Type Systems

Lecture 1

Neel Krishnaswami University of Cambridge

Type Systems for Programming Languages

- Type systems lead a double life
- They are an essential part of modern programming languages
- · They are a fundamental concept from logic and proof theory
- As a result, they form the most important channel for connecting theoretical computer science to practical programming language design.

What are type systems used for?

- · Error detection via type checking
- · Support for structuring large (or even medium) sized programs
- Documentation
- Efficiency
- Safety

A Language of Booleans and Integers

Terms
$$e$$
 ::= true | false | n | $e \le e$ | $e + e$ | $e \land e$ | $\neg e$

Some terms make sense:

•
$$3+4 \le 5$$

•
$$(3+4 \le 7) \land (7 \le 3+4)$$

Some terms don't:

- 4∧true
- 3 ≤ true
- true +7

Types for Booleans and Integers

```
Types 	au ::= bool | \mathbb N Terms e ::= true | false | n | e \le e | e+e | e \wedge e
```

- How to connect term (like 3 + 4) with a type (like \mathbb{N})?
- Via a typing judgement e: au
- \cdot A two-place relation saying that "the term e has the type au"
- So _ : _ is an infix relation symbol
- · How do we define this?

Typing Rules

$$\frac{n:\mathbb{N}}{n:\mathbb{N}} \text{ Num} \qquad \frac{1}{\text{true: bool}} \text{ TRUE} \qquad \frac{1}{\text{false: bool}} \text{ FALSE} \qquad \frac{e:\mathbb{N} \qquad e':\mathbb{N}}{e+e':\mathbb{N}} \text{ PLUS}$$

$$\frac{e:\text{bool} \qquad e':\text{bool}}{e \wedge e':\text{bool}} \text{ AND} \qquad \frac{e:\mathbb{N} \qquad e':\mathbb{N}}{e \leq e':\text{bool}} \text{ LEQ}$$

- · Above the line: premises
- · Below the line: conclusion

5

An Example Derivation Tree

Adding Variables

```
Types \tau ::= bool | \mathbb{N}
Terms e ::= ... | x | let x = e in e'
```

- Example: let x = 5 in $(x + x) \le 10$
- But what type should x have: x : ?
- To handle this, the typing judgement must know what the variables are.
- So we change the typing judgement to be $\Gamma \vdash e : \tau$, where Γ associates a list of variables to their types.

Contexts

Does this make sense?

- We have: a type system, associating elements from one grammar (the terms) with elements from another grammar (the types)
- · We claim that this rules out "bad" terms
- But does it really?
- To prove, we must show type safety

Prelude: Substitution

We have introduced variables into our language, so we should introduce a notion of substitution as well

```
[e/x]true
                               = true
[e/x]false
                               = false
[e/x]n
[e/x](e_1 + e_2) = [e/x]e_1 + [e/x]e_2
[e/x](e_1 < e_2) = [e/x]e_1 < [e/x]e_2
[e/x](e_1 \wedge e_2) = [e/x]e_1 \wedge [e/x]e_2
                              = \begin{cases} e & \text{when } z = x \\ z & \text{when } z \neq x \end{cases}
[e/x]z
[e/x](\text{let }z = e_1 \text{ in } e_2) = \text{let }z = [e/x]e_1 \text{ in } [e/x]e_2 \ (*)
```

(*) α -rename to ensure z does not occur in e!

Structural Properties and Substitution

- 1. (Weakening) If $\Gamma, \Gamma' \vdash e : \tau$ then $\Gamma, x : \tau'', \Gamma' \vdash e : \tau$. If a term typechecks in a context, then it will still typecheck in a bigger context.
- 2. (Exchange) If $\Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma' \vdash e : \tau$ then $\Gamma, x_2 : \tau_2, x_1 : \tau_1, \Gamma' \vdash e : \tau$. If a term typechecks in a context, then it will still typecheck after reordering the variables in the context.
- 3. (Substitution) If $\Gamma \vdash e : \tau$ and $\Gamma, x : \tau \vdash e' : \tau'$ then $\Gamma \vdash [e/x]e' : \tau'$. Substituting a type-correct term for a variable will preserve type correctness.

A Proof of Weakening

- Proof goes by structural induction
- Suppose we have a derivation tree of Γ , $\Gamma' \vdash e : \tau$
- By case-analysing the root of the derivation tree, we construct a derivation tree of $\Gamma, x : \tau'', \Gamma' \vdash e : \tau$, assuming inductively that the theorem works on subtrees.

