Type Systems

Lecture 5: System F and Church Encodings

Neel Krishnaswami University of Cambridge

System F, The Girard-Reynolds Polymorphic Lambda Calculus

```
Types A::=\alpha\mid A\to B\mid \forall \alpha.A

Terms e::=x\mid \lambda x:A.e\mid ee\mid \Lambda\alpha.e\mid eA

Type Contexts \Theta::=\cdot\mid \Theta,\alpha

Term Contexts \Gamma::=\cdot\mid \Gamma,x:A
```

Judgement	Notation
Well-formedness of types	Θ⊢A type
Well-formedness of term contexts	⊝⊢Γctx
Term typing	Ө;Г⊢е:А

1

Well-formedness of Types

$$\frac{\alpha \in \Theta}{\Theta \vdash \alpha \text{ type}}$$

$$\frac{\Theta \vdash A \text{ type} \qquad \Theta \vdash B \text{ type}}{\Theta \vdash A \to B \text{ type}}$$

$$\frac{\Theta, \alpha \vdash A \text{ type}}{\Theta \vdash \forall \alpha. A \text{ type}}$$

- Judgement $\Theta \vdash A$ type checks if a type is well-formed
- Because types can have free variables, we need to check if a type is well-scoped

Well-formedness of Term Contexts

Term Variable Contexts
$$\Gamma ::= \cdot \mid \Gamma, x : A$$

$$\frac{\Theta \vdash \Gamma \operatorname{ctx} \qquad \Theta \vdash A \operatorname{type}}{\Theta \vdash \Gamma, x : A \operatorname{ctx}}$$

- · Judgement $\Theta \vdash \Gamma$ type checks if a *term context* is well-formed
- We need this because contexts associate variables with types, and types now have a well-formedness condition

Typing for System F

$$\frac{x : A \in \Gamma}{\Theta; \Gamma \vdash x : A}$$

$$\frac{\Theta \vdash A \text{ type} \qquad \Theta; \Gamma, x : A \vdash e : B}{\Theta; \Gamma \vdash \lambda x : A \cdot e : A \to B} \qquad \frac{\Theta; \Gamma \vdash e : A \to B \qquad \Theta; \Gamma \vdash e' : A}{\Theta; \Gamma \vdash e \cdot e' : B}$$

$$\frac{\Theta; \alpha; \Gamma \vdash e : B}{\Theta; \Gamma \vdash \Lambda \alpha \cdot e : \forall \alpha \cdot B} \qquad \frac{\Theta; \Gamma \vdash e : \forall \alpha \cdot B \qquad \Theta \vdash A \text{ type}}{\Theta; \Gamma \vdash e A : \boxed{[A/\alpha]B}}$$

· Note the presence of substitution in the typing rules!

Operational Semantics

The Bookkeeping

- Ultimately, we want to prove type safety for System F
- However, the introduction of type variables means that a fair amount of additional administrative overhead is introduced
- This may look intimidating on first glance, BUT really it's all just about keeping track of the free variables in types
- · As a result, none of these lemmas are hard just a little tedious

Structural Properties and Substitution for Types

- 1. (Type Weakening) If Θ , $\Theta' \vdash A$ type then Θ , β , $\Theta' \vdash A$ type.
- 2. (Type Exchange) If $\Theta, \beta, \gamma, \Theta' \vdash A$ type then $\Theta, \gamma, \beta, \Theta' \vdash A$ type
- 3. (Type Substitution) If $\Theta \vdash A$ type and $\Theta, \alpha \vdash B$ type then $\Theta \vdash [A/\alpha]B$ type
- · These follow the pattern in lecture 1, except with fewer cases
- Needed to handle the type application rule

Structural Properties and Substitutions for Contexts

- 1. (Context Weakening) If Θ , $\Theta' \vdash \Gamma$ ctx then Θ , α , $\Theta' \vdash \Gamma$ ctx
- 2. (Context Exchange) If $\Theta, \beta, \gamma, \Theta' \vdash \Gamma$ ctx then $\Theta, \gamma, \beta, \Theta' \vdash \Gamma$ ctx
- 3. (Context Substitution) If $\Theta \vdash A$ type and $\Theta, \alpha \vdash \Gamma$ type then $\Theta \vdash [A/\alpha]\Gamma$ type
- This just lifts the type-level structural properties to contexts
- Proof via induction on derivations of $\Theta \vdash \Gamma$ ctx

