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Many graphics/display solutions are motivated by 
visual perception

*

…
Halftonning

Image & video 
compression

Display spectral emission - metamerism

Display’s subpixels

Camera’s 
Bayer pattern

Color wheel in DLPs
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Luminous efficiency function 
(weighting)

Light spectrum (radiance)

Luminance (again)

 Luminance – measure of light weighted by the response of the achromatic 
mechanism. Units: cd/m2

Luminance
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Steven’s power law for brightness

 Stevens (1906-1973) measured the perceived magnitude of physical stimuli
 Loudness of sound, tastes, smell, warmth, electric shock and brightness
 Using the magnitude estimation methods

 Ask to rate loudness on a scale with a known reference

 All measured stimuli followed the power law:

 For brightness (5 deg target in dark), a = 0.3

j(I ) = kI aPerceived 
magnitude

Physical 
stimulus

Exponent

Constant
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Steven’s law for brightness
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Steven’s law  vs. Gamma correction
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Detection thresholds

 The smallest detectable difference between 
 the luminance of the object and
 the luminance of the background

8



Threshold versus intensity (t.v.i.) function

 The smallest detectable difference in luminance for a given 
background luminance

L

ΔL

L

L+ΔL
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t.v.i. measurements – Blackwell 1946

10



Psychophysics. Threshold experiments 

L

L+ΔL

Luminance difference ΔL

P=0.75

Detection 
threshold
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t.v.i function / c.v.i. function / Sensitivity

 The same data, different representation

t.v.i.
c.v.i.

S

Contrast vs. intensityThreshold vs. intensity Sensitivity

backgrounddisk LLL =
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Sensitivity to luminance

 Weber-law – the just-noticeable difference is proportional 
to the magnitude of a stimulus

The smallest 
detectable 
luminance 
difference

Background 
(adapting) 
luminance

Constant

L

ΔLTypical stimuli:

Ernst Heinrich Weber
[From Wikipedia]
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Consequence of the Weber-law

 Smallest detectable difference in luminance

 Adding or subtracting luminance will have a different visual impact 
depending on the background luminance

 Unlike LDR luma values, luminance values are not perceptually 
uniform!

ΔLL

1 cd/m2100 cd/m2

0.01 cd/m21 cd/m2
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How to make luminance (more) perceptually uniform?

 Using “Fechnerian” integration

luminance - L
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ΔL

dR

dl
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L(L)
Derivative of 

response
Detection 
threshold
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Assuming the Weber law

 and given the luminance transducer

 the response of the visual system to light is:
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Fechner law

 Response of the visual system to luminance is 
approximately logarithmic

Gustav Fechner
[From Wikipedia]

R(L) = a ln(L)
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But…the Fechner law does not hold for the full 
luminance range

 Because the Weber law does not hold either
 Threshold vs. intensity function:

L

ΔL

The Weber law 
region
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Weber-law revisited

 If we allow detection threshold to vary with luminance according to the t.v.i. 
function:

 we can get a more accurate estimate of the “response”:

R(L) = 1

tvi(l)
dl

0

Lò

L

ΔL tvi(L)
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Fechnerian integration and Stevens’ law
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R(L) - function 
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Applications of JND encoding – R(L)

 DICOM grayscale function
 Function used to encode signal for medial monitors
 10-bit JND-scaled (just noticeable difference)
 Equal visibility of gray levels

 HDMI 2.0a (HDR10)
 PQ (Perceptual Quantizer) encoding
 Dolby Vision
 To encode pixels for high dynamic range images and video 
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Resolution and sampling rate

 Pixels per inch [ppi]
 Does not account for vision

 The visual resolution depends on
 screen size
 screen resolution
 viewing distance

 The right measure
 Pixels per visual degree [ppd]
 In frequency space

 Cycles per visual degree [cpd]
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Fourier analysis

 Every N-dimensional function (including images) can be represented as a sum 
of sinusoidal waves of different frequency and phase

 Think of “equalizer” in audio software, which manipulates each frequency

=å
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Spatial frequency in images

 Image space units: cycles per sample (or cycles per pixel)

 What are the screen-space frequencies of the red and green sinusoid?

 The visual system units: cycles per degree
 If the angular resolution of the viewed image is 55 pixels per degree, what is 

the frequency of the sinusoids in cycles per degree?
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Nyquist frequency

 Sampling density restricts the highest spatial frequency signal that can be 
(uniquely) reconstructed
 Sampling density – how many pixels per image/visual angle/…

 Any number of sinusoids can be fitted to this set of samples
 It is possible to fit an infinite number of sinusoids if we allow infinitely high frequency
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Nyquist frequency

 Sampling density restricts the highest spatial frequency signal that can be 
(uniquely) reconstructed
 Sampling density – how many pixels per image/visual angle/…

 Any number of sinusoids can be fitted to this set of samples
 It is possible to fit an infinite number of sinusoids if we allow infinitely high frequency

28



Nyquist frequency
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Nyquist frequency

 Sampling density restricts the highest spatial frequency signal that can be 
(uniquely) reconstructed
 Sampling density – how many pixels per image/visual angle/…

 Any number of sinusoids can be fitted to this set of samples
 It is possible to fit an infinite number of sinusoids if we allow infinitely high frequency
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Nyquist frequency / aliasing

 Nuquist frequency is the highest frequency that can be represented by a 
discrete set of uniform samples (pixels)

 Nuquist frequency = 0.5 sampling rate
 For audio

 If the sampling rate is 44100 samples per second (audio CD), then the Nyquist frequency is 
22050 Hz

 For images (visual degrees)
 If the sampling rate is 60 pixels per degree, then the Nyquist frequency is 30 cycles per degree

