
This course is usually lectured by Prof Ross Anderson and therefore much of the
material is derived from an earlier version of the lecture course prepared by him.

1

Software and Security
Engineering

Lecture 1
Alastair R. Beresford

arb33@cam.ac.uk
With many thanks to Ross Anderson

1

This course is usually lectured by Prof Ross Anderson and therefore much of the
material is derived from an earlier version of the lecture course prepared by him.

2

Ross Anderson

2

1956 - 2024

3

Course outline and lecturers
2 May 1 What is a security policy or a safety case? Prof Beresford
5 May 2 Examples of safety and security policies Prof Mortier
7 May 3 Attitudes to risk Prof Mortier
9 May 4 The software crisis Prof Madhavapeddy

12 May 5 Software engineering as the management of
complexity

Prof Madhavapeddy

14 May 6 Software testing Prof Madhavapeddy
16 May 7 Security protocols Dr Kleppmann
19 May 8 Software as a Service (SaaS) Dr Sharp
21 May 9 Attacks on TLS Dr Kleppmann
23 May 10 Decentralised social protocols Dr Kleppmann
26 May 11 Critical systems Prof Harle

3

So far in Part 1A you have written small sample programs by yourself. Most software
development in industry is at a significantly larger scale, involving teams of people
and often involves safety or security requirements.

All significant pieces of software contain latent defects – bugs yet to be discovered.
This affects both safety and security.

In this course we look at what has gone wrong in the past through case histories, and
look at the development and management practices which have arisen in order to
avoid failures in the future.

4

Aims

• Introduce software engineering with focus on:
• Large systems
• Safety-critical systems
• Systems to withstand attack by capable opponents

• Illustrate what goes wrong

• Best practice to avoid failure

4

In order to write programs which meet tough assurance targets and work effectively
as a team member, you need to be able to apply appropriate programming best
practice as described in this course. For example, how to use version control for
source code, automated build systems, and suitable testing strategies.

An understanding of historical and current software development models such as
waterfall, spiral and agile methods will allow you to select the right approach for a
given project.

It is important to understand the terminology used (e.g. what is a bug, a hazard, or a
vulnerability?) so you can correctly understand case histories and can communicate
effectively with others.

An important aim is to prepare you for the Part IB group project. The techniques
described here will also help with your Part II and Part III projects as well as other
later courses such as Security and Concurrent and Distributed Systems.

5

Objectives

• By the end of the course, you should be able to:
• Write programs with tough assurance targets
• Work effectively as part of a team

• Understand
• Software development models
• Development lifecycle
• Understand bugs, vulnerabilities and hazards

5

This is a course which requires you to read around the subject. Textbooks are very
helpful for this course, and here are three which offer useful, complementary
perspectives.

R. Anderson, Security Engineering (3rd Edition, 2020). You may like to start by reading
Part I and also Chapters 25 and Chapter 26. The 2nd Edition is also very relevant and
available online: https://www.cl.cam.ac.uk/~rja14/book.html

M. Howard and D. LeBlanc, Writing Secure Code (2nd Edition, 2003).

N. Leveson, Safeware: System Safety and Computers (1994). See also her more recent
book, System Safety Engineering: Back To The Future (2002), which is also available
online: http://sunnyday.mit.edu/book2.pdf

6

Books

6

https://www.cl.cam.ac.uk/~rja14/book.html
http://sunnyday.mit.edu/book2.pdf

In addition to the core textbooks, these are some of the additional textbooks,
academic articles and white papers which you may find interesting.

The course materials page contains further links to related reading and an annotated
slide deck:
https://www.cl.cam.ac.uk/teaching/current/SWSecEng/materials.html

You should not feel constrained to these materials. Read about any application areas
which are interesting to you. This will help both with your general understanding and
also provide you with useful perspectives and examples which you can use to inform
your future career as well as supporting material to refer to in the forthcoming Tripos
examinations.

Remember: wide-reading driven by curiosity will help a lot with this course.

7

Make use of additional reading
F.P. Brooks, The Mythical Man Month
J. Reason, The Human Contribution
S.W. Thames, Report of the Inquiry into the London
Ambulance Service
S. Maguire, Writing Solid Code
H. Thimbleby, Improving safety in medical devices and
systems
O. Campion-Awwad et al, The National Programme for IT
in the NHS – A Case History

https://www.cl.cam.ac.uk/teaching/current/SWSecEng/
materials.html

7

https://www.cl.cam.ac.uk/teaching/current/SWSecEng/materials.html
https://www.cl.cam.ac.uk/teaching/current/SWSecEng/materials.html
https://www.cl.cam.ac.uk/teaching/current/SWSecEng/materials.html

”interactive activities are most likely to be better than constructive activities, which in
turn might be better than active activities, which are better than being passive.”

