Software and Security
Engineering

Lecture 1
Alastair R. Beresford
arb33@cam.ac.uk

With many thanks to Ross Anderson

Alms

* Introduce software engineering with focus on:
* Large systems
» Safety-critical systems
e Systems to withstand attack by capable opponents

* |llustrate what goes wrong

* Best practice to avoid failure

Objectives

* By the end of the course you should be able to:

* Write programs with tough assurance targets
* Work effectively as part of a team

* Understand
e Software development models
* Development lifecycle
* Understand bugs, vulnerabilities and hazards

Books

) WILEY

%“EE'G%E “ j, S APEWARE

Security
Englneermg

Ross Ander SECOND EDITION

Make use of additional reading

F.P. Brooks, The Mythical Man Month
J. Reason, The Human Contribution

S.\W. Thames, Report of the Inquiry into the London
Ambulance Service

S. Maguire, Writing Solid Code

H. Thimbleby, Improving safety in medical devices and
systems

O. Campion-Awwad et al, The National Programme for IT
in the NHS — A Case History

https://www.cl.cam.ac.uk/teaching/current/SWSecEng/
materials.html

https://www.cl.cam.ac.uk/teaching/current/SWSecEng/materials.html
https://www.cl.cam.ac.uk/teaching/current/SWSecEng/materials.html

Use the ICAP framework to guide
your learning

* Interactive

 Constructive “Teachers open the door,

e Active But you must enter by yourself.
_ Tell me and | forget.

* Passive

Teach me and | remember.
Involve me and I learn.”
— Benjamin Franklin

Or: reading is essential but insufficient

Using laptops in lectures can harm
everyone’s learning outcomes

Psychological Science

The Pen Is Mightier Than the Keyboard: © The Authors 2014

Reprints and permissions:

Advantages Of Longhand Over Laptop sagepub.com/journalsPermissions.nav

DOI: 10.1177/0956797614524581

N Ote Taking 1(;;)% glzeg‘lgcom

Pam A. Mueller' and Daniel M. Oppenheimer?

Princeton University and *University of California, Los Angeles

Abstract

Taking notes on laptops rather than in longhand is increasingly common. Many researchers have suggested that laptop
note taking is less effective than longhand note taking for learning. Prior studies have primarily focused on students’
capacity for multitasking and distraction when using laptops. The present research suggests that even when laptops
are used solely to take notes, they may still be impairing learning because their use results in shallower processing.
In three studies, we found that students who took notes on laptops performed worse on conceptual questions than
students who took notes longhand. We show that whereas taking more notes can be beneficial, laptop note takers’
tendency to transcribe lectures verbatim rather than processing information and reframing it in their own words is
detrimental to learning.

Course QOutline — key topics

 Security policy e Software crisis

e Safety case * Development lifecycle
e Security protocols * Critical systems

* User behaviour Testability

* Bugs * Software-as-a-service

What is Security Engineering?

Security engineering is about building systems to
remain dependable in the face of malice, error and
mischance.

The Design Hierarchy

Policy

Architecture, protocols, ...

Hardware, crypto, access control, ...

What are we trying to do? How? With what?

A system can be...

* equipment or a component (laptop, smartcard, ...)

* a collection of products, their operating systemes,
and some networking equipment

* The above plus applications
* The above plus internal staff

* The above plus external users

Common failure: policy drawn too narrowly

Electric bike should not propel bicycle
when speed exceeds 15.5 mph

" § badassBox 4 BO
P serial: § T R

12

Security vs Dependability

Dependability = Reliability + Security

* Malice is different from error
* Reliability and security are often strongly correlated

Subjects and principals

Subject: a physical person
Person: a subject or a legal person (firm)
Principal:

* A person

* Equipment

* Arole, including complex roles

Secrecy and privacy

Secrecy: mechanism to control which principals can
access information

Privacy: control of your own secrets

Confidentiality: an obligation to protect someone
else’s secrets.

Anonymity, integrity, authenticity
* Anonymity: restrict access to metadata

* Integrity: an object has not been altered since the
last authorised modification

* Authenticity has two common meanings:

* an object has integrity plus freshness
* You are speaking to the right principal

Trust is hard; several meanings...

1. A warm fuzzy feeling

2. A trusted system or component is one that can
break my security policy

3. A trusted system is one | can insure

4. A trusted system won’t get me fired when it
breaks

Errors, failures, reliability, accidents

* Error: a design flaw or deviation from intended
state

* Failure: nonperformance of the system when inside
specified environmental conditions

* Reliability: probability of failure within a specified
period of time

* Accident: an undesired, unplanned event resulting
in a specified kind or level of loss

Hazards and risks

* Hazard: a set of conditions in a system or its
environment where failure can lead to an accident

* A critical system, process or component is one
whose failure will lead to an accident

* Risk is the probability of an accident
e Often combined with unit of exposure; e.g. a micromort

* Uncertainty is where the risk is not quantifiable
e Safety is simple: freedom from accidents

Security policy, profile, and target

* A security policy is a succinct statement of
protection goals

* A protection profile is a detailed statement of
protection goals

* A security target is a detailed statement of
protection goals applied to a particular system

What often passes as ‘policy’

1. This policy is approved by Management.
2. All staff shall obey this security policy.

Data shall be available only to those with a need-
to-know.

4. All breaches of this policy shall be reported at
once to Security.

What’s wrong with this?

Traditional government approach

e Start from the threat model: an insider who is
disloyal or careless.

* Solution: limit the number of people you trust, and
make it harder for them to be untrustworthy

Basic idea since 1940: a clerk with ‘Secret’ clearance
can read documents at ‘Confidential’ and ‘Secret’ but
not at “Top Secret’

Multilevel Secure Systems (MLS)

* Classify all documents and data with a level, such as
official, secret, top secret; or high and low.

* Principals have clearances; clearance must equal or
exceed classification of any documents viewed.

* Enforce handling rules for material at each level.

* Information flows upwards only:

* No read up
* No write down

Bell-LaPadula formal model

 Bell-LaPadula (1973):

» simple security policy (no read up)
e *-policy (no write down)

* With these two rules, one can prove that a system
that starts in a secure state will remain in one

* Aim is to minimise the Trusted Computing Base

Covert channels cause havoc

* BLP lets malware move from Low to High, just not
to signal down again.

* What if malware at High modulates shared
resource (e.g. CPU usage) to signal to Low?

* How can you let message traffic pass from Low to
High, if any acknowledgement of receipt could be
delayed and used to signal?

Moral: covert channel bandwidth is a complex.
It’s an emergent property of whole systems!

High assurance MLS system

* The pump simplifies the
problem: replace the HIGH
complex emergent
property of the whole
system with a simple
property of a testable C
component

 Nevertheless, often -
harder than it looks! | LOW

PUMP

Multilateral Security

Stop lateral flow, examples:

* Intelligence, typically with B G B

compartments

 Medical records shared data

* Competing clients of an TOP SECRET
accounting firm SECRET

CONFIDENTIAL

OPEN

Biba formal model for integrity

* Biba (1975)
e Simple integrity policy (no read down)
* *-integrity policy (no write up)

e Dual of the Bell-LaPadula model

* Examples:

* Medical devices with calibrate and operate modes

* Electricity grid controls with safety at the highest level,
operational control as the next, and so on.

Software and Security
Engineering

Lecture 2
Richard Mortier
rmm1002@cam.ac.uk

With many thanks to Ross Anderson

ANDY GREENBERG SECURITY 07.21.15 06:00 AM

HACRERS REMOTELY RILL A
JEEP ON THE HIGHWAY—WITH
ME IN T

Hackers Remotely Kill a Jeep on the Highway—With Mei... &

P 2:41/5:07

30

Architecture matters

* Lots of legacy protocols
trust all network nodes

* Chrysler Jeep recall

~ * Defence in depth:
. separate subnets,
capable firewalls,

31

Swiss Cheese Model

Hazards

N

Diagram by

@ Davidmack
&{ CC-BY-SA 3.0

Losses

* Defense in depth

 Layers could include hardware, software, policy,
human factors, etc.

32

Safety policies

* Industries have their own standards, cultures, often
with architectural assumptions embedded in
component design

* Plethora of safety legislation

e Sometimes brand new standards, but in more
mature industries safety standards tend to evolve

* Two basic ways to evolve:

* failure modes and effects analysis
* fault tree analysis

Failure modes and effects analysis
(bottom-up)

* Look at each component and list failure modes

* Figure out what to do about each failure
e Reduce risk by overdesign?
 Redundancy?

* Use secondary mechanisms to deal with
interactions

* Developed by NASA

-ault tree analysis (top-down)

Successful card forgery
Shoulder Cryptanalysis of DES
surfing
False
terminal
attack _ Protocol failure
Bank insider Maintenance
contractor
Abuse of Trojan Theft of Bug in Encryption Falsify
security keys ATM replacement auth
module response

Work backwards from bad outcome we must avoid to
identify critical components

Example: nuclear bomb safety

Don’t want Armageddon caused by a rogue pilot, a
stolen bomb, or a mad president, so require

e Authorisation: president releases code
* Intent: pilot puts key in bomb release

* Environment: N seconds zero gravity

Independent, simple, technical mechanisms

Bookkeeping, 8-4t™" millennium
BCE

37

Bookkeeping, circa 1100 AD

* Double-entry bookkeeping: each entry in one
ledger is matched by opposite entries in another

* Ensure each ledger is maintained by a different
subject so bookkeepers have to collude to defraud

* Example: a firm sells £100 of goods on credit, so
credit the sales account, debit the receivables
account. Customer subsequently pays, so credit the
receivables account, debit the cash account.

Double-entry bookkeeping found
in the Genizah Collection

Separation of duties in practice

* Serial:
* Lecturer gets money from EPSRC, charity, ...
* Lecturer gets Old Schools to register supplier
* Gets stores to sign order form and send to supplier
 Stores receives goods; Accounts gets invoice
* Accounts checks delivery and tell Old Schools to pay
* Lecturer gets statement of money left on grant
* Audit by grant giver, university, ...

 Parallel: authorization from two distinct subjects

“‘lll-llllllll""’
-
- -~
- ~
- III
- ~

) \\\ SS
\\ I//
Mm m \\ £ v m wn //
) /! O m x m 2 \
B o — 1 X Bt e ~ n 1
c v B v B 9 "
] - v UV n = !
o \
a \ wn Q - Q QQ]
S— \ o 2 2 2 < /
- / o O 5 O \
O C //III L P JRY
o« Q ~~~_|\\N// - g
4+ B a2 V2T Sl
C &
@)
O i
O 2 NN
S a \\\\ - — — IIII
Q N
S VI \\\ m .m onb % //
C .m _/ T © .w Qc /
C - //l M_u _LVM L \\\\
< Q.
O
V)
D o
vy =
O O
B)
O
Lo
O o
o O

Summary of security and safety

* What are we trying to do?

* Security: threat model, security policy
e Safety: hazard analysis, safety standard
* Refine to protection profile, safety case

* Typical mechanisms: usability engineering,
firewalls, protocols, access controls, ...

Do not ignhore user behaviour

* Many systems fail because users make mistakes

* Banks routinely tell victims of fraud “our systems
are secure so it must be your fault”

* Most car crashes are user error; yet we now build
cars with crumple zones

Chevrolet 1959 vs 2009

https://www.youtube.com/watch?v=fPFAfBGNKOU

44

https://www.youtube.com/watch?v=fPF4fBGNK0U

Hierarchy of
Narms

Targeted
attacks

Generic
malware

Bulk password
compromise

Abuse of mechanism

Sophistication

Volume of harm

Many abuses of mechanism

* Cyberbullying
* Doxing
* Fake rental apartments

How can we protect against these attacks?

