Type Systems

Lecture 1

Neel Krishnaswami
University of Cambridge

Type Systems for Programming Languages

- Type systems lead a double life
- They are an essential part of modern programming languages
- They are a fundamental concept from logic and proof theory

- As a result, they form the most important channel for connecting theoretical
computer science to practical programming language design.

What are type systems used for?

- Error detection via type checking

- Support for structuring large (or even medium) sized programs
- Documentation

- Efficiency

- Safety

A Language of Booleans and Integers

Terms e == true | false | n | e<e | e+e | ene | —e
Some terms make sense: Some terms don't:
- 344 © 4 Atrue
c3+4<5 - 3 < true

cB+4<T)A(T<3+14) © true 47

Types for Booleans and Integers

Types 7 == bool | N
Terms e == true | false | n | e<e | e+e | ene

- How to connect term (like 3 + 4) with a type (like N)?

- Via a typing judgement e : T

- A two-place relation saying that “the term e has the type 7"
- So _: _is an infix relation symbol

- How do we define this?

Typing Rules

e:N e N
— NuM — TRUE — FALSE - PwWS
n:N true : bool false : bool e+e:N
e : bool e’ : bool e:N e N
AND - lEQ
ene :bool e < ¢ :bool

- Above the line: premises

- Below the line: conclusion

An Example Derivation Tree

——— NUM ——— Num
3:N 4: N
PLUS —— NUM

34+4:N 5:N
3+ 4 <5:bool

LEQ

Adding Variables

Types 7 == bool | N
Terms e == ... | x| letx=einé

- Example: letx=51in (x+x) <10
- But what type should x have: x : ?
- To handle this, the typing judgement must know what the variables are.

- So we change the typing judgement to be I' - e : 7, where I associates a list
of variables to their types.

Contexts ' == - | Mx:7

NUM FALSE

- — TRUE
lN=n:N I+ true : bool I - false : bool

lN-e:N r-e¢:N
lFe+ée:N

PLUS

I+ e: bool e :bool Nl-e:N e :N
AND LEQ
F'Fenée :bool M-e<ée' :bool

x:Tterl Fe:T Fx:7ke: 7
— VAR : LET
F-x:7 M-letx=eine : 7 8

Does this make sense?

- We have: a type system, associating elements from one grammar (the terms)
with elements from another grammar (the types)

- We claim that this rules out “bad” terms
- But does it really?
- To prove, we must show type safety

Prelude: Substitution

We have introduced variables into our language, so we should introduce a notion
of substitution as well

[e/X]true = true

[e/x]false = false

[e/x]n = n

[e/X](e1 + €2) = [e/xler + [e/le:
[e/X](er < e2) = [e/xer < [e/Aez
[e/x](e1 A e7) = [e/x]e1 A [e/x]ez

e whenz=x
Z whenz#x
[e/X](letz=-ejine;) = letz=[e/x]e;in [e/x]ex (%)

[e/x]|z =

(x) a-rename to ensure z does not occur in e!
10

Structural Properties and Substitution

1. (Weakening) If I, " Fe:rthenl,x: 7" "ke:T.
If a term typechecks in a context, then it will still typecheck in a bigger
context.

2. (Exchange) If [xq : 1, % : o, " Fe:rthen T, x; i 1, ., " Fe:T.
If a term typechecks in a context, then it will still typecheck after reordering
the variables in the context.

3. (Substitution) If T-e:rand M,x: 7€ : 7' thenT F [e/x]e' : 7.
Subsituting a type-correct term for a variable will preserve type correctness.

1

A Proof of Weakening

- Proof goes by structural induction
- Suppose we have a derivation tree of I, "' Fe: 7

- By case-analysing the root of the derivation tree, we construct a derivation
tree of I,x: 7”7, e : 7, assuming inductively that the theorem works on
subtrees.

12

Proving Weakening, 1/4

——— NUM
rr=n:N By assumption

NUM
Mx:7"."Fn:N By rule Num

- Similarly for TRUE and FALSE rules

13

Proving Weakening, 2/4

Mre;:N TI,"te:N

PLUS
LMFe+e:N By assumption
r"keFe :N Subderivation 1
rM"kFe:N Subderivation 2
Mx:7 IMke:N Induction on subderivation 1
Mx:7 IMke:N Induction on subderivation 2
Mx:7 IMkFe+e:N By rule PLUS

- Similarly for LEQ and AND rules

Proving Weakening, 3/4

M e :m rr'z:mke:n

LET

F,F’Fletz:a in €)M

M ber:m
r,r/,Z:ﬂFezZTz
r,XZT//,r/f—éw R

Extended context
——
rox:7, rMz:m Fey:m
Fx:7" M"Fletz=ejine;: n

By assumption

Subderivation 1
Subderivation 2
Induction on subderivation 1

Induction on subderivation 2
By rule LET

15

Proving Weakening, 4/4

z:tefl I

— VAR .