Proving Weakening, 1/4

$$\frac{}{\Gamma,\Gamma'\vdash n:\mathbb{N}} \overset{\mathsf{NUM}}{\longrightarrow} \\ \frac{}{\Gamma,x:\tau'',\Gamma'\vdash n:\mathbb{N}} \overset{\mathsf{NUM}}{\longrightarrow} \\ \mathsf{By rule Num}$$

Similarly for TRUE and FALSE rules

Proving Weakening, 2/4

$$\frac{\Gamma, \Gamma' \vdash e_1 : \mathbb{N} \qquad \Gamma, \Gamma' \vdash e_2 : \mathbb{N}}{\Gamma, \Gamma' \vdash e_1 + e_2 : \mathbb{N}} \text{ PLUS}$$

$$\Gamma, \Gamma' \vdash e_1 : \mathbb{N}$$

$$\Gamma, \Gamma' \vdash e_2 : \mathbb{N}$$

$$\Gamma, X : \tau'', \Gamma' \vdash e_1 : \mathbb{N}$$

By assumption

Subderivation 1
Subderivation 2
Induction on subderivation 1
Induction on subderivation 2
By rule PLUS

· Similarly for LEQ and AND rules

 $\Gamma. X : \tau''. \Gamma' \vdash e_1 + e_2 : \mathbb{N}$

 $\Gamma, X : \tau'', \Gamma' \vdash e_2 : \mathbb{N}$

Proving Weakening, 3/4

$$\frac{\Gamma, \Gamma' \vdash e_1 : \tau_1 \qquad \Gamma, \Gamma', z : \tau_1 \vdash e_2 : \tau_2}{\Gamma, \Gamma' \vdash \text{let } z = e_1 \text{ in } e_2 : \tau_2} \text{ Let}$$
By assumption

$$\Gamma, \Gamma' \vdash e_1 : \tau_1$$
 Subderivation 1

 $\Gamma, \Gamma', z : \tau_1 \vdash e_2 : \tau_2$ Subderivation 2

 $\Gamma, x : \tau'', \Gamma' \vdash e_1 : \tau_1$ Induction on subderivation 1

Extended context

$$\Gamma, x : \tau'', \qquad \overbrace{\Gamma', z : \tau_1} \qquad \vdash e_2 : \tau_2 \quad \text{Induction on subderivation 2}$$

$$\Gamma, x : \tau'', \Gamma' \vdash \text{let } z = e_1 \text{ in } e_2 : \tau_2$$
 By rule Let

Proving Weakening, 4/4

$$\frac{z:\tau\in\Gamma,\Gamma'}{\Gamma,\Gamma'\vdash z:\tau}\,\mathrm{Var}$$
 By assumption

```
z: \tau \in \Gamma, \Gamma' By assumption z: \tau \in \Gamma, x: \tau'', \Gamma' An element of a list is also in a bigger list \Gamma, x: \tau'', \Gamma' \vdash z: \tau By rule VAR
```

Proving Exchange, 1/4

$$\frac{\overline{\Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma' \vdash n : \mathbb{N}}}{\overline{\Gamma, x_2 : \tau_2, x_1 : \tau_1, \Gamma' \vdash n : \mathbb{N}}} \text{ By assumption}$$

Similarly for TRUE and FALSE rules

Proving Exchange, 2/4

$$\frac{\Gamma, x_1: \tau_1, x_2: \tau_2, \Gamma' \vdash e_1: \mathbb{N} \qquad \Gamma, x_1: \tau_1, x_2: \tau_2, \Gamma' \vdash e_2: \mathbb{N}}{\Gamma, x_1: \tau_1, x_2: \tau_2, \Gamma' \vdash e_1 + e_2: \mathbb{N}} \text{ PLUS}$$
 By assumption

 $\Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma' \vdash e_1 : \mathbb{N}$ Subderivation 1 $\Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma' \vdash e_2 : \mathbb{N}$ Subderivation 2

 $\Gamma, X_2 : \tau_2, X_1 : \tau_1, , \Gamma' \vdash e_1 : \mathbb{N}$ Induction on subderivation 1 $\Gamma, X_2 : \tau_2, X_1 : \tau_1, , \Gamma' \vdash e_2 : \mathbb{N}$ Induction on subderivation 2 $\Gamma, X_2 : \tau_2, X_1 : \tau_1, , \Gamma' \vdash e_1 + e_2 : \mathbb{N}$ By rule PLUS

