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What are Computer Graphics & Image Processing?
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Where are graphics and image processing heading?
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What is a (computer) image?

» A digital photograph? (“JPEG”)
» A snapshot of real-world lighting?

From computing Image From mathematical
perspective & perspective
(discrete) / \ (continuous)
2D array of pixels 2D function
*To represent images in memory -To express image processing as

_ . a mathematical problem
To create image processing

software *To develop (and understand)
algorithms



Image

» 2D array of pixels

» In most cases, each pixel takes 3 bytes: one for each red, green and blue

» But how to store a 2D array in memory?

row-major column-major interleaved, row-major
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Stride

» Calculating the pixel component index in memory
For row-major order (grayscale)
i(x,y) =x+y-n;
For column-major order (grayscale)
i(x,y) =x-np+y
For interleaved row-major (colour)
i(x,y,c)=x-3+y:-3-n.+c
General case
i(x,y,c)=x-Sxy+y-s,+c-s.

where sy, s,, and s. are the strides for the X,y and colour dimensions



Padded images and stride

» Sometimes it is desirable to “pad” image with extra pixels

for example when using operators that need to access pixels outside the image border

» Or to define a region of interest (ROI)

Allocated memory space
Image

Region of Interest
(ROI)

» How to address pixels for such an image and the ROI?



Padded images and stride

Allocated memory space
Image

Region of Interest
(ROI)

i(x,y,¢) =lifipst t x-Sy +y- s, +c s

» For row-major, interleaved



Pixel (PIcture ELement)

» Each pixel (usually) consists of three values describing the colour
(red, green, blue)

» For example

(255, 255, 255) for white
(0,0, 0) for black
(255, 0, 0) for red

» Why are the values in the 0-255 range!?
» Why red, green and blue! (and not cyan, magenta, yellow)
» How many bytes are needed to store 5MPixel colour image! (uncompressed)



Pixel formats, bits per pixel, bit-depth

» Grayscale — single color channel, 8 bits (| byte)
» Highcolor — 2'6=65,536 colors (2 bytes)

Sample Length: 5 B 5
Channel Membership: Red Green Blue
I [ T [ T T
Bit Number: 15 14 13121110 9 8 7 6 5 4 3 2 1 0
RGBAX R.G.B. A. X
Sample Length Notation: 5.6.5.0.0

» Truecolor — 22* = 16,8 million colors (3 bytes)
» Deepcolor — even more colors (>= 4 bytes)

Sample Length: 2 10 10 10
Channel Membership: None Red Green Blue
[T T T T T T T T .
Bit Number: 31 30 29 25 27 26 25 24 (23 22 21 2019 1817 16 151413121110 9 8 7 6 5 4 3 2 1 0
RGBAX R.G.B.A. X
Sample Length Notation: 10.10.10.0.2

» But why!?
10



Colour banding

» If there are not enough
bits to represent colour

» Looks worse because of
the Mach band illusion

» Dithering (added noise)

can reduce banding 8-bit gradient 8-bit gradient, = 24-bit gradient
Printers dithered
Many LCD displays do it
too

Mach bands

Intensity profile \




What is a (computer) image?

» A digital photograph? (“JPEG”)
» A snapshot of real-world lighting?

From computing From mathematical

. Image :
perspective perspective
(discrete) / \ (continuous)
2D array of pixels 2D function
*To represent images in To express image processing
memory as a mathematical problem
*To create image processing -To develop (and understand)

software algorithms



Image — 2D function

» Image can be seen as a function I(x,y), that gives intensity value for any given
coordinate (X,y)




Sampling an image

» The image can be sampled on a rectangular sampling grid to yield a set of
samples. These samples are pixels.
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What is a pixel?

» A pixel is not

a box
i
a disk t
nota
a teeny light box!

» A pixel is a point
it has no dimension
it occupies no area
it cannot be seen

it has coordinates

circle!

» A pixel is a sample

15
From: http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture05/lecture05.pdf



Sampling and quantization

» The physical world is described in terms of continuous quantities

» But computers work only with discrete numbers

» Sampling — the process of mapping a continuous function to a discrete one

» Quantization — the process of mapping a continuous variable to a discrete one
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Resampling

» Some image processing operations require to know the colors that are in-
between the original pixels
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Pixel

» What are those operations!
» How to find these resampled pixel values!?



Example of resampling: magnification
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Example of resampling: scaling and rotation




How to resample?

» In ID: how to find the most likely resampled pixel value knowing its two
neighbours!?