Likz:r By assumption
z:Tel,l’ By assumption

z:7tel,x:7",T" Anelement of a listis also in a bigger list
Mx:7".,I"Fz:7 Byrule VAR

Proving Exchange, 1/4

NUM .
X1 :7m,% 7, "Fn:N By assumption

NuM
Mxy:m,x1:m, " =n:N By rule Num

- Similarly for TRUE and FALSE rules

Proving Exchange, 2/4

r,X1:7'1,X2:7'2,r,}—€1:N r,Xqiﬂ,Xz:Tz,r,'—ez:N

PLUS
X1 :m, % Tz,rl Fei+e:N
By assumption
X :1,% :m,"Fe: N Subderivation 1
Mx:m,%:m,"Fey ' N Subderivation 2
X2 :m,X :7,,"Fe: N Induction on subderivation 1
X :m,X:m,,I"ey: N Induction on subderivation 2

[, X0 0T, X1 7'1,,r/ e +e:N Byrule PLus

- Similarly for LEQ and AND rules 18

Proving Exchange, 3/4

C,x1:m,% m, e 1

Cx1:m,% m,z:7 ey 1"

I_vX'\
I_vXW

r7X2

r7X2
r7X2

ST, X2

P T2, X1

1T, Xq
1T, Xq

F,F’I—letz:eq in QQZT”

ST, X

e 7

Mzt ey "

s, e 7

Extended context

/
i T, rz:mn Fey: 7"
s, letz=ejine; : 7"

LET)
By assumption

Subderivation 1
Subderivation 2

Induction on s.d. 1

Induction on s.d. 2
By rule LET

Proving Exchange, 4/4

z:Tel,Xx1:m, X Tz,r,

VAR _
rez:r By assumption

z:tel,xy:m,%x:m, " Byassumption
z:tel,x:m,x:m, " Anelement of alistis

also in a permutation of the list
M X :7m,X :m,["+2z:7 Byrule VAR

20

A Proof of Substitution

- Proof also goes by structural induction
- Suppose we have derivationtreesT~e:7andMx:7F¢e' : 7.

- By case-analysing the root of the derivation tree of I, x: 7 ¢’ : 7/, we
construct a derivation tree of I' - [e/x]e’ : 7/, assuming inductively that
substitution works on subtrees.

21

Substitution 1/4

————————— Num ,
Mx:7FHn:N By assumption
MM-e:r By assumption
F=n:N By rule Num
Me=le/xjn: N Def. of substitution

- Similarly for TRUE and FALSE rules

22

Proving Substitution, 2/4

Nx:7Fe: N Mx:7Fe:N

Mx:7Tke +e:N By assumption: (1)
lke:r By assumption: (2)
Mx:7hFe N Subderivation of (1); (3)
Mx:7Fe: N Subderivation of (1): (4)
[+~ [e/xler: N Induction on (2), (3): (5)
[+ [e/x]es: N Induction on (2), (4): (6)
[+ [e/x]er + [e/x]es : N By rule PLus on (5), (6)
M- le/x](e1+e2): N Def. of substitution

- Similarly for LEq and AND rules %

Proving Substitution, 3/4

Fx:Tthke 7 Frx:1,z:7Fe:n

LET

F,x:rl—letz:eqinezzn

Mle:r

Mx:the:7
Mx:r,z:7"kFey:n
Ile/xler: 7

rz:7kre:r
rz:7',x:7the:n

F,z 1 [e/x]ez)
Itletz=[e/x]eiin [e/x]es: T
M=le/X|(letz=ejiney):n

By assumption: (1)

By assumption: (2)

Subderivation of (1): (3)

Subderivation of (1) (4)

Induction on (2) and (3): (4)

Weakening on (2): (5)

Exchange on (4): (6)

Induction on (5) and (6): (7)

By rule LET on (6), (7)

By def. of substitution 2

Proving Substitution, 4a/4

z:7elx:7
———— VAR _
rx:tkz:7 By assumption

lFe:r By assumption

Case x =z
Fele/x]x:r By def. of substitution

25

Proving Substitution, 4b/4

z:7elx:7

——————— VAR .