· Similarly for LEQ and AND rules

Proving Exchange, 3/4

$$\frac{\Gamma, x_1: \tau_1, x_2: \tau_2, \Gamma' \vdash e_1: \tau' \qquad \Gamma, x_1: \tau_1, x_2: \tau_2, \Gamma', z: \tau' \vdash e_2: \tau''}{\Gamma, \Gamma' \vdash \text{let } z = e_1 \text{ in } e_2: \tau''} \text{ LET}$$

By assumption

$$\Gamma, \mathsf{X}_1 : \tau_1, \mathsf{X}_2 : \tau_2, \Gamma' \vdash e_1 : \tau'$$

$$\Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma', z : \tau' \vdash e_2 : \tau''$$

$$\Gamma, X_2 : \tau_2, X_1 : \tau_1, \Gamma' \vdash e_1 : \tau'$$

Subderivation 1

Subderivation 2

Induction on s.d. 1

Extended context

$$\Gamma, X_2 : \tau_2, X_1 : \tau_1, \qquad \Gamma', Z : \tau_1 \qquad \vdash e_2 : \tau'' \quad \text{Induction on s.d. 2}$$

$$\Gamma, X_2 : \tau_2, X_1 : \tau_1, \Gamma' \vdash \text{let } z = e_1 \text{ in } e_2 : \tau''$$
 By rule LET

Proving Exchange, 4/4

$$\frac{z:\tau\in\Gamma, x_1:\tau_1,x_2:\tau_2,\Gamma'}{\Gamma,\Gamma'\vdash z:\tau} \text{ VAR}$$
 By assumption

```
z: 	au \in \Gamma, x_1: 	au_1, x_2: 	au_2, \Gamma' By assumption z: 	au \in \Gamma, x_2: 	au_2, x_1: 	au_1, \Gamma' An element of a list is also in a permutation of the list \Gamma, x_2: 	au_2, x_1: 	au_1, \Gamma' \vdash z: 	au By rule VAR
```

A Proof of Substitution

- Proof also goes by structural induction
- Suppose we have derivation trees $\Gamma \vdash e : \tau$ and $\Gamma, x : \tau \vdash e' : \tau'$.
- By case-analysing the root of the derivation tree of $\Gamma, x : \tau \vdash e' : \tau'$, we construct a derivation tree of $\Gamma \vdash [e/x]e' : \tau'$, assuming inductively that substitution works on subtrees.

Substitution 1/4

$$\overline{\Gamma, x : \tau \vdash n : \mathbb{N}}$$
 Num

 $\Gamma \vdash e : \tau$

By assumption By assumption

 $\Gamma \vdash n : \mathbb{N}$

 $\Gamma \vdash [e/x]n : \mathbb{N}$

By rule Num

Def. of substitution

 $\boldsymbol{\cdot}$ Similarly for True and False rules

Proving Substitution, 2/4

$$\frac{\Gamma, x : \tau \vdash e_1 : \mathbb{N} \qquad \Gamma, x : \tau \vdash e_2 : \mathbb{N}}{\Gamma, x : \tau \vdash e_1 + e_2 : \mathbb{N}}$$
By assumption: (1)
$$\Gamma \vdash e : \tau$$
By assumption: (2)
$$\Gamma, x : \tau \vdash e_1 : \mathbb{N}$$
Subderivation of (1): (3)
$$\Gamma, x : \tau \vdash e_2 : \mathbb{N}$$
Subderivation of (1): (4)
$$\Gamma \vdash [e/x]e_1 : \mathbb{N}$$
Induction on (2), (3): (5)
$$\Gamma \vdash [e/x]e_2 : \mathbb{N}$$
Induction on (2), (4): (6)
$$\Gamma \vdash [e/x]e_1 + [e/x]e_2 : \mathbb{N}$$
By rule PLUS on (5), (6)
$$\Gamma \vdash [e/x](e_1 + e_2) : \mathbb{N}$$
Def. of substitution

