Randomised Algorithms

Lecture 6: Linear Programming: Introduction

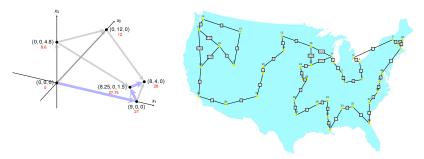
Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2025

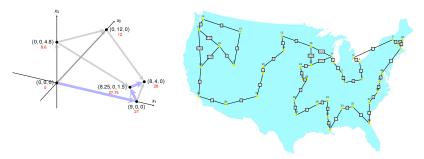
A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms



- linear programming is a powerful tool in optimisation
- inspired more sophisticated techniques such as quadratic optimisation, convex optimisation, integer programming and semi-definite programming
- we will later use the connection between linear and integer programming



- linear programming is a powerful tool in optimisation
- inspired more sophisticated techniques such as quadratic optimisation, convex optimisation, integer programming and semi-definite programming
- we will later use the connection between linear and integer programming

Overall we will approach the following problems with linear programming:

- 1. a "generic" production problem, shortest path, maximum flow, minimum-cost flow (directly)
- 2. TSP, Vertex Cover, Set Cover, MAX-CNF (indirectly)

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms

Linear Programming (informal definition)

- maximise or minimise an objective, given limited resources (competing constraints)
- constraints are specified as (in)equalities
- objective function and constraints are linear

Laptop

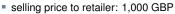
- Laptop
 - selling price to retailer: 1,000 GBP

- Laptop
 - selling price to retailer: 1,000 GBP
 - glass: 4 units

Laptop

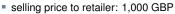
- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units

Laptop



- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit

Laptop



- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit
- Smartphone

Laptop

- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit

Smartphone

selling price to retailer: 1,000 GBP

Laptop

- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit

- selling price to retailer: 1,000 GBP
- glass: 1 unit

Laptop

- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit

- selling price to retailer: 1,000 GBP
- glass: 1 unit
- copper: 1 unit

Laptop

- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit

- selling price to retailer: 1,000 GBP
- glass: 1 unit
- copper: 1 unit
- rare-earth elements: 2 units

Laptop

- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit

- selling price to retailer: 1,000 GBP
- glass: 1 unit
- copper: 1 unit
- rare-earth elements: 2 units
- You have a daily supply of:

Laptop

- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit

- selling price to retailer: 1,000 GBP
- glass: 1 unit
- copper: 1 unit
- rare-earth elements: 2 units
- You have a daily supply of:
 - glass: 20 units

Laptop

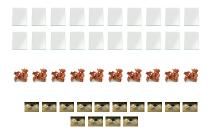
- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit

- selling price to retailer: 1,000 GBP
- glass: 1 unit
- copper: 1 unit
- rare-earth elements: 2 units
- You have a daily supply of:
 - glass: 20 units
 - copper: 10 units

Laptop

- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit

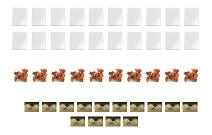
- selling price to retailer: 1,000 GBP
- glass: 1 unit
- copper: 1 unit
- rare-earth elements: 2 units
- You have a daily supply of:
 - glass: 20 units
 - copper: 10 units
 - rare-earth elements: 14 units



Laptop

- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit

- selling price to retailer: 1,000 GBP
- glass: 1 unit
- copper: 1 unit
- rare-earth elements: 2 units
- You have a daily supply of:
 - glass: 20 units
 - copper: 10 units
 - rare-earth elements: 14 units
 - (and enough of everything else...)



