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What is image-based rendering (IBR)?

» IBR = use images for 3D rendering
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3D mesh + textures + shading Photogrammetry Neral Radiance Fields

» Our focus: methods that let us capture content with cameras



Motivation: why do we need image-based rendering?

» For inexpensive creation of high-quality 3D content

Minimize manual steps
Use cameras, which are good and abundant

» Why do we need 3D content!?
AR/VR (+ novel display tech)
User-created content
3D-printing

E-commerce o
& Vision Pro
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3D computer graphics

» We need:

Geometry + materials + textures
Lights

» Full control of illumination, realistic
material appearance

» Graphics assets are expensive to create

» Rendering can be expensive

Shading tends to take most of the
computation

Cyberpunk 2077 (C) 2020 by CD Projekt RED



Baked / precomputed illumination

» We need:

Geometry + textures + (light maps)

» No need to scan and model materials
» Much faster rendering — simplified shading

» But we cannot change the illumination
(relighting)

Precomputed light maps (from Wlklpedla)



Billboards / Sprites

» We need:

Simplified geometry + textures (with alpha)
Lights
» Much faster to render than objects with
|000s of triangles

» Used for distant objects

or a small rendering budget

» Can be pre-computed from complex
geometry

From:
https://docs.unity3d.com/ScriptReference/Bil
IboardAsset. html



Light fields

» We need:

Images of the scene

Or a microlens image

» Does not need any geometry

But requires a large number of images for good
quality

» Photographs are reprojected on a (focal)
plane

» No relighting
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Light fields + depth

» We need:
Depth map

Images of the object/scene
» We can use camera-captured images
» View-dependent shading

» Depth-map can be computed using multi-
view stereo techniques

» No relighting

~ R L)

=5 =

A depth map is approximated by a triangle mesh and
rasterized. From: Overbeck et al. TOG 2018,

Demo:


https://doi.org/10.1145/3272127.3275031
https://augmentedperception.github.io/welcome-to-lightfields/
https://augmentedperception.github.io/welcome-to-lightfields/
https://augmentedperception.github.io/welcome-to-lightfields/
https://augmentedperception.github.io/welcome-to-lightfields/
https://augmentedperception.github.io/welcome-to-lightfields/

Multi-plane images (MPI)

» We need:

Images of the scene
+ camera poses

» Each plane: RGB + alpha

Decomposition formulated as an
optimization problem

Differential rendering

» Only front view

[1] Mildenhall, et al. “Local Light Field Fusion.” ACM Transactions on
Graphics 38, no. 4 (July 12, 2019): 1-14.
https://doi.org/10.1145/3306346.3322980

[2] Wizadwongsa et al. “NeX: Real-Time View Synthesis with Neural Basis
Expansion.” In CVPR, 8530-39. IEEE, 2021.
https://doi.org/10.1109/CVPR46437.2021.00843

https://nex-mpi.github.io/
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Input Sampled View

Sampling

—

Rendered imagé

Reconstruction
loss

Ground truth‘

From [2]


https://doi.org/10.1145/3306346.3322980
https://doi.org/10.1109/CVPR46437.2021.00843
https://nex-mpi.github.io/
https://nex-mpi.github.io/
https://nex-mpi.github.io/

Neural Radiance Fields (NeRF)

5D Input Output Volume Rendering
> We need Position + Direction [":"] Color + Density Rendering Loss
r'(x,y,z,t‘}.tﬁ)—» —»(RGBU)\ - ) I 2
Images of the scene — Fo @ mic o= el B
+ camera poses ' = L' 2
w7 g
» Similar to MPI but stored in a
. From [1]
volumetric data structure , R LD
Implicit: multi-layer perceptron ' KL e [ ANSR
EXPliCitZVOXGl gl‘id / @ T ¢) Volumetric Rendering
et &
M M M minimize L, econ + ALy
» Volumetric differential o fry Freom A
e a) Sparse Voxel Grid b) Trilinear Interpolation d) Optimization

rendering o ]

[1] Mildenhall, et al. “NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis,” 405-21, 2020.

[2] Yu et al. “Pler;oxels: Radiance Fields without Neural Networks.” In
CVPR, 5501-10, 2022. http://arxiv.org/abs/2112.05131.


https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1007/978-3-030-58452-8_24
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Imaging — without lens

Two example

points i

|

S~

Object

Every point in the scene illuminates every point
(pixel) on a sensor. Everything overlaps - no useful
image.

Sensor

film

camera sensor
retina



Imaging — pinhole camera

Sensor
Two example — 1;i.lslnr;‘*\era sensor
oints
P < A B’ retina
\ B
A’
Object

Pinhole mask

Pinhole masks all but only tiny beams of light. The light from different
points is separated and the image is formed.

