Type Systems

Lecture 7: Programming with Effects

Neel Krishnaswami
University of Cambridge

Wrapping up Polymorphism

System F is Explicit

We saw that in System F has explicit type abstraction and application:

©,a;THe:B O:l+e:Va.B © - Atype
O;l+Aa.e:Va.B O;Tt+eA:[A/a]B

This is fine in theory, but what do programs look like in practice?

System F is Very, Very Explicit

Suppose we have a map functional and an isEven function:

map : VYa.VB. (o — B) — lista — listg
Istven : N — bool

A function taking a list of numbers and applying isEven to it:
map N booliskven : listN — listbool
If you have a list of lists of natural numbers:

map (listN) (listbool) (map N bool isEven)
:list (listN) — Llist(listbool)

The type arguments overwhelm everything else!

Type Inference

- Luckily, ML and Haskell have type inference
- Explicit type applications are omitted — we write map iskven instead of

map N boolisEven
- Constraint propagation via the unification algorithm figures out what the
applications should have been

Example:
map isEven Term that needs type inference
map ?a ?b iskven Introduce placeholders ?a and ?b
map ?a ?b :(?a —7b) — list?a — list?b

Iskven : N — bool So ?a —7?b must equal N — bool
?a=N,?b =bool Only choice that makes ?a —?b = N — bool

Effects

The Story so Far...

- We introduced the simply-typed lambda calculus
- ..and its double life as constructive propositional logic
- We extended it to the polymorphic lambda calculus

- ..and its double life as second-order logic

This is a story of pure, total functional programming

- Sometimes, we write programs that takes an input and computes an answer:
- Physics simulations
- Compiling programs
- Ray-tracing software

- Other times, we write programs to do things:

- communicate with the world via I/0 and networking
- update and modify physical state (eg, file systems)

- build interactive systems like GUIs

- control physical systems (eg, robots)

- generate random numbers

- PL jargon: pure vs effectful code

Two Paradigms of Effects

- From the POV of type theory, two main classes of effects:
1. State:

- Mutable data structures (hash tables, arrays)
- References/pointers

2. Control:

- Exceptions
- Coroutines/generators
- Nondeterminism

- Other effects (eg, I/0 and concurrency/multithreading) can be modelled in
terms of state and control effects

- In this lecture, we will focus on state and how to model it

let r = ref 5;;
val r : int ref = {contents = 5}

#1lr;;

- :1nt =5

r := !r + 15;;
- unit = ()

'r;;

- : int = 20

- We can create fresh reference with ref e
- We can read a reference with !e
- We can update a reference withe := e' 7

A Type System for State

Types X == 1| N|X=>Y]| refX
Terms e == () | n| Mx:Xe]|eé
| newe | le | e:=¢€|I

Values v o= () | n| M:Xe |l
Stores o = -|al:v
Contexts r:== -] nhHx:X

Store Typings ¥ == - | L,[:X

Operational Semantics

(o;€e9) ~ <U/; e6> (o;e1) ~ <a'; e§>

(o,e0e1) ~ (a';epen) (o;voer) ~ (o' voer)

(o7 (M X.e)v) ~ (o;[v/x]e)

- Similar to the basic STLC operational rules

- Threads a store ¢ through each transition

Operational Semantics

(o;e) ~ (d';€e) [¢ dom(o)
(o;newe) ~ (o’;newe’) (o;new V) ~ ((a,1:v); 1)
<a;e>~><a’;e’> l:veo
(g;1e) ~ (d'; 1) (o3 1) ~ (o} V)
(o;€e9) ~ <a’; 86> (o; 1) ~ <a’; e§>
(o€ :=e1) ~ <J’; ey = e1> (o, Vo = eq) ~ <U’; Vo 1= eﬁ}

((o,l:v, ") l:=V) ~ ((o,1:V,0"); ()

10

Typing for Terms

X:Xel
—— Hyp — 1l —— NI
Yl x:X L rE():1 >;T'+n:N
2;hx: Xke:Y Y TFe: X—=Y Y THe:X
— —E
XX Xe: X—=Y Y:Tree:y

- Similar to STLC rules + thread X through all judgements

1

Typing for Imperative Terms

>:fTke: X Y:TFe:refX
REFI — REFGET
Y:IFnewe:refX Y:rle: X
Y:TFe:refX Y re:x [: XeX
REFSET —— REFBAR
Y TFe:=¢€:1 Y. L:refX

- Usual rules for references

- But why do we have the bare reference rule?