Useable privacy is also hard

* Traditional approaches — anonymisation and
consent — are really hard to deliver

* Problem gets harder as systems get larger

* Automated data collection (e.g. from sensors)
makes the situation more difficult again

T

BP0 E
80N 8
8600080

112 1] 3 /1 8|9 1T 1 & | 3
4 | 5|6 4 5| 6 4 | 5|6 112 34| 5 |e
/18|89 1 12| 3 /7189 6 |7 (8|9 |V
a0 |V A 0|V o | U CME BodyGuard 545
Abbott Gemstar Abbott AimPlus CME BodyGuard 545
Al2 |V i 1234 T 7273 71819
4 | 5|6 4 ' 5|6
T8 9 5|6 |7 |8 4 | 5|6 |e 513
0 9|10 e | C /718190 0
* Graseby Omnifuse SK Medical SK-5001II . °
Graseby 500 SK Medical SK-6001I
112 3| 4 TT5T3 e
5|6 |7 |8
4 ' 516 |0
C|9 0| A = T8 19
° v Upreal CTN-TCI-V
Upreal UPR-900
718190 71890 | 1 12|31/ 4
4 | 5 6 4 | 5|6 | e | 5 6|78 |C
1 |23 e 12 3|C] e [0 9
BBraun Vista Basic DRE SP1500 Plus DRE Avanti Plus
0T 1T 2773 718189 112 |3
415 8 4 | 5|6 5 | 6
: 513 i [23 7189
0| e 0 | e

Sigma Spectrum

Sigma 6000 Plus

Sigma 8000 Plus

51

Medical device safety

e Usability problems with medical devices kill about
the same number of people as cars do

* Biggest killer nowadays: infusion pumps
* Nurses typically get blamed, not vendors

e Avionics are safer, as incentives are more
concentrated

* Read Harold Thimbleby’s paper!

Bulk password compromise

* Example: in June 2012, 6.5m LinkedIn passwords
stolen, cracked (encryption did not have a salt) and
posted on a Russian forum

* Method: SQL injection (see later)

e Passwords were reused on other sites, from mail
services to PayPal.

* Reused passwords were used on those third-party sites
* There have been many, many such exploits!
 What can we do about password reuse?

Phishing and social engineering

e Card thieves call victims to ask for PINs

* A well-crafted email sent to company staff, with
apparently authority, can get 30% vyield

* Some big consequences (see next)
* Think like a crook (see Mitnick reading)

Software and Security
Engineering

Lecture 3
Richard Mortier
rmm1002@cam.ac.uk

With many thanks to Ross Anderson

Warm-up: Write down your own top
three pieces of password advice

* Talk to your neighbour
 What password advice would you give and why?

John Podesta email compromise
by Fancy Bear (allegedly Russia)

* White House chief-of-staff; chair of Hillary Clinton’s
2016 US Presidential Campaign

* Gmail account was compromised
e 20,000 emails subsequently published by WikiLeaks
* Authenticity of some emails questioned

Cognitive factors

* Many errors arise from our highly adaptive mental
Processes
* We deal with novel problems in a conscious way

* Frequently encountered problems are dealt with using
rules we evolve, and are partly automatic

e Over time, the rules give way to skill

* Our ability to automate routine actions leads to
absent-minded slips, or following the wrong rule

* There are also systematic limits to rationality in
problem solving — so called heuristics and biases

Risk misperception - Rational

A -,

Utility e

Loss

People offered £10 or a 50% chance of £20 usually
prefer the former; if offered a loss of £10 or a 50%
chance of a loss of £20 they tend to prefer the latter!

Framing decisions about risk, or
the Asian disease problem

Scenario A, choose between:

a) “200 lives will be saved”

b) “with p=1/3, 600 saved; with p=2/3, none saved”
Here 72% choose (a) over (b).

Scenario B, choose between:

1) “400 will die”

2) “with p =1/3, no-one will die, p=2/3, 600 will die”
Here 78% prefer (2) over (1)

Social psychology

e Authority matters: Milgram showed over 60% of all
subjects would torture a ‘student’

* The herd matters: Asch showed most people could
deny obvious facts to please others

* Reciprocation is built-in: give a gift, to increase your
chance of receiving one

Fraud psychology

All the above plus:

* Appeal to the mark’s kindness

* Appeal to the mark’s dishonesty

* Distract them so they act automatically
* Arouse them so they act viscerally

Note: the mark is the person being defrauded

The Lottery Scam

Play (k)

> 0 —e 041/723

https://www.youtube.com/watch?v=012gBLn6CU8

63

https://www.youtube.com/watch?v=oI2gBLn6CU8

People only follow advice which
confirms their own world view

e Users have different mental models. Explore how
your users see the problem — the ‘folk beliefs’

* Given a model of their world view, target approach
to appeal to it.

Why Johnny Can’t Encrypt:
A Usability Evaluation of PGP 5.0

Alma Whitten
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
alma@cs.cmu.edu

J.D. Tygar'
EECS and SIMS
University of California
Berkeley, CA 94720
tygar@cs.berkeley.edu

Abstract

User errors cause or contribute to most computer
security failures, yet user interfaces for security still
tend to be clumsy, confusing, or near-nonexistent. Is
this simply due to a failure to apply standard user
interface design techniques to security? We argue that,
on the contrarv effective cecuritv reaitires a different

1 Introduction

Security mechanisms are only effective when used
correctly. Strong cryptography, provably correct
protocols, and bug-free code will not provide security if
the people who use the software forget to click on the
encrypt button when they need privacy, give up on a

. I SRR R, (N PR R S AN |

Affordances: Johnny Can’t Encrypt

65

The power of default

Most people don’t opt in or out; they go with default

Can exploit this for good (or evil):

* Pensions

* Privacy settings in an online service
e Use of crypto

Therefore defaults may be contentious

Economics versus psychology

Most people don’t worry enough about computer
security, and worry too much about terrorism

How could we fix this, and why is it not likely to be?

The compliance budget

* ‘Blame and train’ as an approach is suboptimal
* It’s often rational to ignore warnings

* People will spend only so much time obeying rules,
so choose the rules that matter

* Violations of rules also matter: they’re often an
easier way of working, and sometimes necessary

* The ‘right’ way of working should be easiest: look
where people walk, and lay the path there

Where should the path be?

69

Differences between people

* Ability to perform certain tasks varies widely across
subgroups of the population, including by
* Age
* Gender
* Education

* Yet all customers receive complex password rules
and anti-phishing advice

More accidents with Volvos?

.........

Volvo OV 4, April 1927

71

Understanding error helps us
ouild better systems

e Significant psychology research into errors

* Slips and lapses
* Forgetting plans, intentions (strong habit intrusion)
* Misidentifying objects, signals
* Retrieval failures (“its on the tip of my tongue”)
* Premature exits from action sequences (using the ATM)

* Rule-based mistakes; applying the wrong procedure
* Knowledge-based mistakes; heuristics and biases

Training and practice reduce errors

Inexplicable errors, stress free, right cues 10
Regularly performed simple tasks, low stress 104
Complex tasks, little time, some cues needed 103

Unfamiliar task dependent on situation, memory | 102

Highly complex task, much stress 101

Creative thinking, unfamiliar complex operations, | ~1
time short & stress high

Passwords are cheap, but...

* Will users enter passwords correctly?
* Will they remember them?

* Will they choose a strong password?
* Will the write them down?

* Will the password be different in each context?

* Can the user be tricked into revealing passwords?

User studies are important

Experiment to see if first-year NatScis could be
trained to use passwords effectively. Three groups:

* Control group of 100 (+100 more observed)
* Green group: use a memorable phrase
* Yellow group: choose 8 chars at random

Expected strength: Y>G>C;gotY=G>C
Expected resets: Y>G>C;gotY=G=C

We had 10% non-compliance

OOoodoooooooooon

~28 BITS OF ENTROPY

WAS IT TROMBONE? NG,

O
UNCOMMON 0ooooOoo TROVRBADOR. AND ONE OF
CRDER oOo0ooood 0 '
NON -GIBBERSH) THE Os WRS A ZERQ?
UNKNOWN ooo aonn .
BRSE WORD ooo \ X
| T aoco . AND THERE WS
* 2= 3 DAYS AT SOME SYMBOL... ™
Tr@ubddor &3 1000 GUESSES /sec
T 1 T (I e Mo
c,%PS? % oG NU:IERHL e TR B)™
Slal= o DIEFiCOCTY T0 GUESS: | | DIFFICULTY TO REMEMBER:
PUNCTUATION
N 0 L TR o B o ooog EASY HARD
1% O DNE OF A FoWw CoMmnN TORMATS.
~ U4 BITS OF ENTROPY
oooooaoOooaOoan
OOoOo0ogooooan
C{:jrrect hm baﬁa.g Staple OooooOoooouaoc

.[_____'l |

ooogoo '_'_':|':|r_|':| = :I'_"_!jl:l Or ':l_' 1001
oooan ooood Ooooago oooaOon
\ FOUR RANDOM /
COMMON WORDS

oOOoooOoOoaooo

2™ =550 YEARS AT
1000 GUESSES/seC

DIFFICOLTY To GUESS:
HARD

DIFFICOLTY TO REMEMBER:
YOUVE ALREADY
MEMORIZED IT

THROUGH 20 YEARS OF EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TO USE PRSSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS Tb GUESS, .

Hardware and online support to
imit brute force is challenging

* Online services and tamperproof hardware can be
used to limit brute-force guessing, such as
e Bank card PIN (3 guesses on card; 3 online)
e iPhone PIN (timeouts)
* Login attempts to webservices (timeouts; care required)

If the typical person has five cards with the same PIN,
how many wallets do you need to find before you get
lucky?

Mitigate worst effects of a stolen
password file

* Use key stretching techniques such as PDBKF2:

public PBEKeySpec(char[] password, byte[] salt,
int iterCount, int keyLength)

e Establish breach reporting laws
* Externalise the problem with Oauth
e Use other factors to determine whether login legit

Which password hashing solution

s the best? Why?

Alice Bob Charlie
Nothing Ltd 123456 gwerty 123456
Hash 1 Ltd a832gsld7g... | 84hskubvg... a832gsld7g...
Hash 2 Ltd a832gsld7g... |84hskubvg... a832gsld7g...
Global Salt Plc salt: h3okl... salt: h3okl... salt: h3okl...
hash: slaud4... | hash: klasy3... | hash: slaud4...
Per-User Salt Inc | salt: h3okl... salt: 9shk4... salt: 0ag3b...
hash: glhy5... | hash: zay4a... | hash: lavlza...

Password recovery is a weak point

e Password recovery often involves basic info which
doesn’t change:
 What was the name of your first school?
* What was the name of your first pet?

e Little ability to change this information
* Accounts for public figures are especially vulnerable

A poor implementation of
password recovery...

Answer Security Questions

What is your phone number?

Your answer cannot contain repeating characters.

“I did it. | found the all-time dumbest security

question answer requirement. Good job @fedex.”
Luke Millar (@Itm on Twitter), 28t April 2019

81

https://twitter.com/FedEx

Externalities need consideration

* One firm’s action has side-effects for others

e Password sharing a conspicuous example; we have
to enter credentials everywhere

* Everyone wants recovery questions too

* Many firms train customers in unsafe behaviour
from clicking on external links or redirecting the
browser to third-party domains for payment

* Much ‘training’ amounts to victim blaming

lterative guessing of card details
with botnet on websites works

e Of Alexa top 500 websites, 26 use Primary Account
Number (PAN) and expiry date

e 37 use PAN + postcode (numeric digits only for
some, add door number for others)

e 291 ask for PAN, expiry date and CVV?2

There is enough variation in requirements across
websites that you can iteratively generate valid
credentials

HOW APPLE AND AMAZON
SECURITY FLAWS LED TO MY
EPIC HACKING

Amazon > Apple ID --» Gmail - Twitter

(And all they wanted was his three letter Twitter handle!)

e Twitter: find personal website, then Gmail, home address
 Gmail: account recovery gave “meeeen@me.com”

 Amazon: call with name, address, email to associate a new
credit card number (fake) to the account

 Amazon: call (again) with name, address, credit card
number and associate new email address with the account

 Amazon: Use web password reset to new email address; get
last four digits of all credit cards in the account

* Apple: Call with billing address and last four digits credit
card to get temp password for “meeeen@me.com”

* Gmail: reset password sent to “meeeen@me.com”
* Twitter: reset password sent to Gmail

CMI World » US | Africa | Americas | Asia | Australia | China | Europe | Mid ast | India | UK International Edition +

Social media influencer plotted to take
iNnternet domain at gunpoint. It didn't
end well

By Faith Karimi, CNN
(© Updated 1251 GMT (2051 HKT) April 21, 2019

LINN COUNTY JAIL

Rossi Lorathio Adams I
86

(CNN) — The plan was like a bad movie scrint -- combplete with an attacker in a puzzlina outfit

Software and Security
Engineering

Lecture 4
Anil Madhavapeddy
avsm2@cam.ac.uk

With many thanks to Ross Anderson

Okay Google, what’s a Whopper?