But very little light reaches the sensor.



Imaging — lens

Two example

points <

-

N

Object

Lens

Alens can focus a beam of light on a sensor (focal plane).

Much more light-efficient than the pinhole.
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Sensor

film

camera sensor
retina



Imaging — lens

.,.-/_ W-.., Sensor

film

camera sensor
retina

Objec

Lens

But if the light beams coming from different distances are not focused on the same plane.
These points will appear blurry in the resulting image.

The camera needs to move the lens to focus an image on the sensor.



Depth of field

» Depth of field — range of depths that provides sufficient focus

'., r» " . " “
Igmwrmwers » Fromw g S e e .
@ ealen vy & T Bsaresy

poerfocal distance opposy
7 are using. If you the

he depth of field wi
ce to infinity.< Forx
amera has a hypert

elocus at 1% tees,



Defocus blur is often desirable

To separate the object of Defocus blur is a strong depth cue
interest from background



Imaging — aperture

/_\ Sensor

film

camera sensor
retina

Objec

Lens

Aperture

Aperture (introduced behind the lens) reduces the amount of light reaching the sensor, but it also reduces
blurriness from defocus (increases depth-of-field).



Imaging — lens

;-’F —\-., Sensor
film
camera sensor
retina
'I Focal length
'I I|
1/
Leins

Focal length — the distance between the sensor and the lens that is needed to focus light coming from an
infinite distance.

Larger focal length of a lens — more or less magnification?
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From a plenoptic function to a light field

» Plenoptic function — describes all possible rays in a 3D space

Function of position (x,y, z)

and ray direction (6, ¢)

But also wavelength A and time ¢t
Between 5 and 7 dimensions

» But the number of dimensions can be reduced if

The camera stays outside the convex hull of the object
The light travels in uniform medium

Then, radiance L remains the same along the ray (until the ray hits an object)
This way we obtain a 4D light field

21



Planar 4D light field
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Refocusing and view point adjustment

» 23 Screen capture from http://www.lytro.com/



Depth estimation from light field

» Passive sensing of depth Central view Reconstructed depth

» Light field captures multiple depth cues

» Correspondance (disparity) between the
views

» Defocus
» Occlusions

From: Ting-Chun Wang, Alexei A. Efros, Ravi
Ramamoorthi; The IEEE International Conference
on Computer Vision (ICCV), 2015, pp. 3487-3495




Two methods to capture light fields

» Small baseline » Large baseline
» Good for digital refocusing » High resolution
» Limited resolution » Rendering often requires approximate

depth

25



Light field image — with microlens array
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Digital Refocusing using

Lenslet
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1251 square-sided
microlenses [Ng et al 2005]
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Lytro-cameras

» First commercial light-field cameras
» Lytro illum camera

40 Mega-rays

2D resolution: 2450 x 1634 (4 MPixels)

28



Raytrix camera

» Similar technology to Lytro

» But profiled for
computer vision applications
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Micro Lens Array Main Lens Object

Image Sensor Intermediate Image

29



Stanford camera array

Application: Reconstruction of
occluded surfaces

X ////w".
uarv”

96 cameras

30




Seeing through forest
Optical synthetic aperture sensing

» A drone captures thermal images along the fly path synthetic aperture plane_a

» A light field is reconstructed

» By refocusing on different depth, we can reduce

occlusions T
R

\ E ,"/’ O e

\

'fo
F

Thermal image, single view  Synthetic large aperture image

focus / ground plane

» 3l From: https://arxiv.org/abs/2310.16120



https://arxiv.org/abs/2310.16120

PiCam camera array module

» Array of 4 x 4 cameras on a single chip

» Each camera has its own lens and senses
only one spectral colour band

Optics can be optimized for that band

2-Element Lens Array Sensor Arfay

» The algorithm needs to reconstruct
depth

32



Light fields: two parametrisations
(shown in 2D)

D P

(ay) o ts (u,v) (s,t)

NN NN

4[ Ray ]
8- position
l
Ls - slope
U - position

|
Position and slope

slope - tangent of the angle
(slop J gle) Two planes
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Lightfield - example







Lightfield - ex




Lightfield - example
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Bositicrise Image on the retina

37



GRAPHICS melXelely

Light field rendering

Rafal Mantiuk

Computer Laboratory, University of Cambridge




Light field rendering (1/3)

We want to render a scene (Blender monkey) as seen
by camera K. We have a light field captured by a
camera array. Each camera in the array has its aperture
on plane C.

39



Light field rendering (2/3)

From the viewpoint of
camera K

Each camera in the
array provides
accurate light
measurements only for
the rays originating
from its pinhole
aperture.

The missing rays can
be either interpolated
(reconstructed) or
ignored.




