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a.k.a. novel-view synthesis 
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What is image-based rendering (IBR)?

 IBR ≈ use images for 3D rendering
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3D mesh + textures + shading

 Our focus: methods that let us capture content with cameras

Photogrammetry Neural Radiance Fields



Motivation: why do we need image-based rendering?

 For inexpensive creation of high-quality 3D content

 Minimize manual steps

 Use cameras, which are good and abundant

 Why do we need 3D content?

 AR/VR (+ novel display tech)

 User-created content

 3D-printing

 E-commerce
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3D computer graphics

 We need:

 Geometry + materials + textures

 Lights

 Full control of illumination, realistic 

material appearance

 Graphics assets are expensive to create

 Rendering can be expensive

 Shading tends to take most of the 

computation
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Cyberpunk 2077 (C) 2020 by CD Projekt RED



Baked / precomputed illumination

 We need:

 Geometry + textures + (light maps)

 No need to scan and model materials

 Much faster rendering – simplified shading

 But we cannot change the illumination 

(relighting)
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Google Earth

Precomputed light maps (from Wikipedia)



Billboards / Sprites

 We need:

 Simplified geometry + textures (with alpha)

 Lights

 Much faster to render than objects with 

1000s of triangles

 Used for distant objects

 or a small rendering budget

 Can be pre-computed from complex 

geometry
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A tree rendered from a set of billboards

From: 
https://docs.unity3d.com/ScriptReference/Bil
lboardAsset.html



Light fields

 We need:

 Images of the scene

 Or a microlens image

 Does not need any geometry

 But requires a large number of images for good 

quality

 Photographs are reprojected on a (focal) 

plane

 No relighting
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Light fields + depth

 We need:

 Depth map

 Images of the object/scene

 We can use camera-captured images

 View-dependent shading

 Depth-map can be computed using multi-

view stereo techniques

 No relighting
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A depth map is approximated by a triangle mesh and 

rasterized. From: Overbeck et al. TOG 2018, 
https://doi.org/10.1145/3272127.3275031.

Demo: https://augmentedperception.github.io/welcome-to-
lightfields/ 

https://doi.org/10.1145/3272127.3275031
https://augmentedperception.github.io/welcome-to-lightfields/
https://augmentedperception.github.io/welcome-to-lightfields/
https://augmentedperception.github.io/welcome-to-lightfields/
https://augmentedperception.github.io/welcome-to-lightfields/
https://augmentedperception.github.io/welcome-to-lightfields/


Multi-plane images (MPI)

 We need:

 Images of the scene

+ camera poses

 Each plane: RGB + alpha

 Decomposition formulated as an 

optimization problem

 Differential rendering

 Only front view
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[1] Mildenhall, et al. “Local Light Field Fusion.” ACM Transactions on 

Graphics 38, no. 4 (July 12, 2019): 1–14. 

https://doi.org/10.1145/3306346.3322980

[2] Wizadwongsa et al. “NeX: Real-Time View Synthesis with Neural Basis 
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Neural Radiance Fields (NeRF)

 We need

 Images of the scene

+ camera poses

 Similar to MPI but stored in a 

volumetric data structure

 Implicit: multi-layer perceptron

 Explicit: Voxel grid 

 Volumetric differential 

rendering
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[1] Mildenhall, et al. “NeRF: Representing Scenes as Neural Radiance 

Fields for View Synthesis,” 405–21, 2020. https://doi.org/10.1007/978-3-
030-58452-8_24.
[2] Yu et al. “Plenoxels: Radiance Fields without Neural Networks.” In 

CVPR, 5501–10, 2022. http://arxiv.org/abs/2112.05131.
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Finite aperture imaging

imaging and lens



Imaging – without lens

Every point in the scene illuminates every point 

(pixel) on a sensor. Everything overlaps - no useful 

image.
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Imaging – pinhole camera

Pinhole masks all but only tiny beams of light. The light from different 

points is separated and the image is formed.

But very little light reaches the sensor.
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Imaging – lens

A lens can focus a beam of light on a sensor (focal plane). 

