Type Systems

Lecture 8: Using Monads to Control Effects

Neel Krishnaswami
University of Cambridge

Last Lecture

1 let knot : ((int -> int) -> int -> int) -> int -> int =
2 fun f ->

3 let r = ref (fun n -> 0) in

4 let recur = fun n -> !r n in

5 let () =r := fun n -> f recur n in
6 recur

1. Create a reference holding a function
2. Define a function that forwards its argument to the ref

3. Set the reference to a function that calls f on the forwarder and the
argument n

4. Now fwill call itself recursively!

Another False Theorem

Not a Theorem: (Termination) Every well-typed program -; - I- e : X terminates.

- Landin’s knot lets us define recursive functions by backpatching

- As a result, we can write nonterminating programs

What is the Problem?

We began with the typed lambda calculus
We added state as a set of primitive operations

We lost termination

= @ N

Problem: unforseen interaction between different parts of the language
- Recursive definitions = state + functions

5. Question: is this a real problem?

What is the Solution?

- Restrict the use of state:

1. Limit what references can store (eg, only to booleans and integers)
2. Restrict how references can be referred to (eg, in core safe Rust)
3. We don’t have time to pursue these in this course

- Mark the use of state:
- Distinguish between pure and impure code
- Impure computations can depend on pure ones

- Pure computations cannot depend upon impure ones
- Aform of taint tracking

Monads for State

Types X = 1| N | X=>Y]|refX | TX
Pure Terms e == () | n| Mx:Xelee]|l]| {t}
Impure Terms t newe | le | e:=¢

| letx=e; t | returne
Values v o= () | n| x:Xe | | {t]
Stores o = -|oaol:iv
Contexts r o= | Mhx:X
Store Typings ¥ == - | X, [:X

Typing for Pure Terms

x:Xerl
T Hvp — - N
YirEx:X TE(O 1 >:F'n:N
;[x:XkFe:Y YTFe: X—Y Y r+e:X
— —E
Y THEX:Xe: XY Y:Tkee:Y
[:XeX Y THt=X
—— REFBAR _ T
Y.k L:refx L TEA{th:TX

- Similar to STLC rules + thread X through all judgements
- New judgement >; [t = X for imperative computations

Typing for Effectful Terms

Y:Tke: X Y:T'Fe:refxX
REFI —— REFGET

>:IT'Fnewe = refX Y. FEle=X

Y:Tke:refX Y r+e X
REFSET
Y The:=¢ +1
Y:TFe: X Y;FFe:TX Y. hox:XEt+Z
TRET TLET
Y.+ returne - X Y Tkletx=e; t+7

- We now mark potentially effectful terms in the judgement
- Note that return e isn’t effectful - conservative approximation!

A Two-Level Operational Semantics: Pure Part

eomeg eqveﬁ

ep €1~ e e Vo €1~ Vo €] (M : X.e)v~ [v/x]e

- Similar to the basic STLC operational rules

- We no longer thread a store o through each transition!

A Two-Level Operational Semantics: Impure Part, 1/2

e~ e [¢ dom(o)
(o;newe) ~ (o;newe’) (o;new V) ~s ((o, 1 v);returnl)
e~ ¢ l:veo
(0;1e) ~ (o;le) (o; 1) ~ (o; returnv)
ey ~ €j e~ @
(0, €0 :=eq) ~ <a; ey = e1> (o;vo = eq) ~ <0’; Vo = e§>

{(o,L:v,a");l:=V) ~ ((0,[:V,0');return ())

A Two-Level Operational Semantics: Impure Part, 2/2

e~ e e~ e

(o; returne) ~ (o;returne’) (o;letx=1¢; t)~ (o;letx=¢'; t)

(o;let x = {returnv}; t1) ~ (o; [v/X]t7)

(o;to) ~ (o' to)
(o;letx = {to}; tr) ~ (o';letx = {tp}; t1)

10

Store and Configuration Typing

(o:€) : (T:X)

Yo Y Yook v:iX
STORENIL STORECONS
YhEoo Y (o V) (20 X)

>hFo: X ookt X
(o;t) : (X;X)

CONFIGOK

- Check that all the closed values in the store ¢’ are well-typed
- Types come from ¥/, checked in store ¥

- Configurations are well-typed if the store and term are well-typed .

Substitution and Structural Properties, 1/2

- Pure Term Weakening:
fX:;M,M-e:XthenX;lz:Z,"+e: X

- Pure Term Exchange:
fX,My:Y,z:Z"+e:XthenL;lz:Z,y: Y, I"Fe: X
- Pure Term Substitution:
IfL,FFe:Xand X;Mx: XEe :Zthen ;T F [e/x]e : Z.

12

Substitution and Structural Properties, 2/2

- Effectful Term Weakening:
If ;0,7 -t Xthen &:M,z: Z,I" Ft=+ X
- Effectful Term Exchange:
fX,My:Y,z:ZI't+=XthenX;I,z: Z,y: Y,"t+ X
- Effectful Term Substitution:
IfL,FFe:Xand ;M x: XEt+Zthen ;T + [e/X]t + Z

13

Proof Order

1. Prove Pure Term Weakening and Impure Term Weakening mutually inductively
2. Prove Pure Term Exchange and Impure Term Exchange mutually inductively

3. Prove Pure Term Substitution and Impure Term Substitution mutually
inductively

Two mutually-recursive judgements = Two mutually-inductive proofs

Store Monotonicity

Definition (Store extension):

Define > < ¥/ to mean thereisa X’ such that ¥’ = ¥, ¥".
Lemma (Store Monotonicity):

If ¥ < ¥’ then:

1. IfErFe: Xthen¥;TFe: X
2. If 5 r-t=XthenY;r-t=X
3. |fZ|—Uoizo then zll—aoizo.

The proof is by structural induction on the appropriate definition. (Prove 1. and 2.
mutually-inductively!)

