Type Systems

Lecture 3: Consistency and Termination

Neel Krishnaswami
University of Cambridge

From Type Safety to Stronger Properties

- In the last lecture, we saw how evaluation corresponded to proof
normalization
- This was an act of knowledge transfer from computation to logic

- Are there any transfers we can make in the other direction?

Logical Consistency

- An important property of any logic is consistency: there are no proofs of 1!
- Otherwise, the LE rule will let us prove anything.
- What does this look like in a programming language?

Types and Values

Types X == 1| XxXY |0 | X+Y | X=Y
Values v == () | (v,v) | Ax:A.e | Lv | Rv

- There are no values of type 0
- l.e,, no normal forms of type 0

- But what about non-normal forms?

What Type Safety Does, and Doesn’t Show

- We have proved type safety:
- Progress: If - = e : Xthen eis avalue ore~ e’
- Type preservation If - e : Xand e~ e’ then - - €&’ : X.

- If there were a closed term of type 0, then progress means it must always
step (since there are no values of type 0)

- But the term it would step to also has type 0 (by preservation)

- So any closed term of type 0 must loop - it must step forever.

A Naive Proof that Does Not Work

Theorem: If - - e : X then there is a value v such that e ~* v.
“Proof”: By structural induction on - e : X
2) (3)
— e N
FlrMe: X—Y ree: X

(1) M-ee':vy Assumption
(4) e~*v Induction on (2)
(5) e ~*V Induction on (3)
(6) -Fv:X—>Y Preservation on (2), (4)
(7) -V :X Preservation on (3), (5)
(8) Fv=XM:Xe': XY Canonical forms on (6)
(9) x:Xke':y Subderivation
(10) -F[V/x]e":Y Substitution
—_— 5

Can’t do induction on this!

A Minimal Typed Lambda Calculus

Types X == 1| X—=Y |0
Terms e == x| () | Mx:X.e | ee | aborte
Values v == () | M:X.e
X:Xel
—— Hyp — 1l
MNex:X ()1
NXkFe:Y N-e: X—=Y r-e:x
— —E
F=Xx:Xe: X—=Y F-ee:Y
N-e:0
0E

[+ aborte: 7

e~ e

aborte ~ aborte’

e~ €] e~ e

€16y ~ eﬁ e, Vi €y ~ Vg 6/2

(M X.e)v~ [v/X]e

Theorem (Determinacy): If e~ ¢’ and e ~ ¢€” then e’ = ¢”

Proof: By structural induction on e ~ €’

Why Can’t We Prove Termination

- We can't prove termination by structural induction
- Problem is that knowing a term evaluates to a function
doesn’t tell us that applying the function terminates

- We need to assume something stronger

A Logical Relation

1. We say that e halts if and only if there is a v such that e ~* v.
2. Now, we will define a type-indexed family of set of terms:

- Halty = 0 (i.e, for all e, e & Haltg)
- e € Halty holds just when e halts.
- e € Halty_,y holds just when
1. e halts
2. Forall ¢, if e € Halty then (e €’) € Halty.

3. Hereditary definition:

- Halty halts
- Halty_,; preserves the property of halting
* Halt(1) (11) Preserves the property of preserving the property of halting...

The Goal

Imagine we can prove:
Conjecture: If - - e : X, then e € Halty.

Then we know that every closed program terminates! But to prove this, we need
to first establish a lemma or two.

10

Closure Lemma, 1/5

Lemma: If e ~ €' then e’ € Halty iff e € Halty.

Proof: By induction on X:

(1) e~ ¢ Assumption
(2) € eHalt;y Assumption
- CaseX=1=: (3) e ~*v Definition of Halty
(4) e~*v Def. of transitive closure, (1) and (3)
(5) eeHalty Definition of Halt,

1

Closure Lemma, 2/5

(1) e~ ¢ Assumption

(2) eeHaly Assumption

(3) e~*v Definition of Halt
e (4) eisnota value: Since e ~ ¢

' (5) e~ e”ande” ~*v Definition of e ~* v

(6) e =¢ By determinacy on (1), (5)

(7) e ~*v By equality (6) on (5)

(8) ¢ e Halty Definition of Halt;

12

Closure Lemma, 3/5

cCase X =Y — 7, =

(1

e~ e
e’ € Halty_,;
el ~*y
YVt € Halty, €' t € Halt;
e~*v
Assume t € Halty:
et~e't
e’ t e Halty
etec Halty
Vt € Halty, e t € Halty
e c Halty_>z

Assumption
Assumption
Def. of Halty_,;

”

Transitive closure, (1) and (3)

By congruence rule on (1)
By (4)
By induction on (6), (7)

Def of Halty_,> on (5), (8)

13

Closure Lemma, 4/5

cCase X =Y — 27, <
(1 e~ e

)
(2) e eHalty,;
(3) e~*v
(4) Vt e Halty, et € Halty
e is not a value
(5) e~ e”ande’ ~*v

(6) e"=¢
Assume t € Halty:
(7) et~ et
(8) et e Halt;
e’ t € Halty
(9) VteHalty, et € Halt;
(10) = Halty_>z

Assumption

Assumption

Def. of Halty_,;

Since (1)

Definition of e ~* v

By determinacy on (1), (5)

By congruence rule on (1)
By (4)
By induction on (6), (7)

Def of Halty_,z on (5), (8)

Closure Lemma, 5/5

- Case X =0, =

(1) e~ ¢ Assumption

(2) € e Halty Assumption

(3) e Definition of Haltg
(4) Contradiction!