Mx:rthkz:7 By assumption

lFe:r By assumption

Case x # z:

z:7erl sincex#zandz: 7 elx:7
rz:7+z:7 By rule VAR

M,z:7' Fle/xjz: 7" By def of substitution

26

Operational Semantics

- We have a language and type system

- We have a proof of substitution

- How do we say what value a program computes?
- With an operational semantics

- Define a grammar of values

- Define a two-place relation on terms e ~ ¢’

- Pronounced as “e steps to e’”

27

An operational semantics

Values v == n | true | false

/
€1~ €1
7 ANDCONG —— ANDTRUE
81/\82’\281/\92 truene~e

ANDFALSE

false A e ~ false
(similar rules for < and +)

e~ @
: T LETCONG : LETSTEP
letz=ejine,~ letz=-¢e7ine; letz=vine;~ [v/Z]e;

28

Reduction Sequences

- A reduction sequence is a sequence of transitions eg ~ e, €1~ e, ...,
en7’| o en.

- Aterm eis stuck if it is not a value, and there is no € such that e ~ ¢’

Successful sequence Stuck sequence
34+4)< (243
()=) B+4)AQ2+3)
~ 7<(2+43)
e E ~ TAN(243)
o= ~ M
~ false

Stuck terms are erroneous programs with no defined behaviour.

29

Type Safety

A program is safe if it never gets stuck.

1. (Progress) If - - e : 7 then either e is a value, or there exists e’ such that
e~ e
2. (Preservation) If -+ e:7and e~ € then -+ ¢e' : 7.

- Progress means that well-typed programs are not stuck: they can always take
a step of progress (or are done).

- Preservation means that if a well-typed program takes a step, it will stay
well-typed.

- So a well-typed term won't reduce to a stuck term: the final term will be
well-typed (due to preservation), and well-typed terms are never stuck (due
to progress).

30

Proving Progress

(Progress) If - - e : 7 then either e is a value, or there exists e’ such that e ~» ¢’

- To show this, we do structural induction on the derivation of - e : 7.

- For each typing rule, we show that either e is a value, or can step.

31

Progress: Values

—— Num .
-Fn:N By assumption

nis avalue Def. of value grammar

Similarly for boolean literals...

32

Progress: Let-bindings

ke T X:Thkey: 7

LET
Fletx=ejine : 7 By assumption: (1)
ke T Subderivation of (1): (2)
X:They: 7 Subderivation of (1): (3)
e, ~ e} or eq value Induction on (2)

Case ey~ € :

letx=ejine,~ letx=ejine, By rule LETCONG
Case eq value:

let x = e in e; ~ [e1/X]e; By rule LETSTEP

33

Type Preservation

(Preservation) If -Fe:7and e~ e’ then-+¢é' : 7.

1. We will use structural induction again, but on which derivation?
2. Two choices: (1) -Fe:7and (2) e~ ¢
3. The right choice is induction on e ~ €

4. We will still need to deconstruct - - e : 7 alongside it!

34

Type Preservation: Let Bindings 1

e~ @

letx=ejine;,~ letx=¢€}in e,
1

ke T xX:thFe 1

Fletx=ejine : 7

e~ e

ke T
X:The 7
FeiT
‘Fletx=ejine : 7

By assumption: (1)

By assumption: (2)

Subderivation of (1): (3)
Subderivation of (2): (4)
Subderivation of (2): (5)
Induction on (3), (4): (6)

Rule LET on (6), &4)

35

Type Preservation: Let Bindings 2

let x =vq in e; ~ [vi/X]e;

/

FviT X:ThHe T

Fletx=wviine : 7

EvioT
X:They: 7

-F [V1/X]€2 i

By assumption: (1)

By assumption: (2)

Subderivation of (2): (3)
Subderivation of (2): (&)

Substitution on (3), (&)

36

Conclusion

Given a language of program terms and a language of types:

- A type system ascribes types to terms

- An operational semantics describes how terms evaluate

- A type safety proof connects the type system and the operational semantics
- Proofs are intricate, but not difficult

37

Exercises

1. Give cases of the operational semantics for < and +.
2. Extend the progress proof to cover e A €.

3. Extend the preservation proof to cover e A €.

(This should mostly be review of IB Semantics of Programming Languages.)

38