The Morris Worm: breaking into
computers at scale (1988)

* Exploited vulnerabilities in sendmail, fingerd, rsh

* Used a list of common weak passwords

* Gov. assessment: S100k to S10M in damage

e 6,000* machines infected

* Internet partitioned for days to prevent reinfection

* Robert Morris was the first person convicted under
the 1986 Computer Fraud and Misuse Act.
e 3 year suspended sentence

* 400 hr community service
e S10k fine.

SQL Injection attack: failure to
sanitize untrusted inputs

HI, THIS 15

YOUR SON'S SCHOOL.
WERE HAVING SOME
(OMPUTER TROUBLE.

\%m

String sqgl

"INSERT INTO Students

OH, DEAR - DID HE
BREAK SOMETHING?

IN HWHY /

S

+ studentName

I "');";

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students; -~ 7

~ OH. YES UTTLE
BOBRY TARLES,
WE CALL HIM.

WELL, WE'VE LOST THIS
YEARS STUDENT RECORDS.
T HOPE YOURE HAPPY.

{

AND I HOPE
~~ YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS.

(Name)

VALUES

(\II

90

Software countermeasures:
systems and tools

* Operating system protections
* Data execution prevention
» Address space layout randomisation

* Tools, e.g. Coverity
e Static analysis
* Dynamic analysis
» Testing frameworks

* Automated update systems to install patches

Software countermeasures:
reducing bug number and severity

* Defensive programming

e Secure coding standards
e See Howard and LeBlanc on MS standards for C

* Contracts, e.g. in the Eiffel language

* APl analysis
 Combining API calls may lead to vulnerabilities

* Challenging for APIs accessible over the Internet

We cannot write code without
latent vulnerabilities

Milk or Wine: Does Software Security Improve with Age? */

Andy Ozment
MIT Lincoln Laboratory*

Abstract

We examine the code base of the OpenBSD operating
system to determine whether its security is increasing
over time. We measure the rate at which new code
has been introduced and the rate at which vulnerabili-
ties have been reported over the last 7.5 years and fifteen
versions.

We learn that 61% of the lines of code in today’s
OpenBSD are foundational: they were introduced prior
to the release of the initial version we studied and have
not been altered since. We also learn that 62% of re-
ported vulnerabilities were present when the study began
and can also be considered to be foundational.

XEXTr. £ 01 44 u* L, 4 =4 o~ 4 & 4

Stuart E. Schechter
MIT Lincoln Laboratory

1 Introduction

Many in the security research community have criticized
both the insecurity of software products and develop-
ers’ perceived inattention to security. However, we have
lacked quantitative evidence that such attention can im-
prove a product’s security over time. Seeking such evi-
dence, we asked whether efforts by the OpenBSD devel-
opment team to secure their product have decreased the
rate at which vulnerabilities are reported.

In particular, we are interested in responding to the
work of Eric Rescorla [11]. He used data from ICAT! to
argue that the rate at which vulnerabilities are reported
has not decreased with time; however, limitations in the

OS versions of 50 LG handsets

Link OS versions to database of
vulnerabilities

Match OS version information to OS and Build
Number to put each handset into one group:

* [nsecure
* Maybe secure

e Secure

Proportion of devices

On average, 85% are vulnerable

1.0
0.8}
()
0.6} 5
O
(]
[0)]
0.4f &
>
M
£
0.2} &
0.0
10>

96

The Software Crisis

 Software still lags behind hardware’s potential

 Many large projects are late, over budget,
dysfunctional, or abandoned (CAPSA, NPfIT, DWP,
Addenbrookes, ...)

* Some failures cost lives (Therac 25) or billions
(Ariane 5, NPfIT)

* Some expensive scares (Y2K, Pentium)
 Some combine the above (LAS)

London Ambulance Service disaster

* Widely cited example of project
* Many aspects of the failure widely repeated since

* Attempt to automate ambulance dispatch in 1992
e Result left London without service for a day

* Number estimated deaths ran as high as 20

e CEO sacked; public outrage

Project background

e Attempt to automate in 1980s failed — system failed
load test

* Industrial relations poor; pressure to cut costs
* Public concern over service quality

* South West Thames Regional Health Authority
decided on fully automated system: responder
would “email” ambulance

* Consultancy study said this might cost £1.9m and
take 19 months, provided a packaged solution
could be found. AVLS would be extra

Original dispatch system worked
on paper with regional control

call taking resource identification resource

mobilisation
form —M Allocators/ TP
Incident
form'

Map Incident
Book A Form"

Assistant Allocations Y
Box — Radio
.

I resource management

100

Many problems with original system

* It took 3 minutes to dispatch an ambulance

* It required 200 staff (out of 2700 in total).

* There were errors, especially in deduplication

* Queues and bottlenecks, especially with the radio
* Call-backs tiresome

Computer-aided dispatch system

call
taking —

resource

. identification —

A

resource
|_Lmobilisation

\4
resource

management

>

«—

e |Large

e Real-time
e Critical

e Data rich

e Embedded
e Distributed

e Mobile
components

102

Tender process was poor

* |dea of a £1.5m system stuck; idea of AVLS added;
proviso of a packaged solution forgotten; new IS
director hired

* Tendered on 7t Feb 1991; completion due Jan 1992

* 35 firms looked at tender; 19 proposed; most said
timescale unrealistic, only partial automation
possible by early 1992

* Tender awarded to consortium of Systems Options
Ltd, Apricot and Datatrak for £937,463

e £700K cheaper than next lowest bidder!

Phase one: design work ‘done’ in
July and contract signed in August

Minutes of a progress meeting in June recorded:

A 6-month timescale for an 18-month project

* A lack of methodology

* No full-time LAS users providing domain knowledge

* Lead contractor (System Options) relied heavily on
cozy assurances of subcontractors

Unsurprisingly LAS told in December that only partial
automation by January deadline — front end for call
taking, gazetteer, docket printing

Phase two: full automation

e Server never stable in 1992; client and server lockup

e Radio messaging with blackspots and congestion;
couldn’t cope with established working practices

* Management decided to go live on 26t Oct 1992

* Independent review had called for volume testing,
implementation strategy, change control, ...all ighored

* CEO: “No evidence to suggest that the full system
software, when commissioned, will not prove reliable”

* On 26 Oct 1992, room was reconfigured to use
terminals, not paper. There was no backup...

Circle of disaster on 26/7" October

» System progressively lost track of vehicles

e Exception messages scrolled off screen and were lost
* Incidents held as allocators searched for vehicles
 Callbacks from patients increased causing congestion

» data delays — voice congestion — crew frustration —
pressing wrong buttons and taking wrong vehicles —
many vehicles sent to an incident, or none

e System slowdown and congestion leading to collapse

System misses
data transmission

Diagram 4.5

26/27 October Cause/Effect Diagram

Crews forget to
press right button
in correct sequence

Radio blackspots

Crews become
impatient with
re-transmission

Voice
comm’s
delays

Failed data
mobilisations

Radio bottienecks

Increased
voice
comm’s

Crew
frustration

Missing or
swapped callsigns

"Hand shaking”
problems

Crews don't press
buttons
intentionally

Crews take different
vehicle or different
vehicle responds to

incident

Incorrect or missing
vehicle locations

Too few
call takers

Incorrect or no
vehicle location or Allocators unable
—>» status received by |——— to spot and correct
system errors
v
System has
incorrect location
and status
System information
allocation
faults Resources reserved,
i but not mobilised
v v

Incorrect allocation
a) multiple vehicle
b) not closest vehicle

System has fewer
resources to
allocate

System places
covered jobs back

on awaitling
attention list

Syste

exception messages

m generates

v

1

v

v

—»

Two_l?ne summary Staff unable exnccelilai::nd
DELAYS TO Takes Iaiw:;::-‘l% allentlgn to clear mess!;ges generate
PATIENTS longer to il theap " exception P more exception
allocate scrolls throug messages P

automatically

messages

v

Call backs [

v

More and
longer calls

y

System slows
Re-booting become
more frequent

s

-

Delays to
phone

A

. Exception
Uncovered

o messages deleted
incidents

to speed system

answering

107

Percentage

Diagram 4.1
Response Times
Yo up to 15 minutes

L

1 23 45 6 7 8 9101112131415161718192021222324252627 28293023132
October

507

. up to 15 minutes ~ Average

S9NUIK

<o

T15

00-€¢
00-¢¢
00-1¢
00-0¢
00-61
00-81
00-L1
00-91
00-SI
00-¥1
00-C1
00-¢I
00-T1
00-01
0060
00-80
00-20
00-90
00-S0
00-%0
00-£0
00-¢0
00-10
G0-00

Diagram 4.2
Calls and Average ring Times
6 October 1992 Half Hour Intervals

|

100 7

imes

ing T

- Averager

Calls

Diagram 4.3
Total A&E Patients Carried
October

A

October]

e I

L- Daily Total ~— = Avecrage

_]

I

‘ Dlagram 4.4 |
’ Calls recorded by call logger
12900 T |
2800 I
27 , -0~ -0
26 88 e O O~ > = O O O) o O O D OO O OO OO O
L]

12200 /?\ P '
2400 \ /S e X A A A |
r’);o() . LO oA oo o oy O OO /«0\—& / NG v/& oy <>/ O 4}_\‘3

, .
12200 VN / WA .\/ e '\\) \ /
2100 v Y ¥
2000 e e
(GO0 4t~ - - o A e T S S A A S et
1800
170() i —de ke A L e A S S Y S S — g j - Lo . P L — }

- ° > = = S 3 3

October ’

| s S l
l J Tt Call TT T T Average -9 Upper Limit ~' 7 Lower Limit '
S FE N —— S I

Collapse likely resulted in deaths

* One ambulance arrived to find the patient dead
and taken away by undertakers

 Another answered a ‘stroke’ call after 11 hours and
5 hours after the patient had made their own way
to hospital

* Chief executive resigns

Software and Security
Engineering

Lecture 5
Anil Madhavapeddy
avsm2@cam.ac.uk

With many thanks to Ross Anderson

Warm up: What mistakes were
made in the LAS system?

* Specification
* Project management
e Operational

Specification mistakes

* LAS ignored advice on cost and timescale
* Procurers insufficiently qualified and experienced
* No systems view

 Specification was inflexible but incomplete: it was
drawn up without adequate consultation with staff

* Attempt to change organisation through technical
system

* Ignored established work practices and staff skills

Project management mistakes

* Confusion over who was managing it all

* Poor change control, no independent QA, suppliers
misled on progress

* Inadequate software development tools
e Ditto data comms, with effects not foreseen
* Poor interface for ambulance crews

* Poor control room interface

Operational mistakes

e System went live with known serious faults

* slow response times
» workstation lockup
* |oss of voice comms

e Software not tested under realistic loads or as an
integrated system

* Inadequate staff training
* No effective back-up system in place

NHS National Programme for IT

ldea: computerise and centralise all record keeping
for every visit to every NHS establishment

* Like LAS, an attempt to centralise power and
change working practices

* Earlier failed attempt in the 1990s

* The February 2002 Blair meeting

* Five LSPs plus national contracts: £12bn
* Most systems years late or never worked
* Coalition government: NPfIT ‘abolished’

Universal Credit: fix poverty trap

ldea: Hundreds of welfare benefits which means
there is often little incentive to get a job.

