
Software as a Service
Engineering

Richard Sharp

1

What is SaaS?

2

SaaS (Software as a Service) refers to
software that is

hosted centrally and licensed to customers on
a subscription basis.

Users access SaaS software via thin clients,
(often web browsers).

3

Traditional software distribution (pre SaaS)

4

Deploy Support/
manage

Deploy Support/
manage

Customer_1

Customer_n

Software,
and updates.
(versioned
binaries)

Build
software

Release
versioned
binaries ...

Software company

upgrade

upgrade

Traditional software distribution (pre SaaS)

Deploy Support/
manage

Deploy Support/
manage

Customer_1

Customer_n

Software,
and updates.
(versioned
binaries)

Build
software

Release
versioned
binaries ...

Software company

5

upgrade

upgrade

High Total Cost of Ownership (TCO)

Expensive duplication

Lack of specialization

SaaS

Deploy Manage/
Upgrade

Build
software

Access to centrally
managed, on-line
services

Lower TCO

Much less duplication of operating activities

Much better specialisation in this division of labour

Software company

Customer_1

6

Customer_n

Impact of SaaS on the
Software Engineering

Process

7

Impact on the software company

Deploy Support/
manage

Build
software

Software company

Build
software

Release
versioned
binaries

Software company

Binary distribution SaaS

8

upgrade

Impact on the software company

1. Continuous Deployment provides new ways to manage quality
○ ‘Software release’ no longer an all-or-nothing discrete event + real-time metrics

2. Behavioural Analytics + Experiments provide new ways to manage product
○ Continuous user/commercial insights feed back into iterative software development process

3. Use of web services and open standards allows services to be composed
○ Can build powerful functionality on top of 3rd party services very quickly

9

Continuous Deployment

10

Continuous Integration (CI):
short integration cycles lead to greater throughput

Shared
code repo

Developers commit to shared
dev ‘mainline’ branch
frequently (e.g. at least once a
day)

Build on
every

commit

Run
automated
unit tests

Immediate alerting/feedback
on fail condition

Built
artifacts

11

Continuous Deployment (CD):
bring ‘deploy’ into the ‘short cycle’

Built
artifacts

Automated
deploy to ‘test

server’
environment

Run automated
acceptance

tests

Continuous Integration

...

Immediate alerting/feedback
on fail condition

Automated
deploy to

production (‘live
servers’)

Production monitoring / alerting
provides immediate feedback; but
now failures are visible to customers...

12

Built
artifacts

Automated
deploy to ‘test

server’
environment

Run automated
acceptance

tests

Continuous Integration

...

Immediate alerting/feedback
on fail condition

Automated
deploy to

production (‘live
servers’)

How to do this while reducing risk?
How to do this while ‘always on’?

Production monitoring / alerting
provides immediate feedback; but
now failures are visible to customers...

Continuous Deployment (CD):
bring ‘deploy’ into the ‘short cycle’

13

Rolling deploy

Load Balancer

x.y x.y x.y x.y

25% of traffic each

Note: these resources are
usually running in a cloud
platform. So virtual
machines, load balancers,
storage, network etc. can
all be provisioned and
configured through the
cloud platform’s APIs.

14

Rolling deploy: 1) Deploy ‘canary’ (limit exposure/risk)

Load Balancer

x.(y+1)

24.75% of traffic each to x.y
instances

1% of traffic to x.(y+1)

x.y x.y x.y x.y

15

Rolling deploy: 2) Automated monitoring of error rates - OK?

Load Balancer

24.75% of traffic each to x.y
instances

1% of traffic to x.(y+1)

Centralised logging

Automated
alerts

x.(y+1)x.y x.y x.y x.y

16

Rolling deploy: 3) Move traffic from old instance to new

Load Balancer

25%

Centralised logging

Automated
alerts

0%25%25%25%

x.(y+1)x.y x.y x.y x.y

17

Rolling deploy: 4) Upgrade 0% instance

Load Balancer

25%

Centralised logging

Automated
alerts

0%25%25%25%

x.(y+1)x.y x.y x.y x.(y+1)

18

Rolling deploy: 5) Move traffic from old instance to new etc.

Load Balancer

25%

Centralised logging

Automated
alerts

25%0%25%25%

x.(y+1)x.y x.y x.y x.(y+1)

19

Rolling deploy: Repeat {move traffic old->new; upgrade old}

Load Balancer

25%

Centralised logging

Automated
alerts

25%25%25%0%

x.(y+1)x.y x.(y+1)x.(y+1)x.(y+1)

20

Rolling deploy: …

Load Balancer

25%

Centralised logging

Automated
alerts

25%25%25%

x.(y+1)x.y x.(y+1)x.(y+1)x.(y+1)

Destroy last x.y instance

(If anything
unexpected
happens then
can pause at any
point; aim to ‘roll
forward’ rather
than ‘rolling
back’...)