Michelene Chi, Active-Constructive-Interactive: A Conceptual Framework for
Differentiating Learning Activities, Topics in Cognitive Science, 1(1):73-105 2009.
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1756-8765.2008.01005.x

Examples of different types of learning:
• Interaction: discussing with peers, a supervision
• Construction: completing an example sheet, writing a summary in your own words
• Active: Taking notes of what the lecturer says, highlighting a passage
• Passive: Reading a book, listening to a lecture or video

Takeaway message: You need to read books and papers, but to really understand the
material, you need to build artefacts, talk to others and critique the ideas.

8

Use the ICAP framework to guide
your learning

• Interactive
• Constructive
• Active
• Passive

8

“Teachers open the door,
But you must enter by yourself.
Tell me and I forget.
Teach me and I remember.
Involve me and I learn.”
 – Benjamin Franklin

Or: reading is essential but insufficient

https://onlinelibrary.wiley.com/doi/full/10.1111/j.1756-8765.2008.01005.x

Many studies in recent years have found that using laptops in lectures adversely
affects learning outcomes, not just for the user, but also for those sitting nearby.
Studies have also shown that writing with a pen aids recall over the use of laptops, as
seen here. If you normally use a laptop, try using a pen and paper (or tablet and pen)
for this course.

If you really want to use a laptop, then try and summarise what I say (a constructive
activity), don’t transcribe the lecturers presentation verbatim (merely an active
learning activity). If you want to browse the Internet, then please do that elsewhere,
not in the lecture. (Lecture attendance in Cambridge is not compulsory.)

Paper reference: Pam Mueller and Daniel Oppenheimer. The Pen Is Mightier Than the
Keyboard: Advantages of Longhand Over Laptop Note Taking, Psychological Science,
1(10), 2014. https://cpb-us-
w2.wpmucdn.com/sites.udel.edu/dist/6/132/files/2010/11/Psychological-Science-
2014-Mueller-0956797614524581-1u0h0yu.pdf

Further reading: https://cs.brown.edu/courses/cs019/2018/laptop-policy.html

9

Using laptops in lectures can harm
everyone’s learning outcomes

9

https://cs.brown.edu/courses/cs019/2018/laptop-policy.html

Security Engineering as a discipline focuses on the tools, processes and methods
needed to design, implement and test complete systems, and to adapt existing
systems as their environment evolves. Note that safety engineering has a similar high-
level goals.

When considering the security or safety of the system, it is not sufficient to look at
each component in isolation (although that is important). It is essential to look at
how the whole system fits together. Security and safety is not composable.

10

What is Security Engineering?

Security engineering is about building systems to
remain dependable in the face of malice, error and

mischance.

10

The traditional design hierarchy requires us to start by defining, at a high level, what
we are trying to achieve. Then we explore the question of how to do so in terms of
overall strategy and architecture. Finally we need to explore the detail: which
hardware platform should we use, what cryptographic primitives are the right ones,
and so on.

11

The Design Hierarchy

Policy

Architecture, protocols, …

Hardware, crypto, access control, …

What are we trying to do? How? With what?

11

For example, we might decide we are going to build autonomous cars which reduce
the number of accidents by 50% when compared to human drivers. Given that high-
level goal, we then explore the architecture which might allows us to get there. Only
then are we ready to make detailed decisions on specific technologies.

Picture taken by Alastair Beresford, May 2024.

12

Waymo self-driving car

12

The definition of the system is often too narrowly defined.

For example, if a company produces a mobile app for a smartphone, it might assume
that the app is the system. This is too narrow a definition. For example, what about
the operating system running on the phone, or its hardware? Does the operating
system get regular updates? What other apps are installed on the phone, and are
they malicious? What about all the servers that the app communicates with?

We study cybercrime in the department. Most of the failures are not hi-tech, but
rather use a system in bad and unintended ways. Cyberbullying via a messaging
platform is one example: the platform is delivering the messages as requested, but
overall the system is failing to protect users from harm.

13

A system can be…
• equipment or a component (laptop, smartcard, …)
• a collection of products, their operating systems,

and some networking equipment
• The above plus applications
• The above plus internal staff
• The above plus external users

Common failure: policy drawn too narrowly

13

Here is an example where you need to think broadly about the definition of the
“system”.

