAP-approx
distributions ° ASAP AKG
o 0.05 | %
Estimation error “teeey,
L ¢ ol
0.025 ‘

» Mikhailiuk, A., C.Wilmot, M. Perez-Ortiz, D.Yue, and
R.K. Mantiuk. “ASAP:Active Sampling for Pairwise
Comparisons via Approximate Message Passing and
Information Gain Maximization.” In International
Conference on Patter Recognition, 2020.

Normalized number of comparisons




Practical significance - scaling

» Scaling: to map user judgments into meaningful interval scale

» Typically that scale is in just-noticeable-difference units
The difference of | JND means that

75% of observers would choose >
one condition over another 27
Useful to show “practical” significance 157
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Scaling pairwise comparison data

» Given a matrix of comparisons, for example

0 3 0]
C=1(27 0 7
30 23 0]

» Infer the quality scores for all compared conditions
Using Maximum Likelihood Estimation (MLE)

» We start from an observer model, then link it to the observations



Thurstone (observer) model - Case V

» Two assumptions:
Quality scores for a given condition are normally distributed across the population

The variance of that distribution is the same for each condition and the judgements are independent

04 | | | | I
03 Condition A 1]
r
2
> 02 ro|
& | Condition B |
o) : _
2 0.1 /
0
01 | | | | | l | | | | | | | |




From the observer model to probabilities

0.5

» Given the observer model for two conditions:

0.4r

r; =N(q;,0°) 1, =N(q;,0°)

» The difference between two quality scores is:

Probability density

r;—1; = N(q; — q;,20%)

» Then, the probability of the judgment is explained
by the cumulative normal distribution

q-q,
P(ry > 1ilq;i —qj = —1)

P(ri>r;) =P(ry—r;>0)= (—q;—f)
.2

1 ql_q3 (20ij2) —
oijx/ﬂf—oo e dx . where o;; =20




Binomial distribution

» Given that k out of n observers selected A over B, what is the probability
distribution of selecting A over B

n=20

0.4
03/

0.2

likelihood

0.1

20



Maximum Likelihood Estimation

» Given our observations (comparison matrix) what is the likelihood of the

quality values q;:

R R Co ) R Ms i — o
— (nm) (I) (Qz'g—'f]j) * 1 L (I) (Qz'(;?j )) * *J
%] J

C@'j
Féklative Normal ]
where nij = Cij + Cji

» To estimate the values of g;, we maximize:
arg max 11 2@ — jleij naj)
g2,..-,4n Z,]EQ

21



JND/JOD = 1

€€

» Just Noticeable Differences
“i”” over

» Just Objectionable Differences
» We want q; — q; =1 when 75% of observers prefer condition

= This happens when

0.8 -
| Cumulative = This is an arbitrarily
Normal selected scaling, made
distribution . )
for easier interpretation

of the results

1

0.2

_ qi-qj [JOD] or [JND]

22



Practicalities of MLE scaling

» At least 15-20 comparisons per each pair are
(prior helps)

3.5

needed to obtain stable results
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Forced choice vs. comparison with ties

» Giving a “tie” option is usually a bad idea

0-7 T T

—O— Full design

—C— Incomplete design
0.6 + Full design with ties i

—0O- Incomplete design with ties Scahng the reSUItS Wlth
0.5 i

ties requires a more
complex observer
model with more
parameters to estimate

0 100 200 300 400 500
Total number of comparisons

25



Objective (image/video) quality metrics




Types of objective (image /video) quality metrics

Full Reference (FR) metrics No Reference (NR) metrics Reduced Reference (RR) metrics

Test image Reference image ~ Test image ~ Test image Reference image

v Image
statistics

(optional) <core
Distortion map

- Quality [




Main use cases of objective quality metrics

28

(1) Evaluation

Which method is the best?