 When resampling an image to lower resolution, the frequency content above 
the Nyquist frequency needs to be removed (reduced in practice)
 Otherwise aliasing is visible
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Modeling contrast detection
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LGN
Visual

Cortex

PhotoreceptorsLens

Retinal ganglion cells
Cornea

Adaptation
Spectral sensitivity Spatial- / orientation- / temporal-

Selective channels

Luminance masking

Defocus &
Aberrations Glare

Colour opponency
P & M visual pathways Contrast masking

Integration

Detection

Contrast Sensitivity Function



Spatial frequency  [cycles per degree]
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Campbell & Robson contrast sensitivity chart
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Contrast sensitivity function

CSF = S(r,q,w, l,i2,d,e)

Spatial frequency

Orientation

Temporal frequency

Adapting luminance

Stimulus size

Viewing distance

Eccentricity
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CSF as a function of spatial frequency
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CSF as a function of background luminance
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CSF as a function of spatial frequency and 
background luminance
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Contrast constancy

Match?Experiment: Adjust the 
amplitude of one sinusoidal 
grating until it matches the 
perceived magnitude of 
another sinusoidal grating.

From: Georgeson and Sullivan. 1975. J. Phsysio.39

ReferenceTest



Contrast constancy
No CSF above the detection threshold
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CSF and the resolution

 CSF plotted as the detection 
contrast

Δ𝐿

𝐿௕
= 𝑆ିଵ

 The contrast below each line is 
invisible

 Maximum perceivable resolution 
depends on luminance
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iPhone 4
Retina displayHTC Vive Pro

CSF models:
Barten, P. G. J. (2004). 
https://doi.org/10.1117/12.537476

Expected 
contrast in 

natural images



Spatio-chromatic CSF
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Spatio-chromatic contrast sensitivity

 CSF as a function of luminance and frequency

Rafał Mantiuk, University of Cambridge43

Black-White Red-Green Violet-Yellow

http://dx.doi.org/10.2352/issn.
2169-2629.2020.28.1



CSF and colour ellipses

Rafał Mantiuk, University of Cambridge44

Colour discrimination as a function of
– Background colour and luminance [LMS]
– Spatial frequency [cpd]
– Size [deg]



Visibility of blur

 The same amount of blur was introduced into light-dark, red-green 
and blue-yellow colour opponent channels

 The blur is only visible in light-dark channel
 This property is used in image and video compression

 Sub-sampling of colour channels (4:2:1)
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Mach Bands – evidence for band-pass visual 
processing

“Overshooting“ along edges

– Extra-bright rims on bright sides
– Extra-dark rims on dark sides

Due to “Lateral Inhibition“
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Centre-surround (Lateral Inhibition)

 “Pre-processing” step within the retina
 Surrounding brightness level weighted negatively

 A: high stimulus, maximal bright inhibition
 B: high stimulus, reduced inhibition & stronger response

 D: low stimulus, maximal inhibition

 C: low stimulus, increased inhibition &
weaker response

Center-surround 
receptive fields

(groups of 
photoreceptors)
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Centre-surround: Hermann Grid

Dark dots at crossings

Explanation

– Crossings (A)
• More surround stimulation 

(more bright area)

 Less inhibition

 Weaker response

– Streets (B)
• Less surround stimulation

 More inhibition

 Greater response

Simulation
– Darker at crossings, brighter in streets
– Appears more steady
– What if reversed ?

A B

S
im

ula
tion
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Psychedelic

some further weirdness
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Spatial-frequency selective channels

 The visual information is decomposed in the 
visual cortex into multiple channels
 The channels are selective to spatial frequency, 

temporal frequency and orientation
 Each channel is affected by different „noise”

level
 The CSF is the net result of information being 

passed in noise-affected visual channels

From: Wandell, 1995
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Multi-scale decomposition

Steerable pyramid
decomposition
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Multi-resolution visual model

 Convolution kernels are band-
pass, orientation selective 
filters

 The filters have the shape of 
an oriented Gabor function

From: Wandell, 1995
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Applications of multi-scale models

 JPEG2000
 Wavelet decomposition

 JPEG / MPEG
 Frequency transforms

 Image pyramids
 Blending & stitching
 Hybrid images

Hybrid Images by Aude Oliva
http://cvcl.mit.edu/hybrid_gallery
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Light and dark adaptation

 Light adaptation: from dark to bright
 Dark adaptation: from bright to dark (much slower)
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Time-course of adaptation

Bright -> Dark

Dark -> Bright
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Temporal adaptation mechanisms

 Bleaching & recovery of photopigment
 Slow assymetric (light -> dark, dark -> light) 
 Reaction times (1-1000 sec)
 Separate time-course for rods and cones

 Neural adaptation
 Fast
 Approx. symmetric reaction times (10-3000 ms)

 Pupil
 Diameter varies between 3 and 8 mm
 About 1:7 variation in retinal illumunation
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Night and daylight vision

Luminous efficiency
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Simultaneous contrast
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High-Level Contrast Processing
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High-Level Contrast Processing

63



Shape Perception

http://www.panoptikum.net/optischetaeuschungen/index.html

• Depends on surrounding primitives

– Directional emphasis
– Size emphasis
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Shape Processing: Geometrical Clues

http://www.panoptikum.net/optischetaeuschungen/index.html

Automatic geometrical interpretation

– 3D perspective
– Implicit scene depth
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Impossible Scenes

http://www.panoptikum.net/optischetaeuschungen/index.html

• Escher et.al.

– Confuse HVS by presenting 
contradicting visual clues

– Local vs. global processing
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What is wrong with this graphics? 

 AI-generated images may also lack global 
consistency 

67 From: https://gizmodo.com/loki-s2-poster-ai-art-generated-disney-marvel-1850914705



Virtual Movement

caused by saccades, motion from dark to bright areas 
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Law of closure
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