21

Review
● Continuous Deployment is the natural extension of Continuous Integration to

SaaS, taking advantage of SaaS’s low cost of deployment
● Rolling deploy is a technique for upgrading and developing SaaS software

with zero downtime
● Enables better ways of managing quality/risk

○ Releasing at low % (with centralised logging + alerting) mitigates effect of production bug that
escapes QA

○ Fixes can be distributed to all customers easily and quickly

22

Behavioural analytics
and experiments

23

Analytics collectors

Users; often each identified by unique ID

Behavioural ‘events’ (e.g. At time t, user u, clicked button b)

Big time
sequence
of events
for all users

Reporting

Queries run by
analysts

Processing/
Enrichment

SaaS company’s infrastructure

A simple behavioural analytics pipeline

24

What can we learn from the event logs?

● User/growth metrics:
○ Monthly Active Unique Users (MAU); Daily Active Unique Users (DAU)

● Engagement:
○ Time spent using the service

● Feature usage/growth/engagement metrics:
○ X% of users tried feature F at least once in the last month
○ Y% of users used feature F2 for at least 5 minutes last week
○ Feature F3 usage growing at Z% year-on-year

● Insights based on user segmentation:
○ Users who signed up in January 2018 exhibit an average 2% monthly churn
○ Female users aged between 20-25 are X% more likely to use feature F at least once

25

What else can we learn from the event logs?
● Correlations

○ Usage of feature F2 is correlated with usage of feature F1
○ Daily time spent on the platform is correlated with the number of days since sign-up

● But NOT cause and effect… At least not without an experiment framework.

26

How can we move from correlations to cause/effect?

● Run controlled experiments:
○ Determine hypothesis to test
○ Determine level of exposure, E, (% of users that will go into experiment group)
○ Bucket users into either experiment group (E%) or control group (100-E)%
○ Release a change to the experiment group only
○ Measure relevant metric(s) in both control group and experiment group and determine whether

the observed difference is statistically significant

● By measuring difference between control and experiment groups we can have
some confidence that the difference is due to our ‘change under test’

● Often pick low E and ramp up (e.g. 1%, 10%, 25%, 50%)
○ Similar to phased deploy alerting, but measures ‘do users like it’ rather than ‘are there errors’

● Experiment throughput can quickly become limited by traffic volume

27

A/B test architecture

SaaS service

IF (hash(UID.EID) mod 100) < E THEN serve experiment variant
ELSE serve control variant

Where:
UID = User ID
EID = Experiment ID (one per experiment)
E = size of experiment group for experiment EID

Users

28

A/B test architecture

SaaS service

IF (hash(UID.EID) mod 100) < E THEN serve experiment variant
ELSE serve control variant

Where:
UID = User ID
EID = Experiment ID (one per experiment)
E = size of experiment group for experiment EID

Users

● Stateless
● Users persistently in a control or

experiment group; don’t ‘flap’
● Users in existing experiment group remain

in experiment group as E increased
● Works for multiple concurrent experiments

(but be careful of independence
assumptions)

29

A/B test architecture

SaaS service

Users

Analytics collectors

Behavioural ‘events’:
At time t, user u, in experiment groups for EID1, EID5, clicked button b

For each experiment, e,
generate reports for metrics
of interest segmented by (i)
‘in EID_e’; and (ii) ‘not in
EID_e’. Compare these
results for each metric and
test statistical significance.

Big time-
sequence
of events
for all users

30

Service composition

31

HTML + HTTP + Javascript => easy integration

32

CompanyA.com

(SaaS product)

Browser

…
<script src=”https://CompanyB.com/…”>
<script src=”https://CompanyC.com/…”>
…

https://CompanyA.com/

CompanyC.com

3rd party service 2

CompanyB.com

3rd party service 1

1 2 3

https://3rdpartyservice1.com/%E2%80%A6
https://3rdpartyservice2.com/%E2%80%A6

Example: integration of 3rd party A/B testing platform

33

CompanyA.com

(SaaS product)

Browser

1. Returned HTML contains:
…
<script src=”https://abtesting.com/companya-tag.js”>
…

https://CompanyA.com/

ABtesting.com

3rd party service

Browser

User of CompanyA.com

2. Fetch companya-tag.js

Marketing person
in CompanyA

Admin dashboards to
create, manage and
monitor experiments

But be careful…

1. Easy integration: Can !=> Should
2. Delegated all control of versioning/deployment
3. Data privacy?
4. User tracking?
5. Security?

Summary

35

Summary
● Putting the manage/deploy/upgrade cycle into the software company is a

profound change with far-reaching consequences:
○ Economically:

■ Reduces customer TCO and barriers to purchasing
■ Leads to better specialisation, and less duplication; creates new business models

○ Operationally:
■ Enables new ways of doing QA, which changes the economics of testing
■ Phased releases (which can take place over days if required, with flexibility to pause and

fix at any time); live monitoring/alerting
■ Can build higher quality software due to increased visibility of user behavior
■ Can compose existing services quickly and easily

36