[·] Similarly for LEQ and AND rules

Proving Substitution, 3/4

$$\frac{\Gamma, x : \tau \vdash e_1 : \tau' \qquad \Gamma, x : \tau, z : \tau' \vdash e_2 : \tau_2}{\Gamma, x : \tau \vdash \text{let } z = e_1 \text{ in } e_2 : \tau_2} \text{ LET}$$
 By assumption: (1)

$$\Gamma \vdash e : \tau$$

$$\Gamma, x : \tau \vdash e_1 : \tau'$$

$$\Gamma, x : \tau, z : \tau' \vdash e_2 : \tau_2$$

$$\Gamma, z : \tau' \vdash e : \tau$$

$$\Gamma, z : \tau' \vdash e : \tau$$

$$\Gamma, z : \tau', x : \tau \vdash e_2 : \tau_2$$

$$\Gamma, z : \tau' \vdash e : \tau$$

$$\Gamma, z : \tau', x : \tau \vdash e_2 : \tau_2$$

$$\Gamma, z : \tau', x : \tau \vdash e_2 : \tau_2$$

$$\Gamma, z : \tau' \vdash [e/x]e_2 : \tau_2$$

$$\Gamma, z : \tau' \vdash [e/x]e_2 : \tau_2$$

$$\Gamma \vdash [e/x](let z = e_1 in e_2) : \tau_2$$
By assumption: (2)
Subderivation of (1): (3)
Subderivation of (1): (4)
Induction on (2) and (3): (4)
Figure 1 in (2): (5)
Exchange on (4): (6)
Induction on (5) and (6): (7)
$$\Gamma \vdash [e/x](let z = e_1 in e_2) : \tau_2$$
By rule LET on (6), (7)
By def. of substitution

Proving Substitution, 4a/4

$$\frac{z:\tau'\in\Gamma, x:\tau}{\Gamma, x:\tau\vdash z:\tau'} \text{ VAR}$$
 By assumption

 $\Gamma \vdash e : \tau$ By assumption

Case x = z:

 $\Gamma \vdash [e/x]x : \tau$ By def. of substitution

Proving Substitution, 4b/4

$$\begin{array}{ll} z:\tau'\in\Gamma,x:\tau\\ \hline \Gamma,x:\tau\vdash z:\tau' \end{array} \quad \text{By assumption} \\ \hline \Gamma\vdash e:\tau \qquad \qquad \text{By assumption} \\ \hline \text{Case }x\neq z:\\ z:\tau'\in\Gamma \qquad \qquad \text{since }x\neq z \text{ and }z:\tau'\in\Gamma,x:\tau\\ \hline \Gamma,z:\tau'\vdash z:\tau' \qquad \text{By rule VAR} \\ \hline \Gamma,z:\tau'\vdash [e/x]z:\tau' \qquad \text{By def. of substitution} \end{array}$$

Operational Semantics

- We have a language and type system
- We have a proof of substitution
- · How do we say what value a program computes?
- With an operational semantics
- Define a grammar of values
- Define a two-place relation on terms $e \leadsto e'$
- Pronounced as "e steps to e'"

An operational semantics

Reduction Sequences

- A reduction sequence is a sequence of transitions $e_0 \sim e_1$, $e_1 \sim e_2$, ..., $e_{n-1} \sim e_n$.
- A term e is stuck if it is not a value, and there is no e' such that $e \rightsquigarrow e'$

Successful sequence	Stuck sequence
$(3+4) \le (2+3)$	$(3+4) \wedge (2+3)$ $\sim 7 \wedge (2+3)$ $\sim ???$

Stuck terms are erroneous programs with no defined behaviour.

Type Safety

A program is *safe* if it never gets stuck.

- 1. (Progress) If $\cdot \vdash e : \tau$ then either e is a value, or there exists e' such that $e \leadsto e'$.
- 2. (Preservation) If $\cdot \vdash e : \tau$ and $e \leadsto e'$ then $\cdot \vdash e' : \tau$.
- Progress means that well-typed programs are not stuck: they can always take a step of progress (or are done).
- Preservation means that if a well-typed program takes a step, it will stay well-typed.
- So a well-typed term won't reduce to a stuck term: the final term will be well-typed (due to preservation), and well-typed terms are never stuck (due to progress).

Proving Progress

(Progress) If $\cdot \vdash e : \tau$ then either e is a value, or there exists e' such that $e \leadsto e'$.

- To show this, we do structural induction on the derivation of $\cdot \vdash e : \tau$.
- \cdot For each typing rule, we show that either e is a value, or can step.