Light field rendering (3/3)

The rays from the camera need to be projected on the focal plane F. The
objects on the focal plane will be sharp, and the objects in front or behind
that plane will be blurry (ghosted), as in a traditional camera.

If we have a proxy geometry, we can
project on that geometry instead — the
rendered image will be less
ghosted/blurry

41



Intuition behind light field rendering

» For large virtual aperture (use all cameras in the array)
Each camera in the array captures the scene
Then, each camera projects its image on the focal plane F
The virual camera K captures the projection

» For small virtual aperture (pinhole)

For each ray from the virtual camera

interpolate rays from 4 nearest camera images

Or use the nearest-neighbour ray

42



LF rendering — focal plane

» For a point on the focal
plane, all cameras capture
3D object .
the same point on the 3D
N F object
» They also capture

approximately the same
colour (for diffuse objects)

I >\T I I < Averaged colour will be
the colour of the point on
. the surface

43



LF rendering — focal plane

» If the 3D object does not

lie on the focal plane, all
3D object .
camaras capture different

NF points on the object

» Averaging colour values
will produce a ,,ghosted”
_ ) - image

» If we had unlimited
number of cameras, this

would produce a depth-
% of-field effect

44



Finding homographic transformation 1/3

» For the pixel coordinates p;, of the virtual
camera K, we want to find the corresponding
3D object
coordinates p; in the camera array image

W A4 F
» Given the world 3D coordinates of a point w:

pZ:KPVwa Do /01
/ / \ AO_/&\ C

Intrinsic ( Projection A J&
camera matrix matrix matrix \

\

x; fm 0 Cx_ 100 0 U1 V12 Uiz Vg X K
i | = 0 f c 010 0 U21 U2 U233 U2 Y
W 0 Oy 1y 0010 U31 V32 U3z U4 Z

@ - 0 0 0 1] [1]
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Finding homographic transformation 2/3

» A homography between two views is usually found as:
Pk = KxPVgw
p; = K;PV;w
hence
p; = K,PV,V P~ Ky py
» But, Ky PV is not a square matrix and cannot be inverted

To find the correspondence, we need to constrain 3D coordinates w to lie on the
plane:

N-(w—wpr) =0 or :[nm Ny Ny —N-wp}

— N

46



Finding homographic transformation 3/3

|

The plane in
the camera coordinates
(not the world coordinates)

J

» Then, we add the plane equation to the projection matrix

Li
Yi
d;
w,
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K;

0
1

1 0 0 0 i _'Ul 1 V1o Vi3 Uiy
[n;(;) ’n-g(f) n Ef) —N©. wELf)J Us1 Usz2 U3z Us4
0 0 1 o |0 0 0 1

P Vi

» Where d; is the distance to the plane

» Hence

47
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Stereo magnification:
learning view synthesis using multiplane images

» Synthetize motion parallax from two (stereo) views

Zhou, Tinghui, Richard Tucker, John
Flynn, Graham Fyffe, and Noah Snavely.
“Stereo Magnification: Learning View
Synthesis Using Multiplane Images.”
ACM Transactions on Graphics 37, no. 4
(August 31, 2018): 1-12.
https://doi.org/10.1145/3197517.320132
3.

49



Stereo magnification:

learning view synthesis using multiplane images

» Goal: decompose images into multiple planes with an alpha channel (MPI)

» Intermediate representation: background and foreground images

To better handle occlusions
The network is overfitted to each scene

Reference viewpoint v

50

Layers at
L fixed depths,
each is an
RGBA image.

Q Novel viewpoint

Background color

Reference source
AT = s
" 0

N

imw=al |l
'3-‘,"3’: g 7 =
[.

Blending weights

MPI Representation

- - ——

Synthesized views




Local Light Field Fusion: Practical View Synthesis
with Prescriptive Sampling Guidelines

Mildenhall, Ben et al. “Local Light Field Fusion:
Practical View Synthesis with Prescriptive

. . . Sampling Guidelines.” ACM Trans. on Graphics
» This is to better capture view-dependent effects 38, no. 4 (July 12, 2019): 1-14.

https://doi.org/10.1145/3306346.3322980.

» Reconstruct multiple MPIs, then blend them

E.g. specular reflections
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Fast and easy handheld capture with guideline: Promote sampled views to local light field Blend neighboring local light fields
closest object moves at most D pixels between views via layered scene representation to render novel views
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NeX: Real-time View Synthesis with Neural Basis
Expansion

52

» MPI + view-dependent colour
encoding
» High quality reproduction of
the view-dependent effects
Specular reflections
Diffraction



NeX: Real-time View Synthesis with Neural Basis
Expansion

» The colour is
encoded as a linear
combination of the
basis functions

Sampling a
hi (x;}’; d)+ <

Rendered lmage

» The basis functions
are trainable

loss

I Reconstruction

Base RGB MPI View-dependent RGB MPI Ground truth

53



NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis

» Models a volume rather than a set
of discrete planes

» 360 or front facing

» Uses MLP to represent the colour
and opacity

Mildenhall, Ben, Pratul P. Srinivasan, Matthew
Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. “NeRF: Representing Scenes as Neural
Radiance Fields for View Synthesis,” 405-21, 2020.
https://doi.org/10.1007/978-3-030-58452-8 24.