Much more light-efficient than the pinhole.
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Imaging – lens

But if the light beams coming from different distances are not focused on the same plane.

These points will appear blurry in the resulting image.

The camera needs to move the lens to focus an image on the sensor. 
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Depth of field

 Depth of field – range of depths that provides sufficient focus
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Defocus blur is often desirable
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Defocus blur is a strong depth cueTo separate the object of 

interest from background



Imaging – aperture

Aperture (introduced behind the lens) reduces the amount of light reaching the sensor, but it also reduces 

blurriness from defocus (increases depth-of-field).
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Imaging – lens

Focal length – the distance between the sensor and the lens that is needed to focus light coming from an 

infinite distance.

Larger focal length of a lens – more or less magnification?
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From a plenoptic function to a light field

 Plenoptic function – describes all possible rays in a 3D space

 Function of position (𝑥, 𝑦, 𝑧) 

and ray direction 𝜃, 𝜙

 But also wavelength 𝜆 and time 𝑡

 Between 5 and 7 dimensions

 But the number of dimensions can be reduced if

 The camera stays outside the convex hull of the object

 The light travels in uniform medium 

 Then, radiance 𝐿 remains the same along the ray (until the ray hits an object)

 This way we obtain a 4D light field
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Planar 4D light field
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Refocusing and view point adjustment 

Screen capture from http://www.lytro.com/23



Depth estimation from light field

 Passive sensing of depth

 Light field captures multiple depth cues

 Correspondance (disparity) between the 

views

 Defocus

 Occlusions
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Central view Reconstructed depth

From: Ting-Chun Wang, Alexei A. Efros, Ravi 

Ramamoorthi; The IEEE International Conference 
on Computer Vision (ICCV), 2015, pp. 3487-3495



Two methods to capture light fields

Micro-lens array Camera array

 Small baseline

 Good for digital refocusing

 Limited resolution

 Large baseline

 High resolution

 Rendering often requires approximate 

depth 
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Light field image – with microlens array
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Digital Refocusing using 

Light Field Camera

125μ square-sided 

microlenses [Ng et al 2005]
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Lenslet

array



Lytro-cameras

 First commercial light-field cameras

 Lytro illum camera

 40 Mega-rays

 2D resolution: 2450 x 1634 (4 MPixels)
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Raytrix camera

 Similar technology to Lytro

 But profiled for 

computer vision applications
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Stanford camera array

96 cameras

Application: Reconstruction of 

occluded surfaces
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Seeing through forest

Optical synthetic aperture sensing

 A drone captures thermal images along the fly path

 A light field is reconstructed

 By refocusing on different depth, we can reduce 

occlusions

31 From: https://arxiv.org/abs/2310.16120 

Thermal image, single view Synthetic large aperture image

https://arxiv.org/abs/2310.16120


PiCam camera array module

 Array of 4 x 4 cameras on a single chip

 Each camera has its own lens and senses 

only one spectral colour band

 Optics can be optimized for that band

 The algorithm needs to reconstruct 

depth
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Light fields: two parametrisations

(shown in 2D)

s - slope

x - position

Ray

33

s - position

u - position

Position and slope 

(slope - tangent of the angle)
Two planes



Lightfield - example
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Lightfield - example
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Lightfield - example
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Lightfield - example

Image on the retina
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Light field rendering (1/3)

39

We want to render a scene (Blender monkey) as seen 

by camera K. We have a light field captured by a 

camera array. Each camera in the array has its aperture 

on plane C.



Light field rendering (2/3)

40

Each camera in the 

array provides 

accurate light 

measurements only for 

the rays originating 
from its pinhole 

aperture. 

The missing rays can 

be either interpolated 
(reconstructed) or 

ignored. 

From the viewpoint of 

camera K



Light field rendering (3/3)
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The rays from the camera need to be projected on the focal plane F. The 

objects on the focal plane will be sharp, and the objects in front or behind 

that plane will be blurry (ghosted), as in a traditional camera.