Laptop

- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit

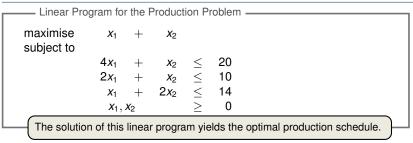
58 58

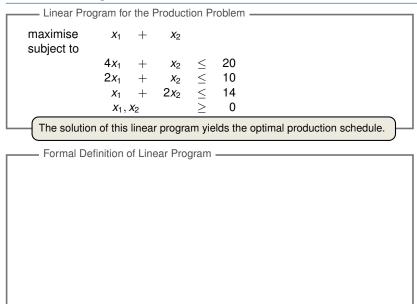
Smartphone

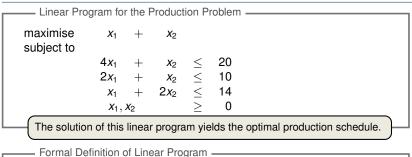
- selling price to retailer: 1,000 GBP
- glass: 1 unit
- copper: 1 unit
- rare-earth elements: 2 units
- You have a daily supply of:
 - glass: 20 units
 - copper: 10 units
 - rare-earth elements: 14 units
 - (and enough of everything else...)

How to maximise your daily earnings?

Linear Program for the Production Problem										
maximise subject to	<i>x</i> ₁	+	<i>x</i> ₂							
	$4x_{1}$	+	<i>X</i> ₂	\leq	20					
	$2x_{1}$	+	<i>x</i> ₂	\leq	10					
	<i>X</i> ₁	+	$2x_2$	\leq	14					
x_1, x_2			\geq	0						
	-									

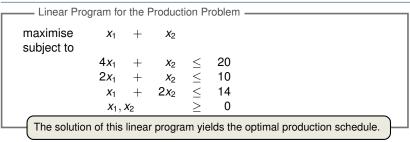






Given a₁, a₂,..., a_n and a set of variables x₁, x₂,..., x_n, a linear function f is defined by

 $f(x_1, x_2, \ldots, x_n) = a_1 x_1 + a_2 x_2 + \cdots + a_n x_n.$

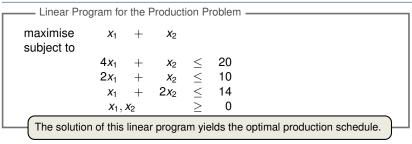


Formal Definition of Linear Program ——

Given a₁, a₂,..., a_n and a set of variables x₁, x₂,..., x_n, a linear function *f* is defined by

$$f(x_1, x_2, \ldots, x_n) = a_1 x_1 + a_2 x_2 + \cdots + a_n x_n.$$

- Linear Equality: $f(x_1, x_2, \ldots, x_n) = b$
- Linear Inequality: $f(x_1, x_2, \ldots, x_n) \leq b$

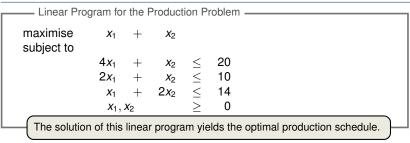


Formal Definition of Linear Program ------

Given a₁, a₂,..., a_n and a set of variables x₁, x₂,..., x_n, a linear function *f* is defined by

$$f(x_1, x_2, \ldots, x_n) = a_1 x_1 + a_2 x_2 + \cdots + a_n x_n.$$

• Linear Equality: $f(x_1, x_2, ..., x_n) = b$ • Linear Inequality: $f(x_1, x_2, ..., x_n) \ge b$ Linear Constraints



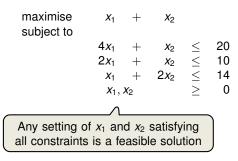
Formal Definition of Linear Program —

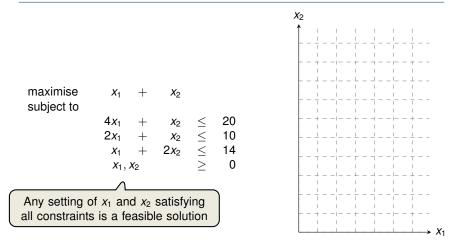
• Given a_1, a_2, \ldots, a_n and a set of variables x_1, x_2, \ldots, x_n , a linear function f is defined by

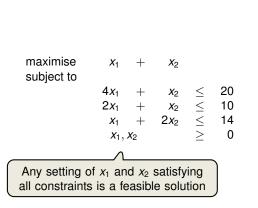
$$f(x_1, x_2, \ldots, x_n) = a_1 x_1 + a_2 x_2 + \cdots + a_n x_n.$$