54



NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
(x,3,2,6, I]I]—» RGBo)
¢ _}D a \ Ray 1 T R 1 /-\ 2
.’.T 3”9/@” " / B -gt.
. - ; 3 ‘ 2
oA Ray 2 /\ ; .
N i -g.t.
2
Ray Distance
Pixel (X,Y,2) coordlnates
colour along the ray
t f t
Cr)= [ T)or(t)e(r(t),d)dt, where T(t) = exp (— / (I(r(s))ds)
t tn

direction d (stored in an
MLP)

ray terminating (stored in
an MPL)

(differentiable) stratified

sampling

Computed as a
55

Colour at (x,y,z) in the J “opacity” or probability of]




Positional encoding

v(p) = (sin(2°7p), cos(27p), - -+, sin(25~tmp), cos (2L~ 7p) )

» Encoding coordinates as the Fourier “features” allows MPL to
learn high frequencies

» Works with other basis functions

y= f(r(p);w)

0 1000 2000 3000 4000 5000
Training iteration

» 56 No positional encoding  With positional encoding




Implicit (neural) (volumetric/n-dim) representations

» Neural signed distance function

A function that stores a distance to a surface
d=fxyz¢)

» Neural radiance caching

Predict colour from feature buffers independently for each pixel

Feature buffers
Predicted color

Online
supervised
training

<>

» Learning a giga-pixel image
RGB = f(x,y; P)

57 [llustrations from:

https://dl.acm.org/doi/10.1145/3528223.3530127



Reducing the cost of the MLP

2
=

O,
O
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00000
000003

OO

Given input coordinates
x, only a small portion of
the network activations
will contribute to the
output. This is inefficient.
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Instant neural graphics primitives with a
multiresolution hash encoding

y =m(y(x); p)

L=2 b=15 1/No
2 0
1/Ny 0
o
3 6

1

(1) Hashing of voxel vertices

- 0 I { _, —
1
2 —
3 JR—
4
5
6
Haagll
0 1T
) 7 o
3
4
5
6
7
_I -
(2) Lookup  (3) Linear interpolation
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¢
0000
000000:
000000
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(4) Concatenation

(5) Neural network

Muller, Thomas, Alex Evans, Christoph Schied, and Alexander Keller. “Instant Neural Graphics Primitives with a Multiresolution Hash
Encoding.” ACM Transactions on Graphics 41, no. 4 (July 22, 2022): 1-15. https://doi.org/10.1145/3528223.3530127 .
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Gaussian Splatting (3DGS)

Represent the scene as a
cloud of semi-transparent
3D Gaussians

Render using point cloud

rendering technique —

splatting

Much faster rendering and

training

Clever optimization

Tiled rendering

Renders only a fraction of
Gaussians in each tile

But requires several millions
of Gaussians

60 B. Kerbl, et al., ‘3D Gaussian Splatting for Real-Time Radiance Field Rendering,
ACM Trans. Graph., vol. 42, no. 4, pp. 1-14, Aug. 2023, doi: .


https://doi.org/10.1145/3592433

Gaussian Splatting (3DGS)

G(X) — eé(x_ﬂ')TZ

SfM Points

6l

“Hx—p)

Initialization

Each Gaussian is defined by

Camera

—~ &

3D Gaussians

7
-

Mean u € R3

Covariance matrix ¥ € R3*3
Opacity 0o € R

Directional colour (as

Spherical Harmonics) c €
]R16X3 orceE ]R9><3

Projection

Adaptive
Density Control

Rendering

Project 3D—2D

Sort Gaussians according to
depths

For each pixel

Accumulate colour using the
volumetric rendering equation

(as in NeRF)

Differentiable
Tile Rasterizer

Image

N
/

— Operation Flow

—p Gradient Flow

B. Kerbl, et al., ‘3D Gaussian Splatting for Real-Time Radiance Field Rendering’,
ACM Trans. Graph., vol. 42, no. 4, pp. 1-14, Aug. 2023, doi: .



https://doi.org/10.1145/3592433

Spherical Harmonics (SH)

» Othonormal basis defined on a sphere
Think: Fourier basis on a sphere

» Directional functions (e.g., view-

dependent colour) can be approximated
using SH basis

!

fr,0,0)=>_ > 'y (6,9)
4

=0 m=—

62
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