In the UK, in common with many countries, electric bikes can only be ridden without
a license, tax or registration provided it has pedals and electric assistance does not
occur when travelling over 15.5 mph (25 km/h). So how do cyclists get around this
restriction?

The bicycle in this picture has electric assist. The electronics in the bike estimates the
speed of the bike by counting revolutions of the rear wheel passing in front of a
sensor. The “badassbox” works by supressing the sensor reading in every other
revolution, allowing you to travel twice as fast with electric assist. A by-product of
this is that the speedometer on the bike no longer provides an accurate reading.

Further reading:
• Details on the badass box, https://www.ebiketuning.com/badass-box-4-for-

shimano.html
• Rules around electric bikes in the UK, https://www.gov.uk/electric-bike-rules

14

Electric bike should not propel bicycle
when speed exceeds 15.5 mph

14

https://www.ebiketuning.com/badass-box-4-for-shimano.html
https://www.ebiketuning.com/badass-box-4-for-shimano.html
https://www.gov.uk/electric-bike-rules

15

Definitions

15

Reliability and dependability sounds like they might mean the same thing. However,
we demand greater precision in our use of terms.

Since malice is different from error, we wish to capture this. For example, a system
might state a reliability guarantee, such as “Bob will be able to read this file”, while a
security guarantee might state that ”Foreign governments won’t be able to read this
file”. Typically we want a dependable system with both reliability and security.

This example motivates the need to define terms carefully. Note that while we will be
consistent in this course, terms may have different meanings (or different terms have
the same meaning) in different communities. For example, the safety and security
communities currently use different language.

16

Security vs Dependability

Dependability = Reliability + Security

• Malice is different from error
• Reliability and security are often strongly correlated

16

We adopt the same language as used by the legal profession and define a person as
either a subject (physical person) or a legal person which can also include a limited
company (e.g. Google) or a charity (University of Cambridge).

We use the term principal as a more general term to cover people, equipment and
more general labels. The term role is often used to as a means of indirection between
a principal and a person. For example, “the officer on watch”, or “Alice and Bob” or
“Alice or any of her current direct reports”.

The definition of a principal can get quite complex. Sometimes we need to distinguish
between “Bob’s smartcard representing Bob who’s standing in for Alice” from “Bob
using Alice’s card in her absence”. For example, consider the case of a bank, whose
policy states that all withdrawals over 10,000 GBP must be approved by any two bank
managers out of the set of Alice, Bob or Charlie.

17

Subjects and principals

Subject: a physical person
Person: a subject or a legal person (firm)
Principal:
• A person
• Equipment
• A role, including complex roles

17

Secrecy often, but not always, implies a technical mechanism. This does not
necessarily involve cryptography.

Privacy has many definitions which are wider than the one used in this course. For
those who are interested in such things, you might wish to look up the right to be
forgotten.

These three concepts are interrelated. For example, your medical privacy is protected
by your doctors’ obligation of confidentiality.

18

Secrecy and privacy

Secrecy: mechanism to control which principals can
access information

Privacy: control of your own secrets

Confidentiality: an obligation to protect someone
else’s secrets.

18

Anonymity has various flavours, from not being able to identify subjects to not being
able to link their actions. A simple example is k-anonymity where subjects are
indistinguishable from k-1 others (subjects are said to be “k-anonymous”).

A cheque has integrity (a signature) and freshness (a recent date) together giving it
authenticity.

19

Anonymity, integrity, authenticity

• Anonymity: restrict access to metadata

• Integrity: an object has not been altered since the
last authorised modification

• Authenticity has two common meanings:
• an object has integrity plus freshness
• You are speaking to the right principal

19

Trust is really hard. It can exist at different levels: human norms (you trust your
doctor, and he has a warm manner, a nice office, etc). Trust can also be a trusted
system. Are these the same thing? Yes and no. Yes, because the doctor can break a
trusted system by malice or by accident (writes down his password which is visible to
others); no in other cases.

We are going to use the second definition (the NSA definition) for this course. Under
this definition, an employee of GCHQ selling cryptographic key material to a foreign
power is trusted but not trustworthy (assuming of course that such a sale has not
been authorized).

20

Trust is hard; several meanings…

1. A warm fuzzy feeling
2. A trusted system or component is one that can

break my security policy
3. A trusted system is one I can insure
4. A trusted system won’t get me fired when it

breaks
5. …

20

These are terminology from the safety community.