Regularity of Typing

Regularity: If $\Theta \vdash \Gamma$ ctx and Θ ; $\Gamma \vdash e : A$ then $\Theta \vdash A$ type

Proof: By induction on the derivation of Θ ; $\Gamma \vdash e : A$

· This just says if typechecking succeeds, then it found a well-formed type

9

Structural Properties and Substitution of Types into Terms

- (Type Weakening of Terms) If Θ , $\Theta' \vdash \Gamma$ ctx and Θ , Θ' ; $\Gamma \vdash e : A$ then Θ , α , Θ' ; $\Gamma \vdash e : A$.
- (Type Exchange of Terms) If Θ , α , β , $\Theta' \vdash \Gamma$ ctx and Θ , α , β , Θ' ; $\Gamma \vdash e : A$ then Θ , β , α , Θ' ; $\Gamma \vdash e : A$.
- (Type Substitution of Terms) If Θ , $\alpha \vdash \Gamma$ ctx and $\Theta \vdash A$ type and Θ , α ; $\Gamma \vdash e : B$ then Θ ; $[A/\alpha]\Gamma \vdash [A/\alpha]e : [A/\alpha]B$.

Structural Properties and Substitution for Term Variables

- (Weakening for Terms) If $\Theta \vdash \Gamma$, Γ' ctx and $\Theta \vdash B$ type and Θ ; Γ , $\Gamma' \vdash e : A$ then Θ ; Γ , $\gamma : B$, $\Gamma' \vdash e : A$
- (Exchange for Terms) If $\Theta \vdash \Gamma, y : B, z : C, \Gamma'$ ctx and $\Theta; \Gamma, y : B, z : C, \Gamma' \vdash e : A$, then $\Theta; \Gamma, z : C, y : B, \Gamma' \vdash e : A$
- (Substitution of Terms) If $\Theta \vdash \Gamma, x : A$ ctx and $\Theta; \Gamma \vdash e : A$ and $\Theta; \Gamma, x : A \vdash e' : B$ then $\Theta; \Gamma \vdash [e/x]e' : B$.

Summary

- · There are two sets of substitution theorems, since there are two contexts
- · We also need to assume well-formedness conditions
- But proofs are all otherwise similar to the simply-typed case

Type Safety

Progress: If \cdot ; $\cdot \vdash e : A$ then either e is a value or $e \leadsto e'$.

Type preservation: If \cdot ; $\cdot \vdash e : A$ and $e \leadsto e'$ then \cdot ; $\cdot \vdash e' : A$.

Progress: Big Lambdas

Proof by induction on derivations:

$$\underbrace{\cdot; \cdot \vdash e : \forall \alpha. B} \qquad \underbrace{\cdot \vdash A \text{ type}}^{(3)}$$

- (1) $\cdot; \cdot \vdash eA : [A/\alpha]B$
- (4) $e \sim e'$ or e is a value Case on (4)
- (5) Case $e \sim e'$:
- (6) $eA \sim e'A$
- (7) Case e is a value:
- (8) $e = \Lambda \alpha. e'$
- (9) $(\Lambda \alpha. e') A \sim [A/\alpha]e$

Assumption

Induction on (2)

by Congforall on (5)

By canonical forms on (2)

By ForallEval

Preservation: Big Lambdas

By induction on the derivation of $e \rightsquigarrow e'$:

(1)
$$\overline{(\Lambda \alpha. e) A \sim [A/\alpha]e}$$
 FORALLEVAL

(2)
$$\frac{\alpha; \cdot \vdash e : B}{\alpha; \cdot \vdash \Lambda \alpha. e : \forall \alpha. B} \xrightarrow{(4)} (4)$$
$$\cdot; \cdot \vdash (\Lambda \alpha. e) A : [A/\alpha]B$$

(5)
$$\cdot; \cdot \vdash [A/\alpha]e : [A/\alpha]B$$

,

Assumption

Assumption

Type subst. on (3), (4)

Church Encodings: Representing Data with Functions

- System has the types $\forall \alpha$. A and $A \rightarrow B$
- · No booleans, sums, numbers, tuples or anything else
- · Seemingly, there is no data in this calculus
- Surprisingly, it is unnecessary!
- Discovered in 1941 by Alonzo Church
- The idea:
 - 1. Data is used to make choices
 - 2. Based on the choice, you perform different results
 - 3. So we can encode data as functions which take different possible results, and return the right one