Progress: Values

 $\overline{\cdot \vdash n : \mathbb{N}}$ NUM

By assumption

n is a value Def. of value grammar

Similarly for boolean literals...

Progress: Let-bindings

$$\begin{array}{lll} \cdot \vdash e_1 : \tau & x : \tau \vdash e_2 : \tau' \\ \hline \cdot \vdash \operatorname{let} x = e_1 \text{ in } e_2 : \tau' & \operatorname{By \ assumption:} \ (1) \\ \\ \cdot \vdash e_1 : \tau & \operatorname{Subderivation \ of} \ (1) : \ (2) \\ x : \tau \vdash e_2 : \tau' & \operatorname{Subderivation \ of} \ (1) : \ (3) \\ \\ e_1 \leadsto e_1' \text{ or } e_1 \text{ value} & \operatorname{Induction \ on} \ (2) \\ \\ \operatorname{Case} \ e_1 \leadsto e_1' : & \operatorname{let} x = e_1 \text{ in } e_2 \leadsto \operatorname{let} x = e_1' \text{ in } e_2 \\ \\ \operatorname{Case} \ e_1 \text{ value} : & \operatorname{let} x = e_1 \text{ in } e_2 \leadsto [e_1/x]e_2 \\ \\ \operatorname{By \ rule \ LetStep} & \operatorname{By \ rule \ LetStep} \\ \end{array}$$

Type Preservation

(Preservation) If $\cdot \vdash e : \tau$ and $e \leadsto e'$ then $\cdot \vdash e' : \tau$.

- 1. We will use structural induction again, but on which derivation?
- 2. Two choices: (1) $\cdot \vdash e : \tau$ and (2) $e \leadsto e'$
- 3. The right choice is induction on $e \sim e'$
- 4. We will still need to deconstruct $\cdot \vdash e : \tau$ alongside it!

Type Preservation: Let Bindings 1

$$\begin{array}{c} e_1 \leadsto e_1' \\ \hline {\rm let} \ x = e_1 \ {\rm in} \ e_2 \leadsto {\rm let} \ x = e_1' \ {\rm in} \ e_2 \\ \hline \\ \cdot \vdash e_1 : \tau \qquad x : \tau \vdash e_2 : \tau' \\ \hline \\ \cdot \vdash {\rm let} \ x = e_1 \ {\rm in} \ e_2 : \tau' \\ \hline \\ \cdot \vdash e_1 : \tau \qquad \qquad {\rm Subderivation \ of \ (1): \ (3)} \\ c_1 \leadsto e_1' : \tau \qquad \qquad {\rm Subderivation \ of \ (2): \ (4)} \\ c_1 \leadsto e_1 : \tau \qquad \qquad {\rm Subderivation \ of \ (2): \ (4)} \\ c_2 : \tau \vdash e_2 : \tau' \qquad \qquad {\rm Subderivation \ of \ (2): \ (5)} \\ c_3 \vdash e_1' : \tau \qquad \qquad {\rm Subderivation \ on \ (3), \ (4): \ (6)} \\ c_4 \vdash {\rm let} \ x = e_1' \ {\rm in} \ e_2 : \tau' \qquad \qquad {\rm Rule \ LET \ on \ (6), \ (4)} \\ \hline \end{array}$$

Type Preservation: Let Bindings 2

$\overline{\text{let } x = v_1 \text{ in } e_2 \rightsquigarrow [v_1/x]e_2}$	By assumption: (1)
$\frac{\cdot \vdash v_1 : \tau \qquad x : \tau \vdash e_2 : \tau'}{\cdot \vdash \text{let } x = v_1 \text{ in } e_2 : \tau'}$	By assumption: (2)
$\cdot \vdash V_1 : \tau$ $x : \tau \vdash e_2 : \tau'$	Subderivation of (2): (3) Subderivation of (2): (4)
$\cdot \vdash [v_1/x]e_2 : \tau'$	Substitution on (3), (4)

Conclusion

Given a language of program terms and a language of types:

- A type system ascribes types to terms
- · An operational semantics describes how terms evaluate
- · A type safety proof connects the type system and the operational semantics
- Proofs are intricate, but not difficult

Exercises

- 1. Give cases of the operational semantics for \leq and +.
- 2. Extend the progress proof to cover $e \wedge e'$.
- 3. Extend the preservation proof to cover $e \wedge e'$.

(This should mostly be review of IB Semantics of Programming Languages.)