* Initial plan was to go live in October 2013

* A significant problem: big systems take seven years
not three; doesn’t align with political cycle

* Complexity was huge, e.g. depended on real-time
feed of tax data from HMRC, which in turn

depended on firms

NAQO: poor value for money, not
paying 1 in 5 on time

@

dtOff

i

”Hm"mmun

3

<
) {

d ;
-
-

i,

https://www.youtube.com/watch?v=gE2fpNSrrpc

https://www.youtube.com/watch?v=qE2fpNSrrpc

Smart meters: more centralisation

ldea: expose consumers to market prices, get peak
demand shaving, make use salient

e 2009: EU Electricity Directive for 80% by 2020

e 2009: Labour £10bn centralised project to save the
planet and help fix supply crunch in 2017

» 2010: Experts said we just can’t change 47m meters
in 6 years. So excluded from spec

* Coalition government: wanted deployment by 2015
election! Planned to build central system Mar-Sep
2013 (then: Sep 2014 ...)

* Spec still fluid, tech getting obsolete, despair ...

Software engineering is about
managing complexity at many levels

* Bugs arise at micro level in challenging components

* As programs get bigger, interactions between
components grow at O(n?) or even O(2")

* The ‘system’ isn’t just the code: complex socio-
technical interactions mean we can’t predict
reactions to new functionality

Most failures of really large systems are due to
wrong, changing, or contested requirements

roject failure, circa 1500 BCE

123

On contriving machinery

“It can never be too strongly impressed upon the
minds of those who are devising new machines, that
to make the most perfect drawings of every part
tends essentially both to the success of the trial, and
to economy in arriving at the result”

Charles Babbage

Bank of England, 1870

P p—
.h-&..,crv n.&‘..- })
WL g -
e
~d

.
=
.

THE ACCOEATANTA DANA NOIE OFFICE

1876

]

Barlow & Co

Dun

Sears, Roebuck and Company, 1906

* Continental-scale mail order meant specialization
* Big departments for single bookkeeping functions

* Beginnings of automation

127

First National Bank of Chicago, 1940

e '?J' n‘m.

128

The software crisis, 1960s

* Large, powerful mainframes made complex systems
possible

* People started asking why project overruns and
failures were so much more common than in
mechanical engineering, shipbuilding, etc.

* The term software engineering coined in 1968

* The hope was that we could things under control
by using disciplines such as project planning,
documentation and testing

Those things which make writing
software fun also make it complex

* Joy of solving puzzles and building things from
interlocking parts

e Stimulation of a non-repeating task with
continuous learning

* Pleasure of working with a tractable medium, ‘pure
thought stuff’

* Complete flexibility — you can base the output on
the inputs in any way you can imagine

* Satisfaction of making stuff that’s useful to others

How is software different?

e Large computer systems become qualitatively more
complex, unlike big ships or long bridges

* The tractability of software leads customers to demand
flexibility and frequent changes

* This makes systems more complex to use over time as
features accumulate, and interactions have odd effects

 The structure can be hard to visualise or model

* The hard slog of debugging and testing piles up at the
end, when the excitement’s past, the budget’s spent
and the deadline’s looming

Software economics can be nasty

* Consumers buy on sticker price

* Businesses buy based on total cost of ownership
* Vendors use lock-in tactics

* Complex outsourcing

Cost of software: development 10%,
maintenance 90%

COStA

development operations legacy time

133

Measuring cost of code is hard

First IBM measures (1960s)

e 1.5 KLOC per developer-year (operating system)
e 5 KLOC per developer-year (compiler)

e 10 KLOC per developer-year (app)

AT&T measures
* 0.6 KLOC per developer-year (compiler)
e 2.2 KLOC per developer-year (switch)

KLOC Is a poor measure

for (int i = @; 1 < 4; i++) {
1. System.out.println)
k)

2. for (int 1 = 0; 1 < 4; i++) { System.out.println(

System.out.println(
3. System.out.println(
System.out.println(
System.out.println(

| A A

Alternatives:

* Halstead (entropy of operators/operands)

* McCabe (graph entropy of control structures)
* Function point analysis

s}

Early lessons: productivity varies,
use a high-level language

* Huge variations in productivity between individuals

* The main systematic gains come from using an
appropriate high-level language since they reduce
accidental complexity; programmer focuses on
intrinsic complexity

e Get the specification right: it more than pays for
itself by reducing the time spent on coding and

testing

Barry Boehm surveyed relative costs
of software development (1975)

Spec Code Test
C3lI 46% 20% 34%
Space 34% 20% 46%
Scientific |44% 26% 30%
Business |44% 28% 28%

* All stages of software development require
good tools

Mythical Man-Month: “adding manpower
to a late project makes it later”

Specification Code Test

3 3 3 3 3 3 3 3 3

Example project with 3 developers and 9 months.
Initial estimate is 9 person-months each for spec,
code and test.

* But spec ends up taking 12 PMs. What do you do?

Mythical Man-Month: “adding manpower
to a late project makes it later”

Specification Code Test

3 3 3 3 3 6 3 3 3

Train

We try to catch up:

* Train 3 more developers in the first month, then use
all 6 developers in the next month

e But: work of 3 developers in 2 months can’t be done
by 6 developers in 1 — interaction costs maybe O(n?)

Time to first shipment is cube root of
developer-months (Boehm, 1984)

T = 2.53d

where T is time to first shipment and d is developer
months

* With more time, costs rise slowly
* With less time, costs rise sharply

e Hardly any projects succeed at 34T
* Some projects still fail

The Software Tar Pit

; ‘”&? /
A . \
A N A A AR A e T e
’\".)‘?""‘Ett‘ﬁ" \\ R

- NG PRI

e ‘ Py . R . SNSRI LN N
N RN S NS 9“‘\\,_“, ATV A Y
N5 O 3 T e T e A

Rty
A

S
by :\\ !

— -5
- A ¢
s B L e~

141

Take a structured, modular approach

* Only practical way forward is modularisation
* Divide a complex system into small components
* Define clear APIs between them

* Lots of methodologies based on this idea:
* SSDM
 Jackson

* Yourdon,
« UML,

The Waterfall Model (1970)

Requirements

:

Specification

Implementation &
Unit Testing

Integration &
System Test

Operations &
Maintenance

The Waterfall Model (1970)

Requirements —l

validate

Specification

validate

L Implementation &

Unit Testing

Integration &
verify System Test

verify

Operations &
Maintenance

144

Waterfall Model has advantages

 Compels early clarification of system goals

e Supports charging for changes to the requirements
* Works well with many management and tech tools
* Where it’s viable it's usually the best approach

* The really critical factor is whether you can define
the requirements in detail in advance. Sometimes
you can (Y2K bugfix); sometimes you can’t (HCI)

Waterfall fails where iteration is
required, such as:

* Requirements not yet understood by developers
* Not yet understood by the customer

* The technology is changing

* The environment (legal, competitive) is changing

'terative development

-

_

Develop
outline spec

~

J

R 4 R
Build system Use system
Y, \ Y,
:
OK?
4 R

Problem: this algorithm

might not terminate!

_

Deliver system

J

Spiral Model

Cumulative cost

Progress .
S B 2. Identify and
1. Determine objectives —+——__ resolve risks
~ ™~
A - | - — x“_
. H ") \\'\.
__:; - - S x‘h_ Risk analysis \
/ P d “n\. Risk analysis \
{ / _ Risk analysis '-,I
) | / | Require- . l
Review | .'I { ments plan | -~ T \ Operational |
< | | I' / 11.} Prototype 1 | Prototype 2 rototype i
\ \ Conceptof | Concept of _.f'l Require- | |
. \ %, operation | require- ments / Draft / f
\ N | ™M / Detailed |
\ I / design /
.'K ™~ Development | Verification ?x’f i
" plan | & Validation S /
- / Code /
R —) & ._.l'
. Test plan | Verification - ”*'Integratinn rd
~ & Validation -~ e
—— Test e
4. Plan next
; : Release | Implementation
iteration S
+ I—

3. Development and test s

Spiral model invariants

e Decide in advance on a fixed number of iterations
e Each iteration is done top-down

* Driven by risk management (i.e. prototype bits you
don’t yet understand)

Software and Security
Engineering

Lecture 6
Anil Madhavapeddy
avsm2@cam.ac.uk

With many thanks to Ross Anderson

Warm up: Which motor reversing

circuit is the safe?

o N

Ny

11—

(b)

Evolutionary model

* By the 1990s some codebases had become so big
and complex they had to evolve

* Solution: use automatic regression testing

* Firms now have huge suites of test cases which run
against daily builds of software

* Development cycle is then to add changes, check
them into a repository, and test them

The Integrated Development
Environment (IDE) includes...

* Code and documentation under version control (Git)
* Code review (Gerrit)

* Automated build system (Maven)

e Continuous integration (Jenkins)

* Dev / Test / Prod deployment (Webserver)

Content-heavy apps benefit from

four host types

/

Content

Stable

@ - Latest Stable
g Test Dev
S
~J

8

©

3

.t °

2 Staging Prod

154

Assurance of critical software:
must study how things fail

e Critical software avoids certain class of failures with
high assurance

e Safety-critical systems: failure could cause, death,
injury or property damage

e Security-critical systems: failure could allow leakage
of confidential data, fraud, ...

* Real-time systems: software must accomplish
certain tasks on time

Critical computer systems have much in common
with mechanical systems (bridges, brakes, locks)

Tacoma Narrows, 7t Nov 1940

https://www.youtube.com/watch?v=j-zczJXSxnw 156

Hazard elimination

- urM\ . ™)

(a) (b)

=

v

* Which motor reversing circuit is the safe above?

* Some architecture and tool choices can eliminate
whole classes of software hazards, e.g. using a
garbage collector to eliminate and memory leaks.

e But usually hazards involve more than just software

Ariane 5, 4™ June 1996

,"-B el
e ¥
by »
|
§ S
o -
| -t i .
| 158 A »
| o | 3 e
R Ve
Biie- ' d
1!1!' .
— %t .

e Ariane 5 accelerated faster than Ariane 4, causing
an error in float-to-integer conversion

e The backup inertial navigation set core dumped,
which was interpreted by as flight data

e Full nozzle deflection — 20° angle of attack —
booster separation

158

Multi-factor failure

* Many safety-critical systems are also real-time
systems used in monitoring or control

e Exception handling is often tricky

* Criticality of timing makes many simple verification
techniques inadequate

* Testing is often really hard

Emergent properties

* In general, safety is a system property and has to be
dealt with holistically

* The same goes for security, and real-time
performance too

* A very common error is not getting the scope right

* For example, designers don’t consider human
factors such as usability and training

Therac-25: radiotherapy machine

Qoar
Displyr © pMzsion cpable Eratn onfol llghd Irarkzk THT R Py
tamina gwiizh fockswlich) awitch

Figure 1, Typical Therae-25 fachlity,

* Three people
died in six
accidents

* Example of fatal
programming
error

e Usability issues

* Poor safety
engineering

Therac had two operating modes

Plunger

e 25 MeV electron
focused beam to
generate X-rays

e 5-25 MeV spread
electron beam for
o skin treatment

Turntable
microswitch

Safety requirement:
don’t fire focused
beam at humans

Electron
mode scan
magnet

MICI’OSWItC
actuators

Therac-25 used software to
enforce safe operation

* Previous models (Therac-6 and 20) used
mechanical interlocks to prevent high-intensity
beam use unless X-ray target in place

* The Therac-25 replaced these with software

* Fault tree analysis arbitrarily assigned probability of
1011 to ‘computer selects wrong energy’

* Code was poorly written, unstructured and not
properly documented

Therac-25 caused injuries

 Marietta, GA, June 1985: woman'’s shoulder burnt.
Settled out of court. FDA not told

* Ontario, July 1985: woman’s hip burnt. AECL found
microswitch error but could not reproduce fault;
changed software anyway

* Yakima, WA, Dec 1985: woman'’s hip burned. ‘Could
not be a malfunction’

Therac-25 killed three people

e East Texas Cancer Centre, March 1986: man burned
in neck and died five months later of complications

 Same place, three weeks later: another man
burned on the face and died three weeks later

* Hospital physicist managed to reproduce flaw: if
parameters changed too quickly from X-ray to
electron beam, the safety interlock failed

* Yakima, WA, January 1987: man burned on the
chest and died due to different bug now thought to
have caused Ontario accident

Therac-25: East Texas deaths due
to editing beam type too quickly

PATIENT NAME - TEST
TREATMENT MODE : FIX ENERGY (MeV): 25

PRESCRIBED
UNIT RATE/MINUTE 200
MONITOR UNITS 200
TIME (MIN) 1.00

GANTRY ROTATION (DEG) : VERIFIED

COLLIMATOR ROTATION (DEG) VERIFIED
COLLIMATOR X (CM) : VERIFIED
COLLIMATOR Y (CM) : : VERIFIED
WEDGE NUMBER VERIFIED
ACCESSORY NUMBER VERIFIED

DATE :8§4-OCT-26 : BEAM READY OP. MODE :TREAT AUTO
TIME :12:55:8 - TREAT PAUSE X-RAY 173777
OPRID :T25V02-RO03 - OPERATOR COMMAND:

166

Therac-25: root cause analysis

 Manufacturer ignored safety aspects of software

e Confusion between reliability and safety

e Lack of defensive design

* Inadequate reporting, follow-up or regulation

* Unrealistic risk assessments

* Inadequate software engineering practices

* Manufacturer left the medical equipment business

Software safety myths: cheaper,
easy to change, reliable

 Computers are cheaper than analogue devices
 Shuttle software cost $108 pa to maintain

e Software is easy to change
» Exactly! But it's hard to change safely...