- Case X =0, «:
(1) e~é Assumption
(2) e e Halt Assumption
(3) eco Definition of Haltg
(4) Contradiction!

15

The Fundamental Lemma

Lemma:

If we have that:

© X1:X1,..., Xy Xp Fe:Z and
- forie {1...n}, v; € Halty,

then [vi/x1,...,vn/Xple € Halty

Proof:

By structural induction on xq : Xy, ..., Xp : Xn F e : 7!

The Fundamental Lemma, 1/5

- Case Hyp:
inXjEX,‘ZX,‘ ’
YP

(1) X : ii F X}' : Xj Assumption

— L
(2) [vi/xilx = Def. of substitution
(3) ve Halty, Assumption

—> .
(4) [vi/xilx; e Halty, Equality (2) on (3)

The Fundamental Lemma, 2/5

- Case 1l
(1) x:XF(: ! Assumption
(2) [i/x]0=(Def of substitution
(3)) ~* () Def. of transitive closure
(4) () € Halty Def. of Halty
(5) [v/xX]() € Halt, Equality (2) on (4)

The Fundamental Lemma, 3a/5

- Case —l:
X,-:X;,y:Yl—e:Z |
%
(1) xi:XikX:Ye:YoZ Assumption
(2) x:X,y:YkFe:Z Subderivation of (1)

(3) [vi/x]J(\y:Y.e)=Ay:Y.[vj/x]e Defof substitution
— —
(4) Ay:Y.[vi/xjle~* Ay :Y.[vi/x]le Def of closure (first goal)

The Fundamental Lemma, 3b/5

Case —l:

=
WTS Ay @Y. [v,»/x,]e € Halty_,z

(5) Assumet € Halty:
(6) t~~* vy, Def of Halty
(7) vy € Halty Closure on (6)
- -
(8) (A : Y. [vi/xi]e) t~* (A\y: Y.[vi/x]e) v, Congruence on (6)
— — .
(9) (v : Y. [vi/xi]e) vy ~ [vi/xi,vy/y]e Reduction rule
—
(10) [vi/Xi, vy/y]e € Halt; Induction
—
(11) (Ay : Y.[vi/xile) t € Halty Closure
e
(12) vVt e Halty, (\y: Y.[v;/x]e) t € Haltz (Second goal)

20

The Fundamental Lemma, 3¢/5

Case —l:

— — :
(4) Ay:Y.|vi/x]e~* Ay :Y.|vi/x]e First goal
e
(12) Vte Halty, (\y: Y.[vj/x]e) t € Halt; Second goal
(13) (A\y:Y.[vi/x]e) € Halty_.z Def. of Halty_,

21

The Fundamental Lemma, 4/5

- Case —E:
X,'ZX,’"QZY%Z X,‘ZR,"‘Q’ZY
—E)

(1) Xi:Xitee:Z Assumption
(2) xi:Xre:Y—>2Z Subderivation
(3) xi:Xke:y Subderivation

—> .
(4) [vi/xi]e € Halty_,z Induction

—

(5) Vt e Halty,[vi/xjet € Halt; Def of Halty_,7
(6) [vi/xi]e’ € Halty Induction
(7) ([m]e) ([m]e’) € Halt; Instantiate (5) w/ (6)

— o
(8) [vi/xi](e €') € Halt; Def. of substitution

22

The Fundamental Lemma, 5/5

- Case OE:
X,‘ZX,‘"QZO

OE
(1) x:X +aborte:Z Assumption

(2) x:XiFe:0 Subderivation
—> .

(3) [vi/xj]e € Haltg Induction
—

(4) [vi/x]ee® Def of Haltg
(5) Contradiction!

23

Theorem: There are no terms - - e: 0.

Proof:
(1) -Fe:0 Assumption
(2) e e Halt Fundamental lemma
(3) e Definition of Haltg
(4) Contradiction!

24

Conclusions

- Consistency and termination are very closely linked

- We have proved that the simply-typed lambda calculus is a total
programming language

- Since every closed program reduces to a value, and there are no values of
empty type, there are no programs of empty type

- We seem to have circumvented the Halting Theorem?

- No: we do not accept all terminating programs!

25

Exercises

1. Extend the logical relation to support products

2. (Harder) Extend the logical relation to support sum types

26