Failure is often expressed as Mean-Time-Before Failure (MTBF), or Mean-Time-To-
Failure (MTTF). For example, a single-engine plane might have an MTBF of 240,000
hours overall. This isn’t necessarily a meaningful summary on its own – other steps
might be required to ensure this is the case. For example, it might have an MTBF of
5,000 hours if its not serviced correctly (e.g. oil change is forgotten).

21

Errors, failures, reliability, accidents

• Error: a design flaw or deviation from intended
state
• Failure: nonperformance of the system when inside

specified environmental conditions
• Reliability: probability of failure within a specified

period of time
• Accident: an undesired, unplanned event resulting

in a specified kind or level of loss

21

In a single-engined aircraft, a hazard might be the mountain you fly over at night since
you will crash if the engine fails. There is less hazard due to engine failure when flying
over the East Anglia during the day since its flat and you can probably land safely in a
field somewhere.

David Speigehalter uses the "micromort" as a unit of risk, defined as a one-in-a-
million chance of death. For example, taking the data from the Office of National
Statistics for 2012, 499,331 people died in England and Wales out of a population of
56,567,000. Therefore, the chance of death overall for each citizen is, on average, 24
micromorts per day. We can use this concept of micromorts per unit of exposure to
assess the comparative risk of activities. For example, data can be used to estimate
that scuba diving is 5 micromorts per dive; skydiving, 8 micromorts per jump; and
skiing, 0.7 micromorts per day.

So what about terrorism? It has a tiny micromort! Yet we still care – because humans
are not always rational.

It is worth highlighting that risk, or the probability of an accident, is different from the
probability of failure or MTBF. A component can fail without it causing an event
resulting in loss. In a twin-engine plane, one engine can fail and yet there is no
accident.

22

Hazards and risks

• Hazard: a set of conditions in a system or its
environment where failure can lead to an accident
• A critical system, process or component is one

whose failure will lead to an accident
• Risk is the probability of an accident
• Often combined with unit of exposure; e.g. a micromort

• Uncertainty is where the risk is not quantifiable
• Safety is simple: freedom from accidents

22

23

Policies, multilevel and
multilateral security

23

A security policy is typically less than a page of text written in plain language.

A protection profile is typically dozens of pages written in a semi-formal language.

A security target may run to hundreds of pages for both functionality and testing.

24

Security policy, profile, and target

• A security policy is a succinct statement of
protection goals
• A protection profile is a detailed statement of

protection goals
• A security target is a detailed statement of

protection goals applied to a particular system

24

[Ask the audience to talk to a neighbour and producing a list of problems with this
policy]

Many things wrong with this policy. Examples include:

* The policy reduces to "need-to-know", but what does this mean?
* What's a "breach"?
* Reporting a breach is passive voice: who does the reporting of a breach? Over what
time period?
* You need to trust the employees to adhere to policy. Do they feel trusted and
empowered?
* There's nothing in this policy which you can implement (e.g. support employees, or
turn into software): this policy is security theatre.

In the UK there's no general requirement to report a crime (with the exception of
terrorism).

Edward Snowden is an example worth considering: he released lots of data because
he felt that his duty as a solider was to leak data since, in his opinion, what the NSA
was doing was contrary to the constitution, and he had signed up to protect the
constitution.

25

What often passes as ‘policy’

1. This policy is approved by Management.
2. All staff shall obey this security policy.
3. Data shall be available only to those with a need-

to-know.
4. All breaches of this policy shall be reported at

once to Security.

What’s wrong with this?

25

Examples of disloyal insiders include Burgess/MacLean, Aldrich Ames, Edward
Snowden. Carelessness can include “loose talk”, reading papers on train, being
photographed outside Number 10 with papers in hand, malware on PC, and so on.

Another important concept is vetting, in which the background of employees working
with sensitive information is investigated. Does the employee have any weaknesses
which might be exploited by a third-party? For example, does the employee have
unsustainable debts, a drinking or drug problem, can they be “bought off”, etc.

26

Traditional government approach

• Start from the threat model: an insider who is
disloyal or careless.
• Solution: limit the number of people you trust, and

make it harder for them to be untrustworthy

Basic idea since 1940: a clerk with ‘Secret’ clearance
can read documents at ‘Confidential’ and ‘Secret’ but
not at ‘Top Secret’

26

MLS are widely used by governments.

There are a variety of classification levels in use around the world. The UK
Government uses Official, Secret, Top Secret
(https://en.wikipedia.org/wiki/Government_Security_Classifications_Policy). In this
course, in common with much of the computer science literature, we will often use
High and Low to describe a simple abstract representation of an MLS system.