>
7

pixel value v
o)

A\ 4

pixel position x
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(Bi)Linear interpolation (resampling)

» Linear — ID g
» Bilinear — 2D \
> Sampling
3 Y1 kernel
g
£ / \
X
a Y2

X1 X X2 pixel position

21



(Bi)cubic interpolation (resampling)

<SS

Sampling

| kernel
(convolution
kernel)

pixel position x

>
7

pixel value v
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Bi-linear interpolation

®—0®—0—0 Given the pixel values:
ne 2o B ¢ y)=4
C (x,yl D I(-xzayl):B
V). 9—@—@—9
I(-xlayz):C
’ : X ' I(Xz,y2)=D

Calculate the value of a pixel I(x,y) = ‘) using bi-linear interpolation.

Hint: Interpolate first between A and B, and between C and D, then interpolate
between these two computed values.
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Blurred Edge-preserving filter

Original

Point operators and filters
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Point operators

» Modify each pixel independent from one another
» The simplest case: multiplication and addition

Pixel position Input pixel
x=(X,y) value

Resulting pixel

@i Bias
value

26



Pixel precision for image processing

» Given an RGB image, 8-bit per color channel (uchar/ubyte/uint8)
What happens if the value of 10 is subtracted from the pixel value of 5 ?
250 + 10 ="
How to multiply pixel values by 1.5 ?

a) Using floating point numbers

b) While avoiding floating point numbers

27



Image blending

» Cross-dissolve between two images

Pixel from Pixel from
image | image 2
9(x) = (1 — a)fo(x) + afi(x)
Resulting pixel Blending
value parameter

» where a is between 0 and |

28



Image matting and compositing
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» Matting — the process of extracting an object from the original image

» Compositing — the process of inserting the object into a different image
» It is convenient to represent the extracted object as an RGBA image

29



Transparency, alpha channel

» RGBA — red, green, blue, alpha

alpha = 0 — transparent pixel ‘4’*

alpha = | — opaque pixel
» Compositing PP rrmin
o +MTTT T
Final pixel value: E_ | j

P = Cleixel + (1 - a)Cbackground

Multiple layers:
Py = Cbackground
Pi=a;C;+ (1 —a)Piq i

1..N
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Image histogram

6000
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O 3000 -
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Z in=(000,000,000)max=(252,248,255)
=(076,087 ,065)med=( 068,082,032
0
0 50 100 150 200 250

Pixel value

» histogram / total pixels = probability mass function
what probability does it represent?

31



Histogram equalization

» Pixels are non-uniformly distributed across the range of values

» Would the image look better if we uniformly distribute pixel values
(make the histogram more uniform)?

» How can this be done!?

32



Histogram equalization

» Step I: Compute a hlstogram of a greyscale image

i
/

\1
\I
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» Step 2: Compute a normalised cumulatlve

histogram
1o
c(v) = NZ) 10

» Step 3: Use the cumulative histogram to map
pixels to the new values (as a look-up table)

Your = ¢(Yin)

33
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Linear filtering

» Output pixel value is a weighted sum of neighboring pixels

Input pixel
value

g(i,j) =) _ fi —k,j—Dh(k,1)

Kernel (filter)

Resulting pixel Sum over neighboring
value pixels, e.g. k=-1,0,1, j=-1,0, |
for 3x3 neighborhood

compact notation  (J — f X h

Convolution
34 operation



Linear filter: example

45| 60 | 98 | 127|132 133 | 137 133

46 | 65 | 98 | 123 | 126 | 128 | 131 133 69 | 95 | 116] 125|129 132
47 | 65| 96 | 115|119 123|135 137 0.1]10.1]0.1 68 | 92 | 110|120 126 | 132
47 | 63 | 91 | 107|113 122|138 | 134 * 0.110.21]0.1 = 66 | 86 | 104 114|124 132
50| 59| 8 | 97 | 110 123| 133|134 0.110.1]0.1 62 | 78 | 94 | 108 | 120 129
49 | 53 | 68 | 83 | 97 | 113|128 133 57| 69| 83| 98 |112]124
50| 50| 58|70 | 8 | 102|116 126 53160 | 71| 85 100|114
S0 | 50| 52| 58| 69| 8 |101|120

Sxy) h(xy) gxy)

Why is the matrix g smaller than f ?

35



Padding an image

Image edge

Padded image

ZE1o

Padded and
blurred image

blurred: zero normalized zero clamp

36



What is the computational cost of the convolution?

9(i,3) = ) _ fi —k,j—Dh(k,1)

» How many multiplications do we need to do to convolve 100x100 image with
9%9 kernel ?

