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Many graphics/display solutions are motivated by
visual perception

M.204

MPEG-4/AVC

Image & video
compression

Camera’s
Bayer pattern

Display’ s subpixels

Halftonning Color wheel in DLPs



Luminance (again)

» Luminance — measure of light weighted by the response of the achromatic
mechanism. Units: cd/m?

700
Lumimance  ——— Ly = j kL)Y (A)dA k = 683.002
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Steven’ s power law for brightness

» Stevens (1906-1973) measured the perceived magnitude of physical stimuli
Loudness of sound, tastes, smell, warmth, electric shock and brightness
Using the magnitude estimation methods

Ask to rate loudness on a scale with a known reference

» All measured stimuli followed the power law:

Perceived ] . k]a‘z Exponent
magnitude — ¢( )— &
/\ Physical
Constant stimulus

» For brightness (5 deg target in dark),a = 0.3
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Steven’s law for brightness
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Steven’s law vs. Gamma correction

Stevens’ law

Gamma function
Gamma
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Detection thresholds

» The smallest detectable difference between
the luminance of the object and

the luminance of the background



I'hreshold versus intensity (t.v.i.) function

» The smallest detectable difference in luminance for a given
background luminance
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t.v.1. measurements — Blackwell 1946
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Psychophysics. Threshold experiments

Psychometric function
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t.v.1 function / c.v.i. function / Sensitivity

» The same data, different representation

Threshold vs. intensity
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Sensitivity to luminance

» Weber-law — the just-noticeable difference is proportional
to the magnitude of a stimulus

The smallest
detectable
luminance
difference

AL L
Background % L o ﬁ
(adapting) Constant

luminance

Ernst Heinrich Wek
[From Wikipedia]

Typical stimuli: AL




Consequence of the Weber-law

Smallest detectable difference in luminance

For k=1% [N AR
AL

. k 100 cd/m? | cd/m?
L | cd/m? 0.0l cd/m?

Adding or subtracting luminance will have a different visual impact
depending on the background luminance

Unlike LDR luma values, luminance values are not perceptually
uniform!



1ow to make luminance (more) perceptually uniform?

» Using “Fechnerian” integration
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Assuming the Weber law

AL
L
» and given the luminance transducer

R(L) = —1 dl
()‘fAuo

» the response of the visual system to light is:

1 1
R(L)= [ —dL=In(L)+k



Fechner law

R(L) = aln(L)

» Response of the visual system to luminance is
approximately logarithmic

Gustav Fechner
[From Wikipedia]



But...the Fechner law does not hold for the full
luminance range

Because the Weber law does not hold either

Threshold vs. intensity function:
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Weber-law revisited

» If we allow detection threshold to vary with luminance according to the t.v.i.
function:
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» we can get a more accurate estimate of the “response”:
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“echnerian integration and Stevens’ law
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Applications of JND encoding — R(L)

» DICOM grayscale function
Function used to encode signal for medial monitors
| 0-bit JND-scaled (just noticeable difference)
Equal visibility of gray levels

» HDMI 2.0a (HDR10)

PQ (Perceptual Quantizer) encoding

Dolby Vision [I]
: : : : : DOLBY

To encode pixels for high dynamic range images and video VISION

The Future of Vision

21
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Resolution and sampling rate

» Pixels per inch [ppi]

Does not account for vision ..............................................................................

>
w - screen width [m]
r - screen resolution

» The visual resolution depends on

screen size - viewing distance [m]

screen resolution

. . 1°
viewing distance

» The right measure
Pixels per visual degree [ppd]

In frequency space
Cycles per visual degree [cpd]
24



Fourier analysis

» Every N-dimensional function (including images) can be represented as a sum
of sinusoidal waves of different frequency and phase
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» Think of “equalizer” in audio software, which manipulates each frequency

o
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Spatial frequency in images
» Image space units: cycles per sample (or cycles per pixel)
AW \ TR \

Plxel posnlon

What are the screen-space frequencies of the red and green sinusoid?

o
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» The visual system units: cycles per degree

If the angular resolution of the viewed image is 55 pixels per degree, what is
the frequency of the sinusoids in cycles per degree?
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Nyquist frequency

» Sampling density restricts the highest spatial frequency signal that can be

(uniquely) reconstructed
Sampling density — how many pixels per image/visual angle/...