12

Proving Type Safety

- Original progress and preservations talked about well-typed terms e and
evaluation steps e ~ ¢’
- New operational semantics (o; e) ~ (¢’; ') mentions stores, too.

- To prove type safety, we will need a notion of store typing

13

Store and Configuration Typing

(o:€) : (T:X)

Yo Y Yook v:iX
STORENIL STORECONS
YhEoo Y (o V) (20 X)

>hFo: X Y:o-ke: X
(o;e) : (;X)

CONFIGOK

- Check that all the closed values in the store ¢’ are well-typed
- Types come from ¥’, checked in store &
- Configurations are well-typed if the store and term are well-typed

A Broken Theorem

Progress:

If (o;e) : (X;X) then e is a value or (o;e) ~ (d/;€').
Preservation:

If (o;e) : (X;X) and (o;e) ~ (o¢’; ') then (¢/; ¢') : (¥; X).

+ One of these theorems is false!

15

The Counterexample to Preservation

Note that

. (snew () : (-;ref1)
2. (;new())~ ((L:());l) forsomel

However, it is not the case that

(L:();)y (- ref1)

The heap has grown!

Store Monotonicity

Definition (Store extension):
Define > < >/ to mean thereisa X’ suchthat ¥’ =¥, ¥".
Lemma (Store Monotonicity):
If ¥ < ¥’ then:
1. IfErFe: XthenY;TkFe: X
2. fXFop:XothenX' o : Xo.
The proof is by structural induction on the appropriate definition.

This property means allocating new references never breaks the typability of a
term.

Substitution and Structural Properties

- (Weakening)
fX:;M,M-e:XthenX;lz:Z,"+e: X
- (Exchange)
fX,My:Y,z:Z"+e:XthenL;lz:Z,y: Y, I"Fe: X
- (Substitution)
IfX;TFe:Xand ;I x: XF e : Zthen ;T +[e/x]e' : Z

Type Safety, Repaired

Theorem (Progress):
If (o;e) : (¥X;X) then eis a value or (c;e) ~ (d’;€').
Theorem (Preservation):

If (o; e) : (X;X) and (o; e) ~ (o’;€’) then there exists ¥’ > ¥ such that
('€ : (X5 X).

Proof:

- For progress, induction on derivation of ;- e : X

- For preservation, induction on derivation of (o; e) ~ (o’; €’)

A Curious Higher-order Function

- Suppose we have an unknown function in the STLC:
f[(0—=1)—-=1)—>N

- Q: What can this function do?

- A: It is a constant function, returning some n

- Q: Why?

- A: No matter what f(g) does with its argument g, it can only gets () out of it.
So the argument can never influence the value of type N that f produces.

20

The Power of the State

count (=17 —=1—=N

count f = letr:refN=new0in
letinc:7T—=1=Xz:1.r:=1r+1in
finc); Ir

- This function initializes a counter r

- It creates a function inc which silently increments r
- It passes inc to its argument f

- Then it returns the value of the counter r

- Thatis, it returns the number of times inc was called!

21

Backpatching with Landin’s Knot

1 let knot : ((int -> int) -> int -> int) -> int -> int =
2 fun f ->

3 let r = ref (fun n -> 0) in

4 let recur = fun n -> !r n in

5 let () =r := fun n -> f recur n in
6 recur

1. Create a reference holding a function
2. Define a function that forwards its argument to the ref

3. Set the reference to a function that calls f on the forwarder and the
argument n

4. Now fwill call itself recursively!

22

Another False Theorem

Not a Theorem: (Termination) Every well-typed program -; - I- e : X terminates.

- Landin’s knot lets us define recursive functions by backpatching

- As a result, we can write nonterminating programs!

23

Consistency vs Computation

- Do we have to choose between state/effects and logical consistency?
- Is there a way to get the best of both?
- Alternately, is there a Curry-Howard interpretation for effects?

- Next lecture:

- A modal logic suggested by Curry in 1952
- Now known to functional programmers as monads
- Also known as effect systems

24

Questions

1. Using Landin’s knot, implement the fibonacci function.

2. The type safety proof for state would fail if we added a C-like free()
operation to the reference API.

21 Give a plausible-looking typing rule and operational semantics for free.
2.2 Find an example of a program that would break.

25

	Wrapping up Polymorphism
	Effects