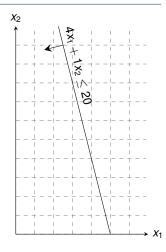
- Linear Equality: $f(x_1, x_2, ..., x_n) = b$ Linear Inequality: $f(x_1, x_2, ..., x_n) \stackrel{>}{<} b$ Linear Constraints
- Linear-Progamming Problem: either minimise or maximise a linear function subject to a set of linear constraints

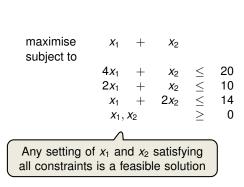
maximise subject to	<i>x</i> ₁	+	<i>x</i> ₂		
2	$4x_{1}$	+	<i>X</i> 2	\leq	20
	$2x_1$	+	<i>X</i> ₂	\leq	10
	<i>X</i> ₁	+	$2x_2$	\leq	14
	<i>x</i> ₁ ,	<i>X</i> 2	\geq	0	

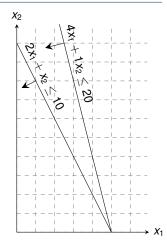


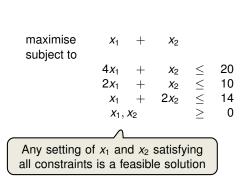


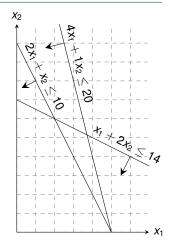


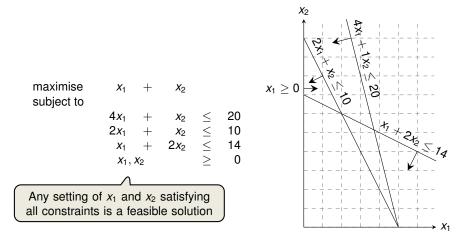


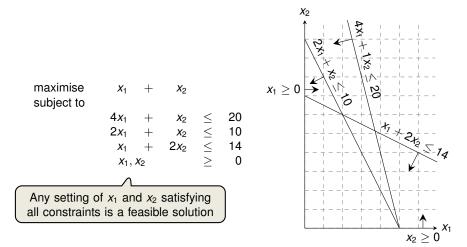


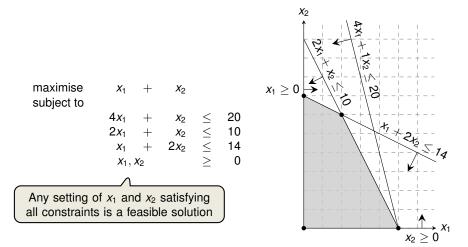


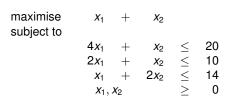


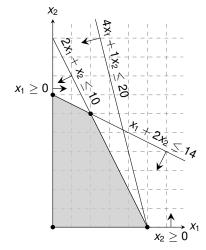


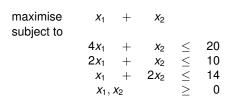


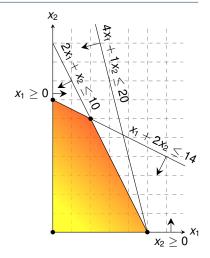


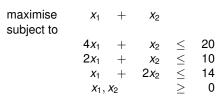


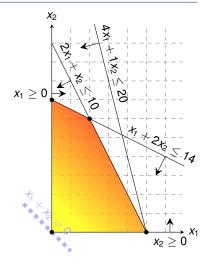


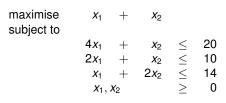


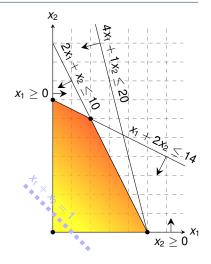


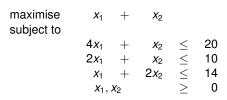


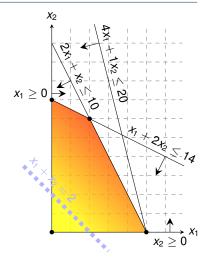


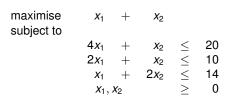


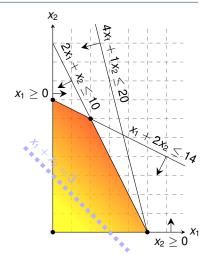


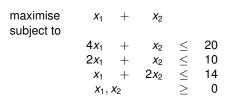


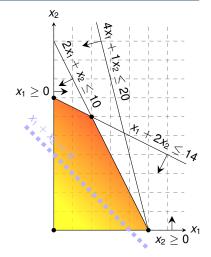


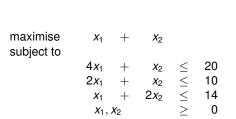


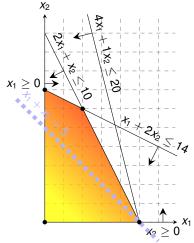


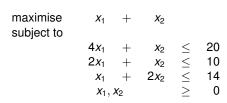


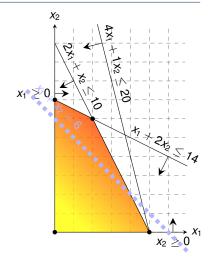