 Computers are more reliable

» Shuttle software had 16 potentially fatal bugs found
since 1980 — and half of them had flown

* Increasing reliability increases safety
* They're correlated but not completely

Software safety myths: reuse, formal
methods, testing and automation

* Reuse increases safety
e Counter examples: Ariane 5, Patriot and Therac-25

* Formal verification can remove all errors
* Not even for 100-line programs

* Testing can make software arbitrarily reliable
e For MTBF of 10° hours you must test >10° hours

* Automation can reduce risk
* Also an opportunity for new types of failure

Stratus computer: redundant
hardware for non-stop processing

CPU CPU

Op=20

CPU CPU

Redundant hardware does not
solve software engineering issues

* Hardware can still fail; backup inertial navigation
failed first on the Ariane rocket

e Redundant hardware creates additional software
engineering issues

 Redundant software (multi-version programming)
sounds promising...

* But: errors are correlated, dominated by failure to
understand requirements (Leveson)

* Implementations often give different answers

Redundancy in the Boeing 737

Panama crash with 47 fatalities
6th June 1992

: ._ * Need to know which way up

" * New EFIS (each pilot), WW?2
artificial horizon (top right)

e EFIS failed due to loose wire

e Both EFIS fed off same inertial
navigation set

* Pilots watched EFIS, not AH

* And again: Korean Air cargo
747, Stansted 22" Dec 1999

Lower photo: CC-BY-SA Markus Vitzethum 173

Kegworth crash, 47 fatalities
. 8™ January 1989

.-’.-‘
B !

- -,

;

- o' ‘
2 . -~ 2 e b
Lty \ -
IV SI™RE (S
- o AT -

 Fan blade broke

A Ga) = * Crew shutdown wrong
‘ engine

* Emergency landing at
East Midlands

* Opened throttle on final
approach: no power

* Initially blamed wiring;
later cockpit design

174

Aviation is actually an easy case

* |t's a mature evolved system

e Stable components: aircraft design, avionics design,
pilot training, air traffic control ...

* Interfaces are stable
* Crew capabilities are well known

* The whole system has good incentives for learning
— much better than with medical devices

* Excellent regulation and reporting

Still complex social-technical system that exhibits failure

Understand and prioritise hazards

Example from the motor industry:

1.

2.

Uncontrollable: outcomes can be extremely
severe and not influenced by human actions

Difficult to control: very severe outcomes,
influenced only under favourable circumstances

Debilitating: usually controllable, outcome at
worst severe

Distracting;, normal response limits and outcome
to minor

Nuisance: affects customer satisfaction but not
normally safety

Managing safety and security
across the software litecycle

* Develop a safety case or security policy

* Design a management plan

* |dentify critical components

* Develop test plans, procedures, training

* Plan for and obtain certification

* Integrate all the above into your development

methodology (waterfall, spiral, evolutionary, ...

)

Most mistakes occur outside the
technical phases

Challenging parts are often:
* Requirements engineering
* Certification

* Operations

e Maintenance

This is due to the interdisciplinary nature of these

parts, involving technical staff, domain experts, users,
cognitive factors, politics, marketing, ...

The Internet of Things:
safety now includes security

* Cars, medical devices, electricity grid all have 10+
vear lifetimes as well as formal certification

* All contain software; will be Internet connected

* Apparent conflict between safety and security
e E.g. first DDoS attack (Panix ISP) was from driven from
hacked Unix machines with medical certification

* Good security requires us to move to monthly
patching, yet this conflicts with the safety case

Software engineering tools help
us manage complexity

Homo sapiens uses tools when some parameter of a
task exceeds our native capacity. So:

* Heavy object: raise with lever
* Tough object: cut with axe

e Software complexity: ?

Good tools eliminate incidental
and manage intrinsic complexity

Incidental complexity: dominated programming in
the early days, including writing programs in
assembly. Better tools eliminate such problems.

Intrinsic complexity: the main problem today, since
we now write complex systems with big teams. There
are no solutions, but tools help, including structured
development, project management tools, ...

High-level languages remove
incidental complexity

e 2 KLOC per year goes much farther than assembler
* Code easier to understand and maintain

* Appropriate abstraction: data structures, functions,
objects rather than bits, registers, branches

 Structure finds many errors at compile time

* Code may be portable; or at least, the machine-
specific details can be contained

Huge performance gains possible, now realised

High-level languages support
structure and componentisation

Much historical work on both languages and language
features, including:

e “Goto statement considered harmful” (Dijkstra, 1968)
e Structured programming with Pascal (Wirth, 1971)
* Object-oriented programming (see OOP course)

Don’t forget: this is to manage intrinsic complexity

~ormal methods find bugs,
out it is fallible

History:

* Turing talked about proving programs correct
* Floyd-Hoare logic; Floyd (1967), Hoare (1969)
* HOL; Gordon (1988)

* /Z notation

* BAN logic

Static analysis tools are a useful
result of formal methods

DOI:10.1145/1646353.1646374

How Coverity built a bug-finding tool, and
a business, around the unlimited supply
of bugs in software systems.

BY AL BESSEY, KEN BLOCK, BEN CHELF, ANDY CHOU,
BRYAN FULTON, SETH HALLEM, CHARLES HENRI-GROS,
ASYA KAMSKY, SCOTT MCPEAK, AND DAWSON ENGLER

A Few Billion
Lines of
Code Later

Using Static Analysis
to Find Bugs in
the Real World

like all static bug finders, leveraged
the fact that programming rules often
map clearly to source code; thus static
inspection can find many of their vio-
lations. For example, to check the rule
“acquired locks must be released,” a
checker would look for relevant opera-
tions (such as lock() and unlock())
and inspect the code path after flagging
rule disobedience (such as lock() with
no unlock() and double locking).

For those who keep track of such
things, checkers in the research system
typically traverse program paths (flow-
sensitive) in a forward direction, going
across function calls (inter-procedural)
while keeping track of call-site-specific
information (context-sensitive) and
toward the end of the effort had some
of the support needed to detect when a
path was infeasible (path-sensitive).

A glance through the literature re-
veals many ways to go about static bug
finding.">*7%!* For us, the central re-
ligion was results: If it worked, it was
good, and if not, not. The ideal: check
millions of lines of code with little
manual setup and find the maximum
number of serious true errors with the
minimum number of false reports. As
much as possible, we avoided using an-
notations or specifications to reduce

T I D

185

Software and Security
Engineering

Lecture 7/
Martin Kleppmann
mk428@cam.ac.uk

With many thanks to Ross Anderson

Security protocols

e Security protocols are another intellectual core of
security engineering

* They are where cryptography and system
mechanisms (such as access control) meet

o T
il

o T

ney introduce an important abstraction, and
ustrate adversarial thinking

ney often implement policy directly

* And they are much older then computers...

Ordering wine in a restaurant

1. Sommelier presents wine list to host
2. Host chooses wine; sommelier fetches it
3. Host samples wine; then it’'s served to guests

Security properties?

Car unlocking protocols

Static Non-interactive Interactive
T—>E: K T— E: T, {T,N} E—>T:N
T — E: {T,N},

N: nonce; a sequence number, random number or timestamp
E: engine unit

T: car key fob or transponder

K: secret key shared between Eand T

{x} : encrypt x with K

|[dentify Friend or Foe (IFF)

* Basic idea: fighter challenges bomber
F—>B: N
B — F: {N},

* What can go wrong?

Person-in-the-middle attack...

 Basic idea: fighter (F) challenges bomber (B)
F—>B: N
B — F: {N},

 What if the bomber reflects the challenge back at
the fighter’s wingman (W)?
F—>B: N
B—> W:N
W — B: {N},
B — F: {N},

N?

~ ™~
ANGOLA N ANK

SAAF

NAMIBIA

Two-factor authentication (2FA)

T—U:N /
U— C:N,PIN /W}

C — U: {N, PIN},
U — T:{N, PIN},

T: terminal U: user

C: calculator K: key known to bank and C
PIN: secret known to bank and U

Card authentication protocol

e Allows EMV cards to be used
in online banking

e Users compute codes for
access, authorisation

e A good design would take PIN
and challenge / data, encrypt
to get response

* But the UK one first tells you
if the PIN is correct

* What can go wrong with this?

194

Alice and Bob want to talk. They
each share a key with Sam. How?

 Alice contacts Sam and asks for a key for Bob

 Sam sends Alice a key encrypted in a blob only she
can read, and the same key also encrypted in
another blob only Bob can read

* Alice calls Bob and sends him the second blob

How can they check the protocol’s fresh?

Kerberos uses tickets to support
communication between parties

A—>S:A B
S — A: {TSI I—; KAB’ B; {TS, I—r KABI A}KBS}KAS
A —> B: {TS’ I—; KAB) A}KBSI {A, TA}KAB

A: Alice B: Resource (e.g. printer)
S: Server T.: Server timestamp
Kas: Secret key shared between A and S

Kgs: Secret key shared between B and S

K,g: Shared session key for A and B

L: Lifetime of the session key

-uropay-Mastercard-Visa (EMV)
How might you attack this?

C — M: sigy{C, card_data}

M — C: N, date, Amt, PIN (if PIN used)

C —> M: {N, date, Amt, trans_data},s

M — B: {{N, date, Amt, trans_data},s, trans_data} s
B—> M — C: {OK}g

C: Card sigy{x}: message x digisigned by Y
M: Merchant {x},: Message x encrypted under K
B: Bank Kyy: Shared key between X and Y

Replace insides of the terminal
with your own electronics

—‘

e Capture card details and
PINs from victims

* Use to perform person-in-
the-middle attack in real
time on a remote terminal

e H in a merchant selling

| 00286 expensive goods

@@= |

aeoe
=SS

198

The relay attack: unstoppable but
unrealistic — too hard to scale

attackers can be on opposite
sides of the world

199

Magstripe
fraud is
scalable

—

Photo credit: Brian Krebs, krebsonsecurity.com

e Install fake terminal and collect card data and PINs
* Either physically or wirelessly collect data

200

The no-PIN attack (2010)

C — M: sigg{C, card_data}

M — C: N, date, Amt, PIN

C — C: N, date, Amt, No PIN required

C — M: {N, date, Amt, trans_data},

M — B: {{N, date, Amt, trans_data},.s, trans_data’} s
B—> M — C: {OK}s

C: MITM card shim

C: Card sig,{x}: message x digisigned by Y
M: Merchant {x}: Message x encrypted under K
B: Bank Kyy: Shared key between Xand Y

Fixing the no-PIN attack: simpler
orotocol required

* In theory might compare card data with terminal
data at terminal, acquirer, or issuer

* In practice has to be the issuer since incentives for
terminal and acquirer are poor

* Barclays introduced a fix July 2010; removed
December 2010. Banks asked for student thesis to
be taken down from web instead.