1_
Q Q

0.5

FPixel value

f f I f f

Pixel position

Any number of sinusoids can be fitted to this set of samples
It is possible to fit an infinite number of sinusoids if we allow infinitely high frequency
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Nyquist frequency

» Sampling density restricts the highest spatial frequency signal that can be

(uniquely) reconstructed
Sampling density — how many pixels per image/visual angle/...

;/ \\\// \\\;K / \\\} / \\\} / \\\ !

FPixel value

8 10

0 1 2
Pixel position

Any number of sinusoids can be fitted to this set of samples
It is possible to fit an infinite number of sinusoids if we allow infinitely high frequency
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Nyquist frequency

Sampling density restricts the highest spatial frequency signal that can be

(uniquely) reconstructed
Sampling density — how many pixels per image/visual angle/...

1 |

0.5

FPixel value

10

Fixel position

Any number of sinusoids can be fitted to this set of samples
It is possible to fit an infinite number of sinusoids if we allow infinitely high frequency
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Nyquist frequency

» Sampling density restricts the highest spatial frequency signal that can be

(uniquely) reconstructed
Sampling density — how many pixels per image/visual angle/...

1

0.5 -

Pixel value

Pixel position

Any number of sinusoids can be fitted to this set of samples
It is possible to fit an infinite number of sinusoids if we allow infinitely high frequency
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Nyquist frequency / aliasing

» Nuquist frequency is the highest frequency that can be represented by a
discrete set of uniform samples (pixels)
» Nuquist frequency = 0.5 sampling rate

For audio

If the sampling rate is 44100 samples per second (audio CD), then the Nyquist frequency is
22050 Hz

For images (visual degrees)
If the sampling rate is 60 pixels per degree, then the Nyquist frequency is 30 cycles per degree

» When resampling an image to lower resolution, the frequency content above
the Nyquist frequency needs to be removed (reduced in practice)

Otherwise aliasing is visible

31



Modeling contrast detection

Lens Photoreceptors

Cornea
Retinal ganglion cells

Visual
LGN |—~__ -1 Cortex Detection

- ﬁ\\ \ Integration
Defocus & Colour opponency

Aberrations Glare Luminance masking P & M visual pathways Contrast masking

Spectral sensitivity

Spatial- / orientation- / temporal-

Adaptation
piat Selective channels

v

A

Contrast Sensitivity Function

32









Contrast sensitivity function

Temporal frequency
Stimulus size

Spatial frequency \ \ Eccentricity

CSF =S(p,0,m,1,i’ d e)

Orientation / /

Adapting luminance

Viewing distance

35



CSF as a function of spatial frequency
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CSF as a function of background luminance
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CSF as a function of spatial frequency and
pbackground luminance
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Contrast constancy

Expe_riment: Adjust. the | Match?
amplitude of one sinusoidal

grating until it matches the <:>

perceived magnitude of

another sinusoidal grating. Test Reference

0:003 - /
e
001

0-03

Contrast

01

03

1-0

Spatial frequency (c/deg)

39 From: Georgeson and Sullivan. 1975. J. Phsysio.



Cantrast constancy
No CSEabavertheldetection threshold




CSF and the resolution

» CSF plotted as the detection

contrast
AL

L,
» The contrast below each line is
invisible

S—l

» Maximum perceivable resolution
depends on luminance

41

Detection threshold AL/L

iPhone 4
HTC Vive Pro Retina display

0.01F;

Expected
contrast in
natural images

0.001 i
0 10

CSF models:

20 30 40
Spatial frequency [cpd]

Barten, P. G. J. (2004).
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Spatio-chromatic CSF




Spatio-chromatic contrast sensitivity
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» CSF as a function of luminance and frequency
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_SFE and colour ellipses

thresholds are shown 2x larger
Y = 2 [cd/m?]
frequency = 1 [cpd]
area = 3.14 [degz]

Colour discrimination as a function of
Background colour and luminance [LMS]
Spatial frequency [cpd]

Size [deg]

thresholds are shown 2x larger

ot Y =100 [cd/m?] S
frequency = 0.5 [cpd] X
0.7 area=3.14 [degz] — thresholds are shown 2x larger

Y =100 [cd/m?]
frequency = 0.5 [cpd]
area = 3.14 [deg”]

08t#

0.7

44 Rafat Mantiuk, University of Cambridge



Visibility of blur

blur in light-dark blur in red-green blur in blue-yellow

? light-dark
o\ .