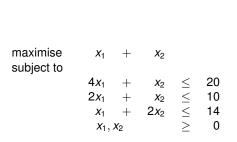


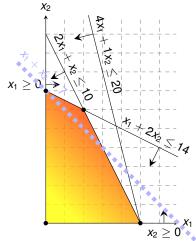


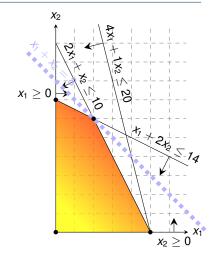


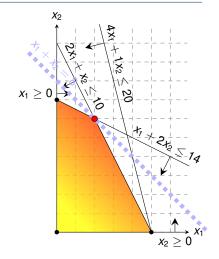


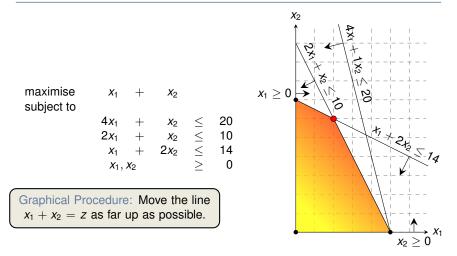




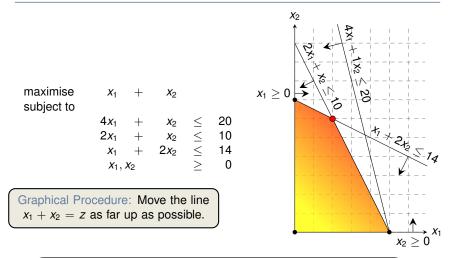








Question: Which aspect did we ignore in the formulation of the linear program?



While the same approach also works for higher-dimensions, we need to take a more systematic and algebraic procedure.

Introduction

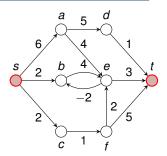
A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms

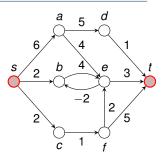
— Single-Pair Shortest Path Problem -

• Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$



Single-Pair Shortest Path Problem -

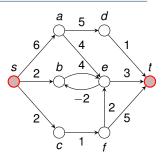
- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from *s* to *t* in *G*



Single-Pair Shortest Path Problem -

- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from *s* to *t* in *G*

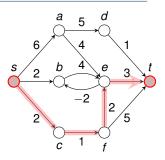
$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that
 $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimised.



Single-Pair Shortest Path Problem -

- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from *s* to *t* in *G*

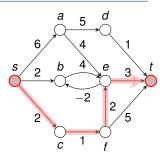
$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that
 $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimised.



Single-Pair Shortest Path Problem —

- Given: directed graph G = (V, E) with edge weights w : E → ