Type Systems

Lecture 3: Consistency and Termination

Neel Krishnaswami University of Cambridge

From Type Safety to Stronger Properties

- In the last lecture, we saw how <u>evaluation</u> corresponded to <u>proof</u> normalization
- This was an act of knowledge transfer from <u>computation</u> to <u>logic</u>
- · Are there any transfers we can make in the other direction?

Logical Consistency

- · An important property of any logic is <u>consistency</u>: there are no proofs of \bot !
- Otherwise, the \perp E rule will let us prove anything.
- · What does this look like in a programming language?

Types and Values

Types
$$X ::= 1 \mid X \times Y \mid 0 \mid X + Y \mid X \rightarrow Y$$

Values $v ::= \langle \rangle \mid \langle v, v' \rangle \mid \lambda x : A.e \mid Lv \mid Rv$

- There are no values of type 0
- I.e., no normal forms of type 0
- But what about non-normal forms?

What Type Safety Does, and Doesn't Show

- We have proved type safety:
 - Progress: If $\cdot \vdash e : X$ then e is a value or $e \leadsto e'$.
 - Type preservation If $\cdot \vdash e : X$ and $e \leadsto e'$ then $\cdot \vdash e' : X$.
- If there were a closed term of type 0, then progress means it must always step (since there are no values of type 0)
- But the term it would step to also has type 0 (by preservation)
- · So any closed term of type 0 must <u>loop</u> it must step forever.

A Naive Proof that Does Not Work

Theorem: If $\cdot \vdash e : X$ then there is a value v such that $e \rightsquigarrow^* v$.

"Proof": By structural induction on $\cdot \vdash e : X$

A Minimal Typed Lambda Calculus

Types
$$X ::= 1 \mid X \to Y \mid 0$$

Terms $e ::= x \mid \langle \rangle \mid \lambda x : X . e \mid ee' \mid aborte$
Values $v ::= \langle \rangle \mid \lambda x : X . e$

$$\frac{X : X \in \Gamma}{\Gamma \vdash x : X} \vdash \text{HYP}$$

$$\frac{\Gamma \vdash e : Y}{\Gamma \vdash \lambda x : X . e : X \to Y} \to \text{E}$$

$$\frac{\Gamma \vdash e : 0}{\Gamma \vdash aborte : Z} \lor \text{DE}$$

Reductions

$$\frac{e \rightsquigarrow e'}{\text{abort } e \rightsquigarrow \text{abort } e'}$$

$$\frac{e_1 \sim e_1'}{e_1 e_2 \sim e_1' e_2} \qquad \frac{e_2 \sim e_2'}{v_1 e_2 \sim v_1 e_2'}$$

$$\overline{(\lambda x : X. e) v \sim [v/x]e}$$

Theorem (Determinacy): If $e \leadsto e'$ and $e \leadsto e''$ then e' = e''

Proof: By structural induction on $e \sim e'$

Why Can't We Prove Termination

- We can't prove termination by structural induction
- Problem is that knowing a term evaluates to a function doesn't tell us that applying the function terminates
- \cdot We need to assume something stronger

A Logical Relation

- 1. We say that \underline{e} halts if and only if there is a v such that $e \sim^* v$.
- 2. Now, we will define a type-indexed family of set of terms:
 - Halt₀ = \emptyset (i.e, for all $e, e \notin Halt_0$)
 - $e \in Halt_1$ holds just when e halts.
 - $e \in Halt_{X \to Y}$ holds just when
 - 1. e halts
 - 2. For all e', if $e' \in Halt_X$ then $(e \ e') \in Halt_Y$.
- 3. Hereditary definition:
 - Halt₁ halts
 - Halt $_{1\rightarrow 1}$ preserves the property of halting
 - Halt $_{(1\to 1)\to (1\to 1)}$ preserves the property of preserving the property of halting...

The Goal

Imagine we can prove:

Conjecture: If $\cdot \vdash e : X$, then $e \in Halt_X$.

Then we know that every closed program terminates! But to prove this, we need to first establish a lemma or two.

Closure Lemma, 1/5

Lemma: If $e \leadsto e'$ then $e' \in \text{Halt}_X$ iff $e \in \text{Halt}_X$.