* Eventually fixed for UK transactions in 2016
* Real problem: EMV spec now far too complex

The preplay attack (2014)

* |In EMV, the terminal sends a random number N to
the card along with the date d and the amount Amt

* The card authenticates N, d and Amt using the key
it shares with the bank, K

* What happens if | can predict N for date d?

* Answer: if | have access to your card | can
precompute an authenticator for Amt and d

Symmetric key cryptography
requires careful sharing of keys

nand

\ \
AL N

Tede ~tmpelne Taoesidylaffel oft acheim

Cuftwaffen-Mafdyinen- Syliiffel Nr. 649

Achruna’ Salifeimittel diclon nidyt unoerfehet in feindeshand fallen. Bei Gefohrreftlos und feiihyeitig verniditen.

m

Hne

e im Jluojeug oerbolen’

Nr.

(01910

2

1n

1

1

Lo ws molniolo S

111

v

44

Il

u

111

05

12

N

17

08
05
24
(]|

13
24
17
15
21

o1
15
13
18
02
23
16
13
09

23
04
19
16
1 23

1

5
)

on Ber Umkehemolye

Kid AX PZ
DI CN BR

e v

\
S7
1S
00 . py

PV . CR

LT EQ HS UV .DY

VL
i OR

—————————

1U AS DV
FT OX EZ
MR KN BQ

(s
[IQY
oL | FJ
cn | RU
pw | PF
lOX

EJ

IR

AL BT MV
FW EL DG
RZ 0Q CP

IL AP EU
QT WZ KV

HM
DS

Hu 1.GM

k| LY
1 MU
SR kN
i LR
i

e
FI

. UX
. DQ
"MV
A

HO

BF NR DX CS ' KR

BN
DFP

N eI
om Stecherbrelt

GT
EV
AT
FV
IN
LL
PV
AS
FR
ES
HL
o
PR

oY

KZ
JO
HY
JR
AG
BP
vy

1K

BS
NQ

124

GU
CL
BL
MP
HU
BM

3

DV
MX
cV
Al
BV
RT
AD
oW
AK
IM
PY
QZ
Fil
1v
LS
DI
MR
KS
K)l(
cY
HR
MS
LN
SY
HN
BW
GK
0%
CN
EG
NZ

.

KU
RW
10
DK
aR
KO
IT
KV
EO
RX
oS
AU
WY
AQ

EM’

NR
aw
1Y
BR
RZ
PW
QU
KT
cu
BK
NP
0Q
EK
BF
PY
CK

v

4

FO
DT
ER
oT
AM
ca
PK
JM
DH
LV
Gz
RY

DL
KW
oV

BY
LX

HZ_

1Q
KX
FM
HW

AP

BZ
aQ
HK
BI
QW
EH
KQ
ay

unage

MY
uz
QS
1Q
LO
El
HJ
DR
CJ
AY
DM
SV
CM
FX
aY
XZ
AJ
PL
JU
AN
BO
PT
1U
AH
cP
AZ
FU
QP
DZ
CP
HQ

6

! Nenngruppen
1 L] ° 0
EW JN IX LQ| wny dgy ezb rzg
JQ A0 CH NY| wt1 acw | zsi wao
LW PZ FN BH jioc =ac¢n ovw wvd
EU BX LP GJ 1rb cld ude rzh
FP HT EX UW woj fbh vet uis
BJ DU FS HP xle gbo uev rxm
LZ NS EQ CW ouc¢ uhg uew uit
X GL CZz NU| kpl rwl vei tig
MZ SX GN LT ebn rwm udf tlo
OU BG WZ CN| Jjgc acx mwe Wwve
AW CE TV NX | Jjpw del mwf wvf
JL 6X PE TW| jqd .cef | nvo ysh
ABLATZS ST GX idf fpx jwg tlg
WP PS LU BD| 1sa gbw | vej Txn
QX AP JP "BU mae hzi | sog ysi
0s PU PQ CT| tdp dnb | fxb uiv
BQ €O IP NT 1dw hzj soh WVE
AX BT C€Q NV | imz noa [tiv xtk
HV SW ET CX 2gr dgz gjo rye
JT DG IL FPW 2dy rkf tiw xtl
EZ QT DX JV zez TIjy sol Wwvh
00 VX PZ EN| 1lrc zbx vbm TXo0
DW HO RV JZ edj eyr vby tilh
Bl TX ‘DO KE yiz dha ekc t_li__
FT JY MW AR lan dgb zsj wbi
cI PO JX VY lao cft zs% ¥Wbj
HS PX NW EY 1ju cdr iye waj
SU DH JM TX| 1sb zdby | vey ujd
IW AV GJ LO lap owd iwu wak
0S JW Al VZ | aqd bdy iyl xtd
'A_P___l_.{Y _SW JO kgl Tcdf giq wuyv

204

Software and Security
Engineering

Lecture 8
Martin Kleppmann
mk428@cam.ac.uk

With many thanks to Ross Anderson

Public key cryptography

Allows two parties with no prior knowledge of each
other to jointly establish a shared secret key over
an insecure channel

Examples include Diffie-Hellman and RSA

Diffie Hellman revision
Alice and Bob publicly agreetouse p=23,g=5

1. Alice chooses secret integer a = 4, then
A—B:g2modp=5*mod23=4

2. Bob chooses secret integer b = 3, then
B— A:g°>mod p=53mod23=10

3. Alice computes 10* mod 23 =18
4. Bob computes 4°> mod 23 =18

Alice and Bob now agree the secret integer is 18

Example derived from https://en.wikipedia.org/wiki/Diffie-Hellman key exchange

https://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange

Physical public key crypto with
ocks

* Anthony sends a message in a box to Brutus. Since
the messenger Is loyal to Caesar, Anthony puts a
padlock on it

* Brutus adds his own padlock and sends it back to
Anthony

 Anthony removes his padlock and sends it to
Brutus, who can now unlock it

Is this secure?

Asymmetric public-key crypto

» Separate keys for encryption and decryption

* Publish encryption key widely (the “public key”)
allowing anyone to create an encrypted message;
only holder of decryption key (“private key”) can
decode the message and read it

* Digital signatures are the other way around: only
you can sign but anyone can verify

* Example: RSA

Public-key Needham-Shroeder

* Proposed in 1978:

A — B: {N,, A}cs
B — A: {Na, Nglya
A — B: {Ngha

* N, and Ny are nonces generated by A and B respectively
* K, and K; are public keys for A and B respectively
* The idea is to use N,@®N; as a shared key

Is this okay?

MITM attack found 18 years later

A — C:{N,, Al

C > B: {N, Al
B— C: {NA, Ngka
C — A: {N,, Ngka

A — C: {Ng}c

C > B: {Ng}e

The fix is explicitness. Put all names in all messages.

Binding keys to principals is hard

* Physically install binding on machines
* [PSEC, SSH

* Trust on first use; optionally verify later
» SSH, Signal, simple Bluetooth pairing

e Use certificates with trusted certificate authority
e Sam signs certificate to bind Alice’s key with her name
* Certificate = sig A, K,, Timestamp, Length}
 Basis of Transport Layer Security (TLS) as used in HTTPS
e Use certificate pinning inside an app
* Used by some smartphone apps

Transport Layer Security (TLS)

e Uses public key cryptography and certificates to
establish a secure channel between two machines

* Protocol proven correct (Paulson, 1999)
* Yet, the protocol is broken annually

e Often a large number of root certificate authorities.
Are these all trustworthy?

DigiNotar went bust after issuing
nogus certificates

e Dutch certificate authority

* More than 300,000 Iranian Gmail users targeted

* More than 500 fake certificates issued

* Major web browsers blacklisted all DigiNotar certs

TLS security landscape is complex

N Home Projects Qualys Free Trial Contact

S =dualys. ssi Labs

You are here: Home > Projects > SSL Server Test > www.cst.cam.ac.uk

SSL Report: www.cst.cam.ac.uk (131.111.150.25)

Assessed on: Fri, 05 Apr 2019 15:49:48 UTC | Hide | Clear cache Scan Another »

Summary

Overall Rating

Certificate

Protocol Support

Key Exchange

Cipher Strength

0 20 40 60 80 100

Visit our documentation page for more information, configuration guides, and books. Known issues are documented here.

This site works only in browsers with SNI support. 215

Chosen protocol attack

The Mafia asks people to sign a random
challenge as proof of age for porn sites!

Picture 1431 | Buy 10 gold coins,_ .
Prove your age v Sign ‘X
by signing ‘X’
>
sigy X} sigp {X} BANK

Customer Mafia porn
site

Bugs are found in and around code

* Bugs in the code
* Arithmetic
* Syntactic
* Logic
* Concurrency
* Bugs around the code

e Code injection
e Usability traps

RS SRR
German Air Force; CC-BY-SA, Darkone,
Wikipedia

* Failed to intercept an Iraqi Scud missile in first Gulf
War on 25% February 1991

e Scud struck US barracks in Dhahran; 28 dead
e Other Scuds hit Saudi Arabia, Israel

Afgan National Army; PD, Davric, Wikipedia

218

Caused by arithmetic bug

» System measured time in 1/10 sec, truncated from
0.0001100110011...,

e Accuracy upgraded as system upgraded from air-
defence to anti-ballistic-missile defence

* Code not upgraded everywhere (assembly)
* Modules out by 1/3rd sec after 100h operation
* Not found in testing as spec only called for 4h tests

Lesson: Critical system failures are typically
multifactorial

Syntactic bugs arise from features
of the specific language

For example, in Java:

1 + 2 + "" evaluatesto"3"
"m 4+ 1 4+ 2 evaluatesto"12”

This is due to coercion from primitive integers to
java.lang.String

Apple’s goto fail bug (2014)

static OSStatus SSLVerifySignedServerKeyExchange (SSLContext *ctx,
bool 1sRsa, SSLBuffer signedParams,
ulnt8 t *signature, UIntl6 signaturelen)

OSStatus err;

((err = SSLHashSHAl.update (&hashCtx, &serverRandom)) != 0)
goto fail;

((err = SSLHashSHAl.update (&hashCtx, &signedParams)) != 0)
goto fail;

goto fail; //error: this line should not exist

((err = SSLHashSHAl.final (&hashCtx, &hashOut)) != 0)

goto fail;

fail:
SSLFreeBuffer (&signedHashes) ;
SSLFreeBuffer (&hashCtx) ;

return err;
221

HOW THE HEARTBLEED BUG WORKS:

IF 50, REPLY "POTATO" (b LETTERS).

)

SERVER, ARE YOU STiLL THERE?
ser Meg wants these 6 letters: POTATO.

ser Meg wants these 6 letters: POTATO.

O
OO

Credit: https://xkcd.com/1354/

Heartbleed allows clients to read
the contents of server memory

Therefore a malicious client could read:

* Secret keys of any TLS certificates used by server
e User creds such as email address and passwords
* Confidential business documents

* Personal data

The attack left no trace of use in server logs

Notification and clean-up difficult

12th March 2012 Bug introduced (OpenSSL 1.0.1)

15t April 2014 Google secretly reports vuln
3 April 2014 Codenomicon reports vuln
7t April 2014 Fix released

7t April 2014 Public announcement

9th May 2014 57% of website still using old
TLS certificates

20t May 2014 1.5% of 800,000 most popular
websites still vulnerable

Intel AMT Bug

 AMT allows sysadmins remote access to a machine,
even when turned off (but mains power on)

* Provides full access to machine, independent of OS

* A sketch of the protocol for authentication
between machine and remote party is as follows:

C — S: “Hi. I'd like to connect”
S — C: “Please encrypt X with our secret key”
C — S: “Here are the first x bytes of {X}”

Concurrency bug: time of check
to time of use failure (TOCTOU)

< file = new File(args[0]);
2 if(!file.canWrite())

O return;

)

n fp = new

< L

RandomAccessFile (file, "rw'")
fp.writeChars ("Some replacement text'")
fp.close();

A 'Y N9

Adapted example from https://en.wikipedia.org/wiki/Time of check to time of use
226

https://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

Clallam Bay Jail inmates perform
code injection on payphones

Inmate typed in the number they wished to call

2. Inmate selected whether the recipient spoke
Spanish or English

3. Inmate was asked to say their name; “Eve”, say

4. The phone then dialled the number and read out
a recorded message in chosen language and
appended inmate name to the end:

“An inmate from Clallam Jail wishes to speak
with you. Press three to accept the collect
call charges. The inmate’s name is” ... “Eve

V24

Software and Security
Engineering

Lecture 9
Robert Harle
rkh23@cam.ac.uk

With many thanks to Ross Anderson

Chief programmers (IBM, 1970s)

Aim: avoid loss of great programmers to management
and capitalise on wide productivity variance

* Teams consisting of chief programmer, apprentice,
toolsmith, librarian, admin assistant, etc.