red-green

blue-
ellow

» The same amount of blur was introduced into light-dark, red-green
and blue-yellow colour opponent channels

» The blur is only visible in light-dark channel

» This property is used in image and video compression

Sub-sampling of colour channels (4:2:1)
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Mach Bands — evidence for band-pass visual
processing

“Overshooting” along edges
— Extra-bright rims on bright sides

— Extra-dark rims on dark sides
Due to “Lateral Inhibition®
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Centre-surround (Lateral Inhibition)

» “Pre-processing” step within the retina Center-surround
. . ) i receptive fields

Surrounding brightness level weighted negatively (groups of
A: high stimulus, maximal bright inhibition photoreceptors)

B: high stimulus, reduced inhibition & stronger response
D: low stimulus, maximal inhibition

C: low stimulus, increased inhibition &
weaker response

48



Centre-surround: Hermann Grid

Dark dots at crossings

Explanation
— Crossings (A)
* More surround stimulation
(more bright area)
= Less inhibition
= Weaker response

— Streets (B)

* Less surround stimulation
— More inhibition

EEEEEEEN
EEEEEEEN
EEEEEEEN
EEEEEEEN
EEEEEEEE A B
=+.- o

| :>. Greater response : : :
Simulation EEnm
— Darker at crossings, brighter in streets HEn
— Appears more steady : : : C§D
— What if reversed ? - ;—_)
HEm o
>
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Psychedelic

50



Spatial-frequency selective channels

The visual information is decomposed in the

visual cortex into multiple channels

51

The channels are selective to spatial frequency,
temporal frequency and orientation

Each channel is affected by different ,,noise”
level

The CSF is the net result of information being
passed in noise-affected visual channels

Sensitivity

Spatial frequency

From: Wandell, 1995




Multi-scale decomposition

I
[ ¢

B
i

Steerable pyramid
decomposition




Multi-resolution visual model

» Convolution kernels are band- e norlineats e
pass, orientation selective OOO £
filters Noise

Noise

Stimulus

» The filters have the shape of

2
=
A4

Noise

Noise

A4

an oriented Gabor function 000

Noise

qqqqq%

NN

\

From: Wandell, 1995
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Decision mechanism




Applications of multi-scale models

- JPEG2000

Wavelet decomposition

- JPEG / MPEG

Frequency transforms

» Image pyramids
Blending & stitching
Hybrid images

Hybrid Images by Aude Oliva
http://cvcl.mit.edu/hybrid_gallery
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Light and dark adaptation

adaptation to dark e——>»

sudden change in illumination

» Light adaptation: from dark to bright
» Dark adaptation: from bright to dark (much slower)

56



Iime-course of adaptation
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Temporal adaptation mechanisms

» Bleaching & recovery of photopigment
Slow assymetric (light -> dark, dark -> light)
Reaction times (1-1000 sec)
Separate time-course for rods and cones
» Neural adaptation
Fast
Approx. symmetric reaction times (10-3000 ms)
» Pupil
Diameter varies between 3 and 8 mm

About |:7 variation in retinal illumunation
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Night and daylight vision

Vision mode: SCOTOPIC MESOPIC PHOTOPIC
rod activit cone activit
I § . 4 /: \'.' $ y: i Luminance [log cd/m?
6 -4 ‘ 2 0 2 4 6 8
night light office light daylight
Mode properties: monochromatic vision good color perception

limited visual acuity good visual acuity

Rod Cone
VA V)
Luminous efficiency ,
400 500 600
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Simultaneous contrast




High-Level Contrast Processing
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High-Level Contrast Processing

Checker-shadow illusion:
The squares marked A and B
afe the same shade of gray.

Edward H. Adelson

63



Shape Perception
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»  Depends on surrounding primitives
— Directional emphasis
— Size emphasis

64 /index.html



sShape Processing: Geometrical Clues

]

http://www.panoptikum.net/optischetaeuschungen/index.html

Automatic geometrical interpretation
— 3D perspective
— Implicit scene depth

65



[mpossible Scenes

» Escher et.al.

— Confuse HVS by presenting
contradicting visual clues

— Local vs. global processing

66 http://www.panoptikum.net/optischetaeuschungen/index.html



Nhat is wrong with this graphics?

Al-generated images may also lack global
consistency
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From: https://gizmodo.com/loki-s2-poster-ai-art-generated-disney-marvel-1850914705



Virtual Movement

caused by saccades, motion from dark to bright areas
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Law of closure
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