The image is padded, but we do not compute the values for the padded pixels

37



Separable kernels

» Convolution operation can be made much faster if split into two separate
steps:
|) convolve all rows in the image with a ID filter

2) convolve columns in the result of 1) with another |D filter

» But to do this, the kernel must be separable

hip Ry hyg (U1 ]
hyy hyy hps| = |Uz|-[V1 V2 V3]
h31  hzy  hgs. Uz

38



Examples of separable filters

» Box filter: 1 11
9 9 9| |3
1 1) 1 .{l 1 l}
9 9 9| [3]]3 3 3
1 11
9 9 9] |3]
» Gaussian filter:
1 _m2+y2
G(z,y;0) = s—e 27
2o

What are the corresponding |D components of this separable filter (u(x) and v(y))?

G(x,y) =u(x) v(y)

39



Unsharp masking

» How to use blurring to sharpen an image !

blurry image

-pass image

high

image

origina

40



Why “linear” filters ?

» Linear functions have two properties:

Additivity: f(x) + f(y) = f(x +y)

Homogenity: f(ax) = af(x) (where“f” is a linear function)
» Why is it important?

Linear operations can be performed in an arbitrary order
blur(aF + b) = ablur(F) + b

Linearity of the Gaussian filter could be used to improve the performance of your image
processing operation

This is also how separable filters work:

Matrix multiplication Convolution

The components (u y U) * f = Uu * (v % f)
of a separable
4 | kernel - - An image




Operations on binary images

» Essential for many computer vision tasks

® [ . * .
» Binary image can be constructed by thresholding a
grayscale image

1 if f >c,
0 else,

9(f=0)={

42



Morphological filters: dilation

OR\\,
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a) Original image b) Structuring c) Image after dilation;
element; original in dashes

X = origin

» Set the pixel to the maximum value of the neighboring pixels within the
structuring element

» What could it be useful for ?

43



Morphological filters: erosion

Co T
H ! - r- !
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a) Original image b) Structuring c) Image after erosion;
element; original in dashes

X = origin

» Set the value to the minimum value of all the neighboring pixels within the
structuring element

» What could it be useful for ?
44



Morphological filters: opening

0.
T

a) Original image b) Structuring
element;
X = origin

» Erosion followed by dilation
» What could it be useful for?

45

c) Image after opening =
erosion followed by
dilation




Morphological filters: closing

0.
\‘\a

a) Original image b) Structuring
element;
X = origin

» Dilation followed by erosion
» What could it be useful for ?

46

c) Image after closing =
dilation followed by
erosion; original in
dashes.




Binary morphological filters: formal definition

Binary image Correlation
(similar to

Number of Is inside convolution)

the region restricted T—
. ructurin
by the structuring C = f R s elementg
element

S — size of structuring element (number of 1s in the Sl)

e dilation: dilate(f, s) = 0(c,0(c.1) oap =1 ifazb
’ 0 otherwise

e erosion: erode(f, s) = 0(c, S);

e majority: maj(f,s) = 0(c, S/2);

e opening: open( f, s) = dilate(erode(f, s), s);

e closing: close(f, s) = erode(dilate(f, s), s).

47



Multi-scale image processing (pyramids)

» Multi-scale processing operates on an image
represented at several sizes (scales)
Fine level for operating on small details
Coarse level for operating on large features

» Example:

Motion estimation
Use fine scales for objects moving slowly

Use coarse scale for objects moving fast

Blending (to avoid sharp boundaries)

48



Two types of pyramids

Gaussian

pyramid

Laplacian  [EESEEE Level 4 (base band)

pyramid Level 3
(a.k.a DoG -
Diffence of | e BURT, P. AND ADELSON, E. 1983. The Laplacian
: i C I Code. IEEE

Gaussians) chidet bt stos s

Level 1 540.

49



Gaussian Pyramid

/

reduce

\

\

reduce =

Why is blurring needed?
o

Blur the image and downsample
(take every 2" pixel)
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Laplacian Pyramid - decomposition

—> expand —

expand

A\ 4
I
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Laplacian Pyramid - synthesis

52

expand

expand
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Reduce and expand

Al
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Filter rows
ri
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i

53

Reduce

Padding

Subsample rows

x KT

—_—

Filter columns

Subsample columns

B

|
\
=

0.8

Modulation
o o
B ()]

T T

Expand

Upsample rows
(i 2P

* K :

— E Filter rows

— Upsample columns
x KT

—_—

H Filter columns

Frequency response of
Laplacian pyramid bands

0.0397

0.0202 0.161 0l5

e

24 0.5

3
2
Frequency [samples/cycle]

2-5



Example: stitching and blending

Combine two images:

Image-space
blending

Laplacian pyramid
blending

54
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