* Can be effective during implementation
* But each team can only do so much

Egoless programming: minimize
personal factors (Weinberg, 1971)

* Code should be owned by the team
* Direct opposite to the Chief Programmer approach

* Groupthink can entrench bad practice deeply

Literate programming (Knuth, 1984)

* Treat programs as literature, readable by humans
* Primarily a work of literature, with code added

* Literate programs are compiled in two ways:

* Weaving: a comprehensive human-readable document
about the program and its maintenance.

* Tangling: the machine executable code

* Literate programming is not documentation
embedded in code, such as Javadoc.

Capability Maturity Model
(Humphrey, 1989)

1.

Initial (chaotic, ad hoc, individual heroics) — the
starting point for use of a new process

Repeatable — the process is able to be used
repeatedly, with roughly repeatable outcomes

Defined — the process is defined/confirmed as a
standard business process

Managed — the process is managed according to
the metrics described in the Defined stage

Optimized — process management includes
deliberate process optimization/improvement

Extreme programming (Beck, 1999)

* lterative development with short cycles

* Automated build and test suites

* Frequent points to integrate new requirements
* Solve the worst problem, repeat

* Avoid programming a feature until needed

* Programming in pairs, one keyboard and screen
* Extensive code review

Agile software development (2001)

Four values:

* Individuals and interactions over processes and tools

* Working software over comprehensive documentation
* Customer collaboration over contract negotiation

* Responding to change over following a plan

Also twelve principles (see related work), including
frequent release, daily meetings, working software as
measure of progress, regular reflection, etc.

The specification still matters

Curtis (1988) found causes of failure were:

1. Thin spread of application domain knowledge
2. Fluctuating and conflicting requirements

3. Breakdown of communication, coordination

Causes were very often linked, and the typical
progression to disasterwas1 —> 2 —> 3

Specification is hard: thin spread
of application domain knowledge

* How many people understand everything about
running a phone service, bank or hospital?

* Many aspects are jealously guarded secrets

* Some fields try hard to be open, e.g. aviation
* With luck you might find a real ‘guru’

* You should expect mistakes in specification

Specification is hard: fluctuating
and conflicting requirements

 Competing products, new standards, fashion
* Changing environment (takeover, election, ...)

* New customers (e.g. overseas) with new needs

The specification can kill you

* Spec-driven development of large systems leads to

communication problems since N people means
N(N-1)/2 channels and 2N subgroups

* Big firms have hierarchy; if info flows via ‘least
common manager’, bandwidth will be inadequate

* Proliferation of committees, staff departments
causing politicking, blame shifting

* Management attempts to gain control result in
restricting many interfaces, e.g. to the customer

Project management: plan,
motivate, control

A manager’s job is to:
* Plan
* Motivate
e Control

* The skills involved are interpersonal, not technical;
but managers must retain respect of technical staff

* Growing software managers a perpetual problem!
(Managing programmers is like herding cats.)

* Nonetheless there are some tools that can help

Project management triangle

Scope

Quality

Cost Time

Gantt charts: tasks and milestones

Q
— Q
s s
o
S =
||||||||||||||||||| O o w —
X) O
S B 3
IIIIIIIIIIIIIIIIIIIIIIII m - e e e
Q Q
o 3
|||||||| nlUl = e () - /0 - ——
£ €)
(@] @] i
o c- —
3] LN
s N/
- — m - ||.,v —— b - -
(@]
(<

241

Can be hard to visualise dependencies in large charts

PERT charts: show critical paths

Which paths are critical?

Motivating people in groups

* People can slack in groups (free rider, social loafing)
* Competition no good: people who don’t think they
will win stop trying

 Dan Rothwell’s three C’s of motivation:

* Collaboration — everyone has a specific task
* Content — everyone’s task clearly matters
* Choice — everyone has a say in what they do

* Many other factors

Testing: half the effort (and cost)

Happens at many levels:

* Design validation, UX prototyping
* Module test after coding

e System test after daily build

* Beta test / field trial

* Subsequent litigation

Cost per bug rises dramatically down this list!

Design for testability, use Cl and
automate regression testing

Regression Tests: check that new versions of the
software give same answers as old versions

e Customers more upset by failure of a familiar
feature than at a new feature which does not work

* Without regression testing, 20% of bug fixes
reintroduce failures in already tested behaviour

e Test the inputs that your users actually generate
* In hard-core Agile philosophy, tests are the spec

A MTBF of x requires testing for x

* Reliability growth models help us assess MTBF,
number of bugs remaining, use in further testing, ...

* Probability, p;, that a particular defect remains after t

tests is: |
p; = e—Elt
where E; is the virility of the defect

* Yet in large systems, likelihood that the t-th test fails
is proportional to k/t, where k is a constant.

Take away: for 10 hours MTBF, must test >10% hours

Changing testers finds more bugs

Bugs

Tester 1 Tester 2 Tester 3

Time

Think about diversity & inclusion

Check your photo
1. Background and lighting

Your photo must have:

* aplain light-coloured background - without texture or pattern
* balanced light - no shadows on your face or behind you

* no objects behind you

2. Your appearance

Make sure:

* the photois a good likeness taken in the last month

* your whole face is visible with your eyes open

* you have a plain expression - no smile and mouth closed

« there are no reflections or glare (if you have to wear glasses)

* you're not wearing headwear (unless for religious or medical reasons)

3. Photo quality and format

Your photo must:

* bein colour, with no effects or filters

* not be blurred or have ‘red eye’

¢ be unedited - you can't ‘correct’ your passport photo

Our automated check suggests

¢ we can't find the outline of your head

Your photo

“Today, | simply wanted to
renew my passport online.
After numerous attempts
and changing my clothes
several times, this example
illustrates why | reqularly
present on Artificial
Intelligence/Machine
Learning bias, equality,
diversity and inclusion”
@CatHallam1

248

Tests should exercise the
conditions when system is in use

* Many failures result from unforeseen input or
environment conditions (e.g. Patriot)

 Random testing — fuzzing — now good practice

* Incentives matter: commercial developers look for
friendly certifiers, while military, NASA, DoE
arrange hostile review

* So: to whom do you have to prove what?

Keeping all documents in sync is
nard

* How will you deal with management documents
(budgets, PERT charts, staff schedules)?

* Engineering documents (requirements, hazard
analyses, specifications, test plans, code)?

* Possible partial solutions:
* High tech: integrated development environment
* Bureaucratic: plans and controls department
e Social consensus: style, comments, formatting

Release management: from
development code to production

1.0 1.1 1.2

>

Version 1.x release branch

* Main focus is on stability

2.0

2.1

p—

>

2.x branch

3.0

>

3.x branch

* Add copy protection, rights management

* Critical decision: patch old version or force

upgrade?

Change control and operations:
important and can be overlooked

* Change control and config are critical; often poor
* Objective: manage testing and deployment

 Someone must assess risk and be responsible for:
* Live running
Manage backup

Recovery
Rollback

* DevOps integrates development and operations

Vulnerability disclosure: the modern
consensus is coordinated disclosure

Possible options for discoverer:
1. Disclose without notice: a zero day

2. Publicly disclose after a fixed delay: coordinated or
responsible disclosure

3. Publicly disclose after vendor fix
4. No disclosure, but then vendor can’t fix

Vendors use bug bounty programmes to discourage 1.

Vulnerability lifecycle

1 23 5 6
4

Engineer introduces a bug

Someone discovers it

Coordinated disclosure; disclose at once; or exploit
Primary exploit window

Patch released

SO U kA wheE

Public notification of bug

 What about orphaned devices or Mirai?

Shared infrastructure provides
benefits & implies responsibilities

* We share a lot of code through open source
operating systems, libraries and tools

* Huge benefits but also interaction issues

* Can you cope with an emergency bug fix?

* How do you feed your fixes back to others?
* Do you encourage coordinated disclosure?
* Are you aware of different license terms?

Beware of agency issues

* Employees often optimize their own utility, not
project utility (recall London Ambulance Service)

* Bureaucracies are machines for avoiding blame
* Risk reduction becomes compliance

* Tort law reinforces herding: negligence judged ‘by
the standards of the industry’

* So firms do the checklists, use fashionable tools,
hire the big consultants...

Focus on outcomes over Process

* Metrics easier for regular losses (risk)
* But rare catastrophes are hard (uncertainty)

* How reassuring are fatality statistics? E.g. Train
Protection Systems, Tesla

e Accidents are random, but security exploits are not
* Product liability for death or injury is strict

Focus on Process over outcomes

* Necessary to adapt as environment changes

e Security development lifecycle is established

e Safety rating maintenance

* Blame avoidance is what bureaucracies do

* Public sector is really keen on compliance

* But leaves a gap of residual risk and uncertainty

Getting incentives right is both
important and hard to do

 The world offers hostile review, which we tackle in
stages

* Some use hostile reviewers deliberately

e Standard contract of sale for software in Bangalore:
seller must fix bugs for 90 days

e Businesses avoid risk (regulatory games)

UK’s Digital Service Standard: an
example pulling it all together

Understand user needs

Do ongoing research

Have a multidisciplinary team
Use agile methods

lterate & improve frequently
Evaluate tools and systems

Understand security & privacy
issues

Make all new source code open

Use open standards and
common platforms

Test the end-to-end service

Make a plan for being offline

Make sure users succeed first
time

Make the user experience
consistent with GOV.UK

Encourage everyone to use the
digital service

Collect performance data
|dentify performance indicators

Report performance data on the
Performance Platform

Test with the minister

The future is challenging: how to
we provide safety and security?

e Car manufactures must do pre-market testing
e Cars now contain lots of safety critical software

e Security requires us to patch bugs when they are
found, yet this might invalidate safety case

* How will today’s car get patches in 20397 2049?
* What new tools and ideas do we need?