Proof: By induction on *X*:

(1)
$$e \leadsto e'$$
 Assumption
(2) $e' \in Halt_1$ Assumption
• Case $X = 1, \Rightarrow$: (3) $e' \leadsto^* v$ Definition of $Halt_1$
(4) $e \leadsto^* v$ Def. of transitive closure, (1) and (3)
(5) $e \in Halt_1$ Definition of $Halt_1$

Closure Lemma, 2/5

$$(1) \quad e \leadsto e' \qquad \qquad \text{Assumption} \\ (2) \quad e \in \text{Halt}_1 \qquad \qquad \text{Assumption} \\ (3) \quad e \leadsto^* v \qquad \qquad \text{Definition of Halt}_1 \\ (4) \quad e \text{ is not a value:} \qquad \qquad \text{Since } e \leadsto e' \\ (5) \quad e \leadsto e'' \text{ and } e'' \leadsto^* v \qquad \text{Definition of } e \leadsto^* v \\ (6) \quad e'' = e' \qquad \qquad \text{By determinacy on (1), (5)} \\ (7) \quad e' \leadsto^* v \qquad \qquad \text{By equality (6) on (5)} \\ (8) \quad e' \in \text{Halt}_1 \qquad \qquad \text{Definition of Halt}_1$$

Closure Lemma, 3/5

```
• Case X = Y \rightarrow Z. \Rightarrow:
    (1) e \sim e'
                                             Assumption
    (2) e' \in Halt_{V \rightarrow Z}
                                             Assumption
    (3) e' \sim^* v
                                              Def. of Haltv_z
    (4) \forall t \in \text{Halt}_{Y}, e' t \in \text{Halt}_{Z}
                                              Transitive closure. (1) and (3)
    (5) e \sim^* v
           Assume t \in Halt_{\vee}:
    (6) et \sim e't
                                              By congruence rule on (1)
    (7) e' t \in Halt_7
                                              By (4)
              e t \in Halt_7
                                              By induction on (6), (7)
    (8) \forall t \in \text{Halt}_{V}, e \ t \in \text{Halt}_{Z}
    (9) e \in Halt_{Y \to Z}
                                              Def of Halt<sub>Y\rightarrow 7</sub> on (5), (8)
```

Closure Lemma, 4/5

```
• Case X = Y \rightarrow Z. \Leftarrow:
   (1) e \sim e'
                                           Assumption
   (2) e \in Halt_{Y \to Z}
                                           Assumption
   (3) e \sim^* v
                                           Def. of Haltv_7
   (4) \forall t \in \text{Halt}_Y, e \ t \in \text{Halt}_Z
                                           Since (1)
            e is not a value
   (5)
            e \sim e'' and e'' \sim^* v
                                           Definition of e \sim^* v
   (6)
           e''=e'
                                           By determinacy on (1), (5)
            Assume t \in Halt_{\vee}:
   (7)
           e t \sim e' t
                                           By congruence rule on (1)
   (8)
              e t \in Halt_7
                                           By (4)
                                           By induction on (6), (7)
               e' t \in Halt_7
   (9)
           \forall t \in Halt_Y, e' t \in Halt_Z
   (10)
           e' \in Halt_{V \rightarrow 7}
                                           Def of Halt_{\vee} on (5). (8)
```

Closure Lemma, 5/5

- Case X = 0, \Rightarrow :
 - (1) $e \sim e'$ Assumption
 - (2) $e' \in Halt_0$ Assumption
 - (3) $e' \in \emptyset$ Definition of Halt₀
 - (4) Contradiction!
- Case X = 0, \Leftarrow :
 - (1) $e \sim e'$ Assumption
 - (2) $e \in Halt_0$ Assumption
 - (3) $e \in \emptyset$ Definition of Halt₀
 - (4) Contradiction!

The Fundamental Lemma

Lemma:

If we have that:

- $x_1 : X_1, ..., x_n : X_n \vdash e : Z$, and
- for $i \in \{1 \dots n\}$, $v_i \in Halt_{X_i}$

then $[v_1/x_1, \dots, v_n/x_n]e \in Halt_Z$

Proof:

By structural induction on $x_1: X_1, \ldots, x_n: X_n \vdash e: Z!$

The Fundamental Lemma, 1/5

· Case Hyp:

$$(1) \quad \frac{x_j : X_j \in \overline{X_i : X_i}}{\overline{x_i : X_i} \vdash x_j : X_j} \text{ HYP}$$

$$(2) \quad [\overline{v_i/x_i}]x_j = v_j \qquad \text{ Def. of substitution}$$

$$(3) \quad v_j \in \text{Halt}_{X_j} \qquad \text{ Assumption}$$

$$(4) \quad [\overline{v_i/x_i}]x_j \in \text{Halt}_{X_j} \qquad \text{ Equality (2) on (3)}$$

The Fundamental Lemma, 2/5

· Case 1I:

(1)
$$\overrightarrow{x_i : X_i \vdash \langle \rangle} : 1$$
 Assumption

(2)
$$[\overrightarrow{v_i/x_i}]\langle\rangle=\langle\rangle$$
 Def. of substitution