Dataset Scale Bicubic A+ [27]) SRCNN [1] VDSR [11]

X2 33.66/0.9299 | 36.54/0.9544 | 36.66/0.9542 | 37.53/0.9587

Set5 x3 30.39/0.8682 | 32.58/0.9088 | 32.75/0.9090 | 33.66/0.9213
x4 28.42/0.8104 | 30.28/0.8603 | 30.48/0.8628 | 31.35/0.8838

X2 30.24/0.8688 | 32.28/0.9056 | 32.42/0.9063 | 33.03/0.9124

Setl4 x3 27.55/0.7742 | 29.13/0.8188 | 29.28/0.8209 | 29.77/0.8314
x4 26.00/0.7027 | 27.32/0.7491 | 27.49/0.7503 | 28.01/0.7674

x2 29.56/0.8431 | 31.21/0.8863 | 31.36/0.8879 | 31.90/0.8960

B100 x3 27.21/0.7385 | 28.29/0.7835 | 28.41/0.7863 | 28.82/0.7976
X4 25.96/0.6675 | 26.82/0.7087 | 26.90/0.7101 27.29/0.7251

X2 26.88/0.8403 | 29.20/0.8938 | 29.50/0.8946 | 30.76/0.9140

Urban100 x3 24.46/0.7349 | 26.03/0.7973 | 26.24/0.7989 | 27.14/0.8279
x4 23.14/0.6577 | 24.32/0.7183 | 24.52/0.7221 | 25.18/0.7524

Aims:

» To demonstrate the difference in

quality

» To replace subjective experiments

(1) Optimization
What are the best parameter values?

a5 4

Aims:

= To replace manual parameter
tweaking

= Especially in multi-dimensional
problems



Pixel-wise quality metrics

» Root Mean Square Error (RMSE) ] o B ——
1 5 9r Q\\ 1 32t !,j':"
E = —z t(x,y) —r(x, ol | ol o
RMSE wh ( (x,y) ( )’)) e
X,y 7t Sy : 28 /0 /
Test Reference % " z o
image image e \\\Q ' Ty
» Peak Signal to Noise Ratio 5 !
I al o 22} Y
peak N
EPSNR - 20 E [dB] % 75 5 65 g 9.5 207//’ 7.5 /,3’/ 85 19 9.5
RMSE Subjective score Subjective score "'

Lyeqr - the peak pixel value (e.g. 255 or I)

If the error is normally distributed and its
mean is 0, Er /55 is the standard
deviation of the distortion (noise)

29



The shortcomings of pixel-wise metrics

Reference

P

!

% JPEG-encoded Blur Noise Rotation (1.3 deg)

PSNR=24.7 PSNR=24.8 PSNR=24.8 PSNR=23.4

[Examples from: 10.1109/TIP.2008.926161]

30



Texture quality metrics

Test image

Extract (local)
image statistics
(e.g. mean, var)

Quality

Pooling <core

Extract (local)
image statistics
(e.g. mean, var)

31



Structural Similarity Index (SSIM)

» Split test and reference images into 11 X 11 px overlapping patches

» For each patch, calculate mean u7, ug, std 070 and covariance orp

of each patch, weighted by a Gaussian window

» Calculate three terms (per patch)

. 2uTur+C
“Luminance”: I, = 55—
prtug+Co
2070Rr+C
Contrast: ¢, = 5 ——
or+op+Cq
orr+C .
Structure: s, = ——= (cross-correlation)
oTor+C,

» Multiply them together: q, = [, - C, - S,

1
» And POO'Z dssimM = Nzx dx

32



Learned Perceptual Image Patch Similarity (LPIPS)

» Use a pre-trained CNN as a feature extractor

AlexNet, ) Feature )
VGG, ... differences

o —

: N Multiply I
__________ __| Normalize |. — | [
‘ Subtract ‘ 1 I L2 norm - Avg (]
| F |_ ______ _| F |_ ____________ S I N 1] Spatial Average __,[ d

| = s i IUR >
X X0 w : :
PN ﬁfc;ted quality ]
[ Testimﬁ [ Reference image ] [_L/e;d weights ]

33



Metrics and viewing conditions

» Majority of image/video metrics disregard
viewing conditions
Display size
Display resolution
Viewing distance
Display peak luminance

Colour gamut

» PSNR, SSIM, LPIPS operate on 0-255 pixel values
Cannot handle HDR images/video

» To account for the viewing conditions, we need
metrics based on psychophysical models

known as visual difference predictors (VDPs)

34



Perceptual metrics (Visual Difference Predictors)

A sust.