Church Encodings: Booleans

$$\frac{}{\Gamma \vdash \mathsf{true} : \mathsf{bool}} \qquad \frac{}{\Gamma \vdash \mathsf{false} : \mathsf{bool}} \qquad \frac{\Gamma \vdash e : \mathsf{bool} \qquad \Gamma \vdash e' : X \qquad \Gamma \vdash e'' : X}{\Gamma \vdash \mathsf{if} \ e \ \mathsf{then} \ e' \ \mathsf{else} \ e'' : X}$$

- · Boolean type has two values, true and false
- · Conditional switches between two X's based on e's value

Type		Encoding
bool	\triangleq	$\forall \alpha. \alpha \to \alpha \to \alpha$
True	$\stackrel{\triangle}{=}$	$\Lambda\alpha.\lambda X:\alpha.\lambda y:\alpha.X$
False	$\stackrel{\triangle}{=}$	$\Lambda \alpha$. λX : α . λY : α . Y
if e then e' else e'' : X	$\stackrel{\triangle}{=}$	e X e' e"

Evaluating Church conditionals

```
if true then e' else e'': A = true A e' e''
                                            = (\Lambda \alpha. \lambda x : \alpha. \lambda y : \alpha. x) \land e' e''
                                            = (\lambda x : A. \lambda y : A. x) e' e''
                                            = (\lambda v : A.e') e''
if false then e' else e'': A = false A <math>e' e''
                                            = (\Lambda \alpha. \lambda x : \alpha. \lambda y : \alpha. y) A e' e''
                                            = (\lambda x : A. \lambda y : A. y) e' e''
                                            = (\lambda y : A. y) e''
```

Church Encodings: Pairs

Type		Encoding
$X \times Y$	\triangleq	$\forall \alpha. (X \to Y \to \alpha) \to \alpha$
$\langle e, e' \rangle$	\triangleq	$\Lambda \alpha. \lambda k: X \to Y \to \alpha. kee'$
fst e	\triangleq	$e X (\lambda x : X. \lambda y : Y. x)$
snd e	\triangleq	$e Y (\lambda x : X. \lambda y : Y. y)$

Evaluating Church Pairs

```
fst \langle e, e' \rangle = \langle e, e' \rangle X (\lambda x : X. \lambda y : Y. x)
                         = (\Lambda \alpha. \lambda k : X \rightarrow Y \rightarrow \alpha. k e e') X (\lambda x : X. \lambda y : Y. x)
                         = (\lambda k : X \rightarrow Y \rightarrow X. kee') (\lambda x : X. \lambda y : Y. x)
                         = (\lambda x : X. \lambda v : Y. x) e e'
                         = (\lambda v : Y.e)e'
snd \langle e, e' \rangle = \langle e, e' \rangle Y (\lambda x : X. \lambda y : Y. y)
                         = (\Lambda \alpha. \lambda k : X \rightarrow Y \rightarrow \alpha. k e e') Y (\lambda x : X. \lambda y : Y. y)
                         = (\lambda k : X \rightarrow Y \rightarrow Y. kee') (\lambda x : X. \lambda y : Y. y)
                         = (\lambda x : X. \lambda v : Y. v) e e'
                         = (\lambda v : Y. v) e'
```

Church Encodings: Sums

Туре	Encoding
X + Y	$\forall \alpha. (X \to \alpha) \to (Y \to \alpha) \to \alpha$
Le	$\Lambda \alpha. \lambda f: X \to \alpha. \lambda g: Y \to \alpha. fe$
Re	$\Lambda \alpha. \lambda f: X \to \alpha. \lambda g: Y \to \alpha. ge$
case($e, Lx \rightarrow e_1, Ry \rightarrow e_2$): Z	$eZ(\lambda x : X. e_1) (\lambda y : Y. e_2)$

Evaluating Church Sums

case(Le, Lx
$$\rightarrow$$
 e₁, Ry \rightarrow e₂): Z
= (Le) Z (λx : X. e₁) (λy : Y. e₂)
= ($\Lambda \alpha$. λf : X $\rightarrow \alpha$. λg : Y $\rightarrow \alpha$. fe)
Z (λx : X. e₁) (λy : Y. e₂)
= (λf : X. λg : Y. fe)
(λx : X. e₁) (λy : Y. e₂)
= (λg : Y. (λx : X. e₁) e)
(λy : Y. e₂)
= (λx : X. e₁) e
= [e/x]e₁