If we have a proxy geometry, we can 

project on that geometry instead – the 

rendered image will be less 

ghosted/blurry



Intuition behind light field rendering

 For large virtual aperture (use all cameras in the array) 

 Each camera in the array captures the scene

 Then, each camera projects its image on the focal plane F

 The virual camera K captures the projection 

 For small virtual aperture (pinhole)

 For each ray from the virtual camera

 interpolate rays from 4 nearest camera images

 Or use the nearest-neighbour ray
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LF rendering – focal plane

 For a point on the focal 

plane, all cameras capture 

the same point on the 3D 

object

 They also capture 

approximately the same 

colour (for diffuse objects)

 Averaged colour will be 

the colour of the point on 

the surface
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LF rendering – focal plane

 If the 3D object does not 

lie on the focal plane, all 

camaras capture different 

points on the object

 Averaging colour values 

will produce a „ghosted” 

image 

 If we had unlimited 

number of cameras, this 

would produce a depth-

of-field effect
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Finding homographic transformation 1/3

 For the pixel coordinates 𝒑𝑘 of the virtual 

camera K, we want to find the corresponding 

coordinates 𝒑𝑖 in the camera array image

 Given the world 3D coordinates of a point 𝒘:
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View 

matrix
Projection 

matrix

Intrinsic 

camera matrix



Finding homographic transformation 2/3

 A homography between two views is usually found as:

𝒑𝐾 = 𝑲𝐾𝑷𝑽𝐾𝒘
𝒑𝑖 = 𝑲𝑖𝑷𝑽𝑖𝒘

hence

𝒑𝑖 = 𝑲𝑖𝑷𝑽𝑖𝑽𝐾
−1𝑷−1𝑲𝐾

−1𝒑𝐾

 But, 𝑲𝐾𝑷𝑽𝐾  is not a square matrix and cannot be inverted

 To find the correspondence, we need to constrain 3D coordinates 𝒘 to lie on the 

plane: 
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or



Finding homographic transformation 3/3

 Then, we add the plane equation to the projection matrix

 Where 𝑑𝑖 is the distance to the plane

 Hence

47

The plane in 

the camera coordinates

(not the world coordinates)
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Neural radiance fields

Differentiable volumetric rendering



Stereo magnification: 

learning view synthesis using multiplane images

 Synthetize motion parallax from two (stereo) views

49

Zhou, Tinghui, Richard Tucker, John 

Flynn, Graham Fyffe, and Noah Snavely. 

“Stereo Magnification: Learning View 

Synthesis Using Multiplane Images.” 

ACM Transactions on Graphics 37, no. 4 

(August 31, 2018): 1–12. 

https://doi.org/10.1145/3197517.320132

3.



Stereo magnification: 

learning view synthesis using multiplane images

 Goal: decompose images into multiple planes with an alpha channel (MPI)

 Intermediate representation: background and foreground images

 To better handle occlusions

 The network is overfitted to each scene
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Local Light Field Fusion: Practical View Synthesis 

with Prescriptive Sampling Guidelines

 Reconstruct multiple MPIs, then blend them

 This is to better capture view-dependent effects

 E.g. specular reflections
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Mildenhall, Ben et al. “Local Light Field Fusion: 

Practical View Synthesis with Prescriptive 
Sampling Guidelines.” ACM Trans. on Graphics 
38, no. 4 (July 12, 2019): 1–14. 

https://doi.org/10.1145/3306346.3322980.



NeX: Real-time View Synthesis with Neural Basis 

Expansion

52

 MPI + view-dependent colour 

encoding

 High quality reproduction of 

the view-dependent effects

 Specular reflections

 Diffraction

 …



NeX: Real-time View Synthesis with Neural Basis 

Expansion

 The colour is 

encoded as a linear 

combination of the 

basis functions

 The basis functions 

are trainable
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NeRF: Representing Scenes as Neural Radiance Fields 

for View Synthesis

 Models a volume rather than a set 

of discrete planes

 360 or front facing

 Uses MLP to represent the colour 

and opacity 
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Mildenhall, Ben, Pratul P. Srinivasan, Matthew 

Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and 
Ren Ng. “NeRF: Representing Scenes as Neural 
Radiance Fields for View Synthesis,” 405–21, 2020. 

https://doi.org/10.1007/978-3-030-58452-8_24.