Software engineering is about
managing complexity
e Security and safety engineering are going in the

same direction

* We can cut incidental complexity using tools, but
the intrinsic complexity remains

* Top-down approaches can sometimes help, but
really large systems evolve

* Safety and security are often emergent properties

e Remember: all software has latent vulnerabilities

Software and security engineering
stretches well beyond the technical

 Complex systems are social-technical
* Institutions and people matter

* Confluence of safety and security may make
maintenance the limiting factor

The End

Alastair R. Beresford — arb33@cam.ac.uk
Richard Mortier — rmm1002@cam.ac.uk
Anil Madhavapeddy — avsm2@cam.ac.uk
Martin Kleppmann — mk428 @cam.ac.uk
Richard Sharp — rws26@cam.ac.uk
Robert Harle — rkh23@cam.ac.uk

With many thanks to Ross Anderson

	Slide 1: Software and Security Engineering
	Slide 2: Aims
	Slide 3: Objectives
	Slide 4: Books
	Slide 5: Make use of additional reading
	Slide 6: Use the ICAP framework to guide your learning
	Slide 7: Using laptops in lectures can harm everyone’s learning outcomes
	Slide 8: Course Outline – key topics
	Slide 9: What is Security Engineering?
	Slide 10: The Design Hierarchy
	Slide 11: A system can be…
	Slide 12: Electric bike should not propel bicycle when speed exceeds 15.5 mph
	Slide 13: Security vs Dependability
	Slide 14: Subjects and principals
	Slide 15: Secrecy and privacy
	Slide 16: Anonymity, integrity, authenticity
	Slide 17: Trust is hard; several meanings…
	Slide 18: Errors, failures, reliability, accidents
	Slide 19: Hazards and risks
	Slide 20: Security policy, profile, and target
	Slide 21: What often passes as ‘policy’
	Slide 22: Traditional government approach
	Slide 23: Multilevel Secure Systems (MLS)
	Slide 24: Bell-LaPadula formal model
	Slide 25: Covert channels cause havoc
	Slide 26: High assurance MLS system
	Slide 27: Multilateral Security
	Slide 28: Biba formal model for integrity
	Slide 29: Software and Security Engineering
	Slide 30
	Slide 31: Architecture matters
	Slide 32: Swiss Cheese Model
	Slide 33: Safety policies
	Slide 34: Failure modes and effects analysis (bottom-up)
	Slide 35: Fault tree analysis (top-down)
	Slide 36: Example: nuclear bomb safety
	Slide 37: Bookkeeping, 8-4th millennium BCE
	Slide 38: Bookkeeping, circa 1100 AD
	Slide 39: Double-entry bookkeeping found in the Genizah Collection
	Slide 40: Separation of duties in practice
	Slide 41: Role-Based Access Control (RBAC) decouples policy and mechanism
	Slide 42: Summary of security and safety
	Slide 43: Do not ignore user behaviour
	Slide 44: Chevrolet 1959 vs 2009
	Slide 45: Hierarchy of harms
	Slide 46: Many abuses of mechanism
	Slide 47: Useable privacy is also hard
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: Medical device safety
	Slide 53: Bulk password compromise
	Slide 54: Phishing and social engineering
	Slide 55: Software and Security Engineering
	Slide 56: Warm-up: Write down your own top three pieces of password advice
	Slide 57: John Podesta email compromise by Fancy Bear (allegedly Russia)
	Slide 58: Cognitive factors
	Slide 59: Risk misperception
	Slide 60: Framing decisions about risk, or the Asian disease problem
	Slide 61: Social psychology
	Slide 62: Fraud psychology
	Slide 63: The Lottery Scam
	Slide 64: People only follow advice which confirms their own world view
	Slide 65: Affordances: Johnny Can’t Encrypt
	Slide 66: The power of default
	Slide 67: Economics versus psychology
	Slide 68: The compliance budget
	Slide 69: Where should the path be?
	Slide 70: Differences between people
	Slide 71: More accidents with Volvos?
	Slide 72: Understanding error helps us build better systems
	Slide 73: Training and practice reduce errors
	Slide 74: Passwords are cheap, but…
	Slide 75: User studies are important
	Slide 76
	Slide 77: Hardware and online support to limit brute force is challenging
	Slide 78: Mitigate worst effects of a stolen password file
	Slide 79: Which password hashing solution is the best? Why?
	Slide 80: Password recovery is a weak point
	Slide 81: A poor implementation of password recovery…
	Slide 82: Externalities need consideration
	Slide 83: Iterative guessing of card details with botnet on websites works
	Slide 84
	Slide 85: Amazon ⇢ Apple ID ⇢ Gmail ⇢ Twitter (And all they wanted was his three letter Twitter handle!)
	Slide 86
	Slide 87: Software and Security Engineering
	Slide 88: Okay Google, what’s a Whopper?
	Slide 89: The Morris Worm: breaking into computers at scale (1988)
	Slide 90: SQL Injection attack: failure to sanitize untrusted inputs
	Slide 91: Software countermeasures: systems and tools
	Slide 92: Software countermeasures: reducing bug number and severity
	Slide 93: We cannot write code without latent vulnerabilities
	Slide 94: OS versions of 50 LG handsets
	Slide 95: Link OS versions to database of vulnerabilities
	Slide 96: On average, 85% are vulnerable
	Slide 97: The Software Crisis
	Slide 98: London Ambulance Service disaster
	Slide 99: Project background
	Slide 100: Original dispatch system worked on paper with regional control
	Slide 101: Many problems with original system
	Slide 102: Computer-aided dispatch system
	Slide 103: Tender process was poor
	Slide 104: Phase one: design work ‘done’ in July and contract signed in August
	Slide 105: Phase two: full automation
	Slide 106: Circle of disaster on 26/7th October
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112: Collapse likely resulted in deaths
	Slide 113: Software and Security Engineering
	Slide 114: Warm up: What mistakes were made in the LAS system?
	Slide 115: Specification mistakes
	Slide 116: Project management mistakes
	Slide 117: Operational mistakes
	Slide 118: NHS National Programme for IT
	Slide 119: Universal Credit: fix poverty trap
	Slide 120: NAO: poor value for money, not paying 1 in 5 on time
	Slide 121: Smart meters: more centralisation
	Slide 122: Software engineering is about managing complexity at many levels
	Slide 123: Project failure, circa 1500 BCE
	Slide 124: On contriving machinery
	Slide 125: Bank of England, 1870
	Slide 126: Dun, Barlow & Co, 1876
	Slide 127: Sears, Roebuck and Company, 1906
	Slide 128: First National Bank of Chicago, 1940
	Slide 129: The software crisis, 1960s
	Slide 130: Those things which make writing software fun also make it complex
	Slide 131: How is software different?
	Slide 132: Software economics can be nasty
	Slide 133: Cost of software: development 10%, maintenance 90%
	Slide 134: Measuring cost of code is hard
	Slide 135: KLOC is a poor measure
	Slide 136: Early lessons: productivity varies, use a high-level language
	Slide 137: Barry Boehm surveyed relative costs of software development (1975)
	Slide 138: Mythical Man-Month: “adding manpower to a late project makes it later”
	Slide 139: Mythical Man-Month: “adding manpower to a late project makes it later”
	Slide 140: Time to first shipment is cube root of developer-months (Boehm, 1984)
	Slide 141: The Software Tar Pit
	Slide 142: Take a structured, modular approach
	Slide 143: The Waterfall Model (1970)
	Slide 144: The Waterfall Model (1970)
	Slide 145: Waterfall Model has advantages
	Slide 146: Waterfall fails where iteration is required, such as:
	Slide 147: Iterative development
	Slide 148
	Slide 149: Spiral model invariants
	Slide 150: Software and Security Engineering
	Slide 151: Warm up: Which motor reversing circuit is the safe?
	Slide 152: Evolutionary model
	Slide 153: The Integrated Development Environment (IDE) includes…
	Slide 154: Content-heavy apps benefit from four host types
	Slide 155: Assurance of critical software: must study how things fail
	Slide 156: Tacoma Narrows, 7th Nov 1940
	Slide 157: Hazard elimination
	Slide 158: Ariane 5, 4th June 1996
	Slide 159: Multi-factor failure
	Slide 160: Emergent properties
	Slide 161: Therac-25: radiotherapy machine
	Slide 162: Therac had two operating modes
	Slide 163: Therac-25 used software to enforce safe operation
	Slide 164: Therac-25 caused injuries
	Slide 165: Therac-25 killed three people
	Slide 166: Therac-25: East Texas deaths due to editing beam type too quickly
	Slide 167: Therac-25: root cause analysis
	Slide 168: Software safety myths: cheaper, easy to change, reliable
	Slide 169: Software safety myths: reuse, formal methods, testing and automation
	Slide 170: Stratus computer: redundant hardware for non-stop processing
	Slide 171: Redundant hardware does not solve software engineering issues
	Slide 172: Redundancy in the Boeing 737
	Slide 173: Panama crash with 47 fatalities 6th June 1992
	Slide 174: Kegworth crash, 47 fatalities 8th January 1989
	Slide 175: Aviation is actually an easy case
	Slide 176: Understand and prioritise hazards
	Slide 177: Managing safety and security across the software lifecycle
	Slide 178: Most mistakes occur outside the technical phases
	Slide 179: The Internet of Things: safety now includes security
	Slide 180: Software engineering tools help us manage complexity
	Slide 181: Good tools eliminate incidental and manage intrinsic complexity
	Slide 182: High-level languages remove incidental complexity
	Slide 183: High-level languages support structure and componentisation
	Slide 184: Formal methods find bugs, but it is fallible
	Slide 185: Static analysis tools are a useful result of formal methods
	Slide 186: Software and Security Engineering
	Slide 187: Security protocols
	Slide 188: Ordering wine in a restaurant
	Slide 189: Car unlocking protocols
	Slide 190: Identify Friend or Foe (IFF)
	Slide 191: Person-in-the-middle attack…
	Slide 192
	Slide 193: Two-factor authentication (2FA)
	Slide 194: Card authentication protocol
	Slide 195: Alice and Bob want to talk. They each share a key with Sam. How?
	Slide 196: Kerberos uses tickets to support communication between parties
	Slide 197: Europay-Mastercard-Visa (EMV) How might you attack this?
	Slide 198: Replace insides of the terminal with your own electronics
	Slide 199: The relay attack: unstoppable but unrealistic – too hard to scale
	Slide 200: Magstripe fraud is scalable
	Slide 201: The no-PIN attack (2010)
	Slide 202: Fixing the no-PIN attack: simpler protocol required
	Slide 203: The preplay attack (2014)
	Slide 204: Symmetric key cryptography requires careful sharing of keys
	Slide 205: Software and Security Engineering
	Slide 206: Public key cryptography
	Slide 207: Diffie Hellman revision
	Slide 208: Physical public key crypto with locks
	Slide 209: Asymmetric public-key crypto
	Slide 210: Public-key Needham-Shroeder
	Slide 211: MITM attack found 18 years later
	Slide 212: Binding keys to principals is hard
	Slide 213: Transport Layer Security (TLS)
	Slide 214: DigiNotar went bust after issuing bogus certificates
	Slide 215: TLS security landscape is complex
	Slide 216: Chosen protocol attack
	Slide 217: Bugs are found in and around code
	Slide 218: Patriot missile failures in Gulf War I
	Slide 219: Caused by arithmetic bug
	Slide 220: Syntactic bugs arise from features of the specific language
	Slide 221: Apple’s goto fail bug (2014)
	Slide 222
	Slide 223: Heartbleed allows clients to read the contents of server memory
	Slide 224: Notification and clean-up difficult
	Slide 225: Intel AMT Bug
	Slide 226: Concurrency bug: time of check to time of use failure (TOCTOU)
	Slide 227: Clallam Bay Jail inmates perform code injection on payphones
	Slide 228: Software and Security Engineering
	Slide 229: Chief programmers (IBM, 1970s)
	Slide 230: Egoless programming: minimize personal factors (Weinberg, 1971)
	Slide 231: Literate programming (Knuth, 1984)
	Slide 232: Capability Maturity Model (Humphrey, 1989)
	Slide 233: Extreme programming (Beck, 1999)
	Slide 234: Agile software development (2001)
	Slide 235: The specification still matters
	Slide 236: Specification is hard: thin spread of application domain knowledge
	Slide 237: Specification is hard: fluctuating and conflicting requirements
	Slide 238: The specification can kill you
	Slide 239: Project management: plan, motivate, control
	Slide 240: Project management triangle
	Slide 241: Gantt charts: tasks and milestones
	Slide 242: PERT charts: show critical paths
	Slide 243: Motivating people in groups
	Slide 244: Testing: half the effort (and cost)
	Slide 245: Design for testability, use CI and automate regression testing
	Slide 246: A MTBF of x requires testing for x
	Slide 247: Changing testers finds more bugs
	Slide 248: Think about diversity & inclusion
	Slide 249: Tests should exercise the conditions when system is in use
	Slide 250: Keeping all documents in sync is hard
	Slide 251: Release management: from development code to production
	Slide 252: Change control and operations: important and can be overlooked
	Slide 253: Vulnerability disclosure: the modern consensus is coordinated disclosure
	Slide 254: Vulnerability lifecycle
	Slide 255: Shared infrastructure provides benefits & implies responsibilities
	Slide 256: Beware of agency issues
	Slide 257: Focus on outcomes over process
	Slide 258: Focus on process over outcomes
	Slide 259: Getting incentives right is both important and hard to do
	Slide 260: UK’s Digital Service Standard: an example pulling it all together
	Slide 261: The future is challenging: how to we provide safety and security?
	Slide 262: Software engineering is about managing complexity
	Slide 263: Software and security engineering stretches well beyond the technical
	Slide 264: The End