Church Encodings: Natural Numbers

Туре	Encoding
N	$\forall \alpha. \alpha \to (\alpha \to \alpha) \to \alpha$
Z	$\Lambda \alpha$. λz : α . λs : $\alpha \to \alpha$. z
s(e)	$\Lambda \alpha. \lambda z : \alpha. \lambda s : \alpha \rightarrow \alpha. s (e \alpha z s)$
$iter(e, z \rightarrow e_z, s(x) \rightarrow e_s) : X$	$e X e_z (\lambda x : X. e_s)$

Evaluating Church Naturals

$$iter(z, z \rightarrow e_z, s(x) \rightarrow e_s)$$

$$= z \times e_z (\lambda x : X. e_s)$$

$$= (\Lambda \alpha. \lambda z : \alpha. \lambda s : \alpha \rightarrow \alpha. z) \times e_z (\lambda x : X. e_s)$$

$$= (\lambda z : X. \lambda s : X \rightarrow X. z) e_z (\lambda x : X. e_s)$$

$$= (\lambda s : X \rightarrow X. e_z) (\lambda x : X. e_s)$$

$$= e_z$$

Evaluating Church Naturals

$$\begin{aligned} & \text{iter}(\mathsf{s}(e),\mathsf{z} \to e_{\mathsf{z}},\mathsf{s}(\mathsf{x}) \to e_{\mathsf{s}}) \\ &= (\mathsf{s}(e)) \, \mathsf{X} \, e_{\mathsf{z}} \, (\lambda \mathsf{x} : \mathsf{X}. \, e_{\mathsf{s}}) \\ &= (\Lambda \alpha. \, \lambda \mathsf{z} : \alpha. \, \lambda \mathsf{s} : \alpha \to \alpha. \, \mathsf{s} \, (e \, \alpha \, \mathsf{z} \, \mathsf{s})) \, \mathsf{X} \, e_{\mathsf{z}} \, (\lambda \mathsf{x} : \mathsf{X}. \, e_{\mathsf{s}}) \\ &= (\lambda \mathsf{z} : \mathsf{X}. \, \lambda \mathsf{s} : \mathsf{X} \to \mathsf{X}. \, \mathsf{s} \, (e \, \mathsf{X} \, \mathsf{z} \, \mathsf{s})) \, e_{\mathsf{z}} \, (\lambda \mathsf{x} : \mathsf{X}. \, e_{\mathsf{s}}) \\ &= (\lambda \mathsf{s} : \mathsf{X} \to \mathsf{X}. \, \mathsf{s} \, (e \, \mathsf{X} \, e_{\mathsf{z}} \, \mathsf{s})) \, (\lambda \mathsf{x} : \mathsf{X}. \, e_{\mathsf{s}}) \\ &= (\lambda \mathsf{x} : \mathsf{X}. \, e_{\mathsf{s}}) \, (e \, \mathsf{X} \, e_{\mathsf{z}} \, (\lambda \mathsf{x} : \mathsf{X}. \, e_{\mathsf{s}}))) \\ &= (\lambda \mathsf{x} : \mathsf{X}. \, e_{\mathsf{s}}) \, \text{iter}(e, \mathsf{z} \to e_{\mathsf{z}}, \mathsf{s}(\mathsf{x}) \to e_{\mathsf{s}}) \\ &= [\text{iter}(e, \mathsf{z} \to e_{\mathsf{z}}, \mathsf{s}(\mathsf{x}) \to e_{\mathsf{s}}) / \mathsf{x}] e_{\mathsf{s}} \end{aligned}$$

Church Encodings: Lists

Type	Encoding
list X	$\forall \alpha. \alpha \rightarrow (X \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha$
[]	$\Lambda \alpha$. λn : α . λc : $X \to \alpha \to \alpha$. n
e :: e'	$\Lambda \alpha$. λn : α . λc : $X \to \alpha \to \alpha$. c e $(e' \alpha n c)$

$$\mathsf{fold}(e,[]\to e_n, x :: r\to e_c) : Z=e\ Z\ e_n\ (\lambda x : X.\ \lambda r : Z.\ e_c)$$

Conclusions

- System F is very simple, and very expressive
- · Formal basis of polymorphism in ML, Java, Haskell, etc.
- · Surprise: from polymorphism and functions, data is definable

Exercises

- 1. Prove the regularity lemma.
- 2. Define a Church encoding for the unit type.
- 3. Define a Church encoding for the empty type.
- 4. Define a Church encoding for binary trees, corresponding to the ML datatype type tree = Leaf | Node of tree * X * tree.