NeRF: Representing Scenes as Neural Radiance Fields 

for View Synthesis

55

Pixel 

colour

(x,y,z) coordinates 

along the ray

Colour at (x,y,z)  in the 

direction d (stored in an 

MLP)

“opacity” or probability of 

ray terminating (stored in 

an MPL)

Computed as a 

(differentiable) stratified 

sampling



Positional encoding

 Encoding coordinates as the Fourier “features” allows MPL to 

learn high frequencies

 Works with other basis functions
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𝑦 =  𝑓(𝛾 𝑝 ; 𝑤)

No positional encoding With positional encoding



Implicit (neural) (volumetric/n-dim) representations

 Neural signed distance function

 A function that stores a distance to a surface

 𝑑 = 𝑓(𝑥, 𝑦, 𝑧; 𝝓)

 Neural radiance caching

 Predict colour from feature buffers independently for each pixel

 Learning a giga-pixel image

 𝑅𝐺𝐵 = 𝑓(𝑥, 𝑦; 𝝓)

57 Illustrations from: 

https://dl.acm.org/doi/10.1145/3528223.3530127



Reducing the cost of the MLP

58

Given input coordinates 

𝒙, only a small portion of 

the network activations 

will contribute to the 

output. This is inefficient.

𝒙

Solution: encode a part of the information in a spatial data 

structure that can be directly querried, such as a (sparse) voxel 

grid or octree.

Octree
From: GPU Gems 2, Chapter 37

𝒎(𝒙, 𝝓)

𝒙

Tri-linear interpolation
(small) MPL

𝑦 = 𝑚(𝛾 𝑥 ; 𝜙)

𝛾 𝑥



Instant neural graphics primitives with a 

multiresolution hash encoding

 aa

59

𝑦 = 𝑚(𝛾 𝑥 ; 𝜙)

Müller, Thomas, Alex Evans, Christoph Schied, and Alexander Keller. “Instant Neural Graphics Primitives with a Multiresolution Hash 

Encoding.” ACM Transactions on Graphics 41, no. 4 (July 22, 2022): 1–15. https://doi.org/10.1145/3528223.3530127.



Gaussian Splatting (3DGS)

60 B. Kerbl, et al., ‘3D Gaussian Splatting for Real-Time Radiance Field Rendering’, 

ACM Trans. Graph., vol. 42, no. 4, pp. 1–14, Aug. 2023, doi: 10.1145/3592433.

 Represent the scene as a 

cloud of semi-transparent 

3D Gaussians

 Render using point cloud 

rendering technique – 

splatting

 Much faster rendering and 

training

 Clever optimization

 Tiled rendering

 Renders only a fraction of 

Gaussians in each tile

 But requires several millions 

of Gaussians

https://doi.org/10.1145/3592433


Gaussian Splatting (3DGS)

61 B. Kerbl, et al., ‘3D Gaussian Splatting for Real-Time Radiance Field Rendering’, 

ACM Trans. Graph., vol. 42, no. 4, pp. 1–14, Aug. 2023, doi: 10.1145/3592433.

 Each Gaussian is defined by

 Mean 𝜇 ∈ ℝ3

 Covariance matrix Σ ∈ ℝ3×3

 Opacity 𝑜 ∈ ℝ

 Directional colour (as 

Spherical Harmonics) c ∈
ℝ16×3 or c ∈ ℝ9×3

 Rendering

 Project 3D→2D

 Sort Gaussians according to 

depths

 For each pixel

 Accumulate colour using the 

volumetric rendering equation 

(as in NeRF)

https://doi.org/10.1145/3592433


Spherical Harmonics (SH)

 Othonormal basis defined on a sphere

 Think: Fourier basis on a sphere

 Directional functions (e.g., view-

dependent colour) can be approximated

using SH basis

62
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