(3)
$$\langle \rangle \sim^* \langle \rangle$$
 Def. of transitive closure

$$(4) \quad \langle \rangle \in Halt_1 \qquad \qquad Def. \ of \ Halt_1$$

(5)
$$[\overrightarrow{v_i/x_i}]\langle\rangle\in Halt_1$$
 Equality (2) on (4)

The Fundamental Lemma, 3a/5

• Case \rightarrow I:

$$(1) \quad \frac{\overrightarrow{x_i}:\overrightarrow{X_i},y:Y\vdash e:Z}{\overrightarrow{x_i}:\overrightarrow{X_i}\vdash \lambda y:Y.e:Y\to Z} \to I$$

$$(2) \quad \overrightarrow{x_i}:\overrightarrow{X_i},y:Y\vdash e:Z$$

$$(3) \quad [\overrightarrow{v_i/x_i}](\lambda y:Y.e) = \lambda y:Y.[\overrightarrow{v_i/x_i}]e$$

$$(4) \quad \lambda y:Y.[\overrightarrow{v_i/x_i}]e \rightsquigarrow^* \lambda y:Y.[\overrightarrow{v_i/x_i}]e$$
Def of closure (first goal)

The Fundamental Lemma, 3b/5

Case \rightarrow I:

```
WTS \lambda v : Y. [\overrightarrow{v_i/x_i}]e \in Halt_{Y \rightarrow 7}
(5)
                   Assume t \in Halt_{\vee}:
(6)
                                t \sim^* V_V
                                                                                                                                                            Def of Halty
(7)
                                v_v \in Halt_Y
                                                                                                                                                            Closure on (6)
                 (\lambda y : Y. [\overrightarrow{v_i/x_i}]e) \ t \rightsquigarrow^* (\lambda y : Y. [\overrightarrow{v_i/x_i}]e) \ v_y
(\lambda y : Y. [\overrightarrow{v_i/x_i}]e) \ v_y \rightsquigarrow [\overrightarrow{v_i/x_i}, v_y/y]e
[\overrightarrow{v_i/x_i}, v_y/y]e \in \mathsf{Halt}_Z
(\lambda y : Y. [\overrightarrow{v_i/x_i}]e) \ t \in \mathsf{Halt}_Z
\forall t \in \mathsf{Halt}_Y, (\lambda y : Y. [\overrightarrow{v_i/x_i}]e) \ t \in \mathsf{Halt}_Z
(8)
                                                                                                                                                           Congruence on (6)
(9)
                                                                                                                                                            Reduction rule
(10)
                                                                                                                                                            Induction
(11)
                                                                                                                                                            Closure
(12)
                                                                                                                                                            (Second goal)
```

The Fundamental Lemma, 3c/5

Case \rightarrow I:

(4)
$$\lambda y : Y. [\overrightarrow{v_i/x_i}]e \rightsquigarrow^* \lambda y : Y. [\overrightarrow{v_i/x_i}]e$$
 First goal
(12) $\forall t \in \text{Halt}_Y, (\lambda y : Y. [\overrightarrow{v_i/x_i}]e) \ t \in \text{Halt}_Z$ Second goal
(13) $(\lambda y : Y. [\overrightarrow{v_i/x_i}]e) \in \text{Halt}_{Y \to Z}$ Def. of $\text{Halt}_{Y \to Z}$

The Fundamental Lemma, 4/5

• Case \rightarrow E:

The Fundamental Lemma, 5/5

· Case 0E:

$$\frac{\overrightarrow{x_i}: \overrightarrow{X_i} \vdash e: 0}{\overrightarrow{x_i}: \overrightarrow{X_i} \vdash abort e: Z} \text{ 0E}$$
(2)
$$\overline{x_i}: \overrightarrow{X_i} \vdash e: 0$$
Subderivation
(3)
$$[\overrightarrow{v_i/x_i}]e \in \text{Halt}_0$$
Induction
(4)
$$[\overrightarrow{v_i/x_i}]e \in \emptyset$$
Def of Halt₀
(5) Contradiction!

Consistency

Theorem: There are no terms $\cdot \vdash e : 0$.

Proof:

- (1) $\cdot \vdash e : 0$ Assumption
- (2) $e \in Halt_0$ Fundamental lemma
- (3) $e \in \emptyset$ Definition of Halt₀
- (4) Contradiction!

Conclusions

- Consistency and termination are very closely linked
- We have proved that the simply-typed lambda calculus is a <u>total</u> programming language
- Since every closed program reduces to a value, and there are no values of empty type, there are no programs of empty type
- · We seem to have circumvented the Halting Theorem?
- · No: we do not accept <u>all</u> terminating programs!

Exercises

- 1. Extend the logical relation to support products
- 2. (Harder) Extend the logical relation to support sum types