Recall ‘mandatory access control’ from OS course.

Information flows are integrated with the operating systems as used by government
employees. Clearly the OS needs to prevent employees with clearance to work with
material up to secret level from accessing any files classified at top secret. No write
down is also important to stop information leakage. For example, the OS will allow
the user to cut-n-paste data from a confidential file to a secret one, but not vice-versa
(or if you can, then the confidential file then becomes classified at secret).

27

Multilevel Secure Systems (MLS)

• Classify all documents and data with a level, such as
official, secret, top secret; or high and low.
• Principals have clearances; clearance must equal or

exceed classification of any documents viewed.
• Enforce handling rules for material at each level.
• Information flows upwards only:
• No read up
• No write down

27

https://en.wikipedia.org/wiki/Government_Security_Classifications_Policy

At first people thought that you only needed no read up, but then if you get malware
running at high, it can leak data to low; so we also need the *-property.

The Trusted Computing Base includes all the hardware and software required to
enforce security policy.

28

Bell-LaPadula formal model

• Bell-LaPadula (1973):
• simple security policy (no read up)
• *-policy (no write down)

• With these two rules, one can prove that a system
that starts in a secure state will remain in one

• Aim is to minimise the Trusted Computing Base

28

A covert channel occurs when the performance of a resource shared between Low
and High allows information to flow which contravenes policy. An example shared
resource might be a CPU shared between processes, some of which are running at
High and some at Low. Then a High process can transfer data to a Low process by
either using lots of CPU (to send a “one”) or not using the CPU (signaling a “zero”).

More information: https://en.wikipedia.org/wiki/Covert_channel

29

Covert channels cause havoc

• BLP lets malware move from Low to High, just not
to signal down again.
• What if malware at High modulates shared

resource (e.g. CPU usage) to signal to Low?
• How can you let message traffic pass from Low to

High, if any acknowledgement of receipt could be
delayed and used to signal?

 Moral: covert channel bandwidth is a complex.
 It’s an emergent property of whole systems!

29

https://en.wikipedia.org/wiki/Covert_channel

30

High assurance MLS system

• The pump simplifies the
problem: replace the
complex emergent
property of the whole
system with a simple
property of a testable
component
• Nevertheless, often

harder than it looks!

30

MLS is good at stopping data from flowing from High to Low. In other settings, you
want to stop lateral flows of information. Accounting firms use this to allow them to
work for two or more firms who compete in the same sector. Accountants at one of
the Big Four working on accounts for BP need to make sure that they don't talk to
colleagues who are working on Shell's accounts.

31

Multilateral Security

Stop lateral flow, examples:

• Intelligence, typically with
compartments
• Medical records
• Competing clients of an

accounting firm

31

The Biba model is the inverse of the Bell-LaPadula model: instead of protecting
confidentiality, it protects integrity. In this model, we do not want a process at High
from being influenced by data from Low.

For example, a nuclear power station will have safety as at the top level: and any
control of the power station for the safety of the power grid itself will be ignored (a
blackout is better than a nuclear meltdown).

In practice, safety systems need more than simply High and Low.
Compartmentalization is often a good way forward, and to do this we can apply the
multi-lateral security model.

32

Biba formal model for integrity

• Biba (1975)
• Simple integrity policy (no read down)
• *-integrity policy (no write up)

• Dual of the Bell-LaPadula model
• Examples:
• Medical devices with calibrate and operate modes
• Electricity grid controls with safety at the highest level,

operational control as the next, and so on.

32

33

Recap: ICAP, systems and policy

• Read widely (necessary, but not sufficient)
• ICAP
• Consider a system in broad terms
• Make sure you use terms precisely
• Define policy carefully
• Multilevel Secure Systems (MLS); Bell LaPadula
• Multilateral Security; Biba

33

34

Subsequent lectures
2 May 1 What is a security policy or a safety case? Prof Beresford
5 May 2 Examples of safety and security policies Prof Mortier
7 May 3 Attitudes to risk Prof Mortier
9 May 4 The software crisis Prof Madhavapeddy

12 May 5 Software engineering as the management of
complexity

Prof Madhavapeddy

14 May 6 Software testing Prof Madhavapeddy
16 May 7 Security protocols Dr Kleppmann
19 May 8 Software as a Service (SaaS) Dr Sharp
21 May 9 Attacks on TLS Dr Kleppmann
23 May 10 Decentralised social protocols Dr Kleppmann
26 May 11 Critical systems Prof Harle

34