X Opponent | Ach |
Test Display Y PP | RG | Temporal [Atrans,
3 color RG
image model z YW 1 decomp. Y
channels
A sust.
. X Opponent [ Ach
Reference Display v p(!)olor <> Temporal A‘:éns.
image model z Y decomp.
& channels W

Multi-scale
decomp.

"standard 4k": {
"resolution": [3840, 2160],
"viewing distance_meters":
"diagonal size inches": 30,
"max_luminance": 200,
"contrast": 1000,
"E_ambient": 250,

9.7472,

\_ }

~

35

Multi-scale
decomp.

Contrast
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# - and masking

Pooling

JOD
regression




Perceptual metrics (Visual Difference Predictors)

Reference
image

Test
image

36

Display
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Opponent Ach
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Perceptual metrics (Visual Difference Predictors)

: X Opponent | _Ach A sust. ,
Test Display Y I <> Temporal [Atrans | Multi-scale
: color RG
Image model Z W 51 decomp. vy decomp.
channels Contrast 10D
sensitivity Pooling .
X Opponent | Ach A sust, { and masking regression
Reference Display v | > Temporal [Atrans) Multi-scale
color > RG
image model Z W decomp. vy decomp.
channels

1 — 1 1

0 10 20 30 40 50 60 70 80

K Temporal frequency [Hz] /
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Perceptual metrics (Visual Difference Predictors)

Test
image

Reference
image
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Perceptual metrics (Visual Difference Predictors)

X Opponent Ach A sust.
Test Display Y | RG Temporal [Atrans ] Multi-scale
. color RG
image model z YV decomp. vy decomp.
channels Contrast JOD
sensitivity [~  Pooling . —>
A sust. . B regression
. X Opponent | Ach S tran . #4 and masking
Reference Display v color oG Temporal 2, Multi-scale
image model Z w decomp. v decomp.
channels

Contrast

P thresholds are show:\ 2xclar§;r m a S ki n

castleCSF e 9
m i n im u m 047’ p area = 3.14 [degz] ‘.(T)
@©
detectable £
O
contrast o
difference §




Perceptual

Test
image

~—

—_—

Reference
image

40

. X Opponent | Ach _ A sust .
Display Y | 1 Temporal [Atrans) Multi-scale
color RG
model 4 w 1l decomp. [ 7] decomp.
channels
A sust.
. X Opponent | Ach .
Display Y i | s ] Temporal [Atrans) Multi-scale
color RG
model Z W decomp. vy decomp.
channels

Contrast
sensitivity

The quality is scaled in the units of
Just Objectionable Differences [JOD]

1 JOD difference = 50% increase in preference

Can express supra-threshold (well-visible)

differences

Probability of selecting A over B
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90__ ___________________________

80 750

70

60
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40 | 36.87
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Pooling

metrics (Visual Difference Predictors)
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Metric performance on band-limited noise

PSNR
109
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Violet — large difference; ©ranoe — small difference



Test contrast

Test contrast

> 42 Violet — large difference; O ranoe — small difference

Metric performance on masking patterns

PSNR
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Test contrast

Test contrast
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ColourVideoVDP

1072 107
Mask contrast

Contrast of the distortion (Gabor)

Contrast of the masker




References

» Scaling of pairwise comparison data

» pwcmp - https://github.com/mantiuk/pwcmp

» A practical guide and software for analysing pairwise comparison experiments -
https://arxiv.org/abs/1712.03686

Active sampling

» ASAP - https://github.com/gfxdisp/asap

SSIM

» A Hitchhiker’s Guide to Structural Similarity - https://doi.org/10.1 109/ACCESS.2021.3056504
VDP metrics

» HDR-VDP — https://hdrvdp.sourceforge.net/

» FovVideoVDP - https://github.com/gfxdisp/FovVideoVDP
» ColorVideoVDP - https://github.com/gfxdisp/ColorVideoVDP
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