This property means allocating new references never breaks the typability of a
term. 15

Type Safety for the Pure Language

Theorem (Pure Progress):
IfY;-Fe:Xthene=vore~ ¢e.
Theorem (Pure Preservation):
If¥;-Fe:Xande~s e thenX;-Fe' : X
Proof:

- For progress, induction on derivation of ;- e : X

- For preservation, induction on derivation of e ~ ¢’

Type Safety for the Monadic Language

Theorem (Progress):
If (o;t) : (£;X) thent =returnv or (c;t) ~ (o’;t').
Theorem (Preservation):

If (o;t) : (¥;X) and {(o;t) ~ (o’; t') then there exists ¥’ > ¥ such that
(o’ t) : (X5 X).

Proof:

- For progress, induction on derivation of ;- -t = X

- For preservation, induction on derivation of (o; e) ~ (o’; €’)

What Have we Accomplished?

- In the monadic language, pure and effectful code is strictly separated
- As a result, pure programs terminate

- However, we can still write imperative programs

Monads for 1/0

Types X == 1| N| X=Y]| ToX

Pure Terms e :== () | n| x:Xe|ee | {t]
Impure Terms t = printe | letx=e; t | returne
Values v u= () | n| M:Xe | {t}
Contexts r < Tyxe X

Monads for 1/0: Typing Pure Terms

xX:XeTl
Hyp — 1l — NI
Mex:X e :1 N=n:N
Mx:XkFe:Y MN-e: X—Yy r-e:x
—1 —E
MEXXx:Xe: X—=Y M-ee:vy
M=t=X
Me{t}:TX
- Similar to STLC rules (no store typing!)
20

- New judgement I' - t = X for imperative computations

Typing for Effectful Terms

MN-e:N
——————— TPRINT
= printe +1
MN-e: X MFe:TX Mx: XEt+Z
— TRET TLET
I returne + X MEletx=e t+2Z

- TRET and TLET are identical rules
- Difference is in the operations - printe vs get/set/new

21

Operational Semantics for I/O: Pure Part

ey~ €f e~ €

ep €1~ e e Vo €1~ Vo € (M : X.e)v~ [v/x]e

- |dentical to the pure rules for state!

22

Operational Semantics for |/O: Impure Part

e~ e
(w; printe) ~ (w; printe’) (w; printn) ~ ((n : : w); return ())
e~ e e~ e
(w;returne) ~ (w; returne’) (wiletx=e; t) ~ (w;letx =¢€'; t)
(wi to) ~ (Wi to)
(w; let x = {returnv}; t7) ~ (w; [v/x]t7) (w;letx = {to}; t1) ~ (W' let x = {t}}; t1)

- State is now a list of output tokens
- All rules otherwise identical except for operations

23

Limitations of Monadic Style: Encapsulating Effects

1 let fact : int -> int = fun n ->

2 let r = ref 1 in

3 let rec loop n =

4 match n with

5 | 0 -> I'r

6 | n ->1let () =1 :=!'r » n in
7 loop (n-1)

8 in

9 loop n

- This function use local state
- No caller can tell if it uses state or not
- Should it have a pure type, or a monadic type?

24

Limitations of Monadic Style: Encapsulating Effects

1 let rec find' : ('a -> bool) -> 'a list -> 'a =
2 fun p ys ->

3 match ys with

4 | [] -> raise Not_found

5 | vy :: ys -> if p y then y else find' p ys

» let find : ('a -> bool) -> 'a list -> 'a option =

8 fun p xs ->
9 try Some (find' p xs)
10 with Not_found -> None

- find' has an effect - it can raise an exception
- But find calls find"', and catches the exception
- Should find have an exception monad in its type? 25

Limitations of Monadic Style: Combining Effects

Suppose you have two programs:

1 pl : (int -> ans) state
2 p2 : int io

- we write a state for a state monad computation
- we write b io fora /O monad computation

- How do we write a program that does p2, and passes its argument to p1?

26

Checked Exceptions in Java

- Java checked exceptions implement a simple form of effect typing
- Method declarations state which exceptions a method can raise

- Programmer must catch and handle any exceptions they haven't declared
they can raise

- Not much used in modern code - type system too inflexible

27

Effects in Koka

fun
fun
fun
fun

squarel(x : int
square2(x : int
square3(x : int
square4(x : int

—_— — — —

: total int { x*x }

: console int { println("a not so secret side-effect"); x*x }
: div int { x * square3(x) }

: exn int { throw("oops"); x*x }

- Koka is a new language from Microsoft Research

- Uses effect tracking to track totality, partiality, exceptions, 1/0, state and even
user-defined effects

- Good playground to understand how monadic effects could look like in a

practical language

- See: https://github.com/koka-1lang/koka

28

https://github.com/koka-lang/koka

Questions

For the monadic I/O language:

1. State the weakening, exchange, and substitution lemmas
2. Define machine configurations and configuration typing
3. State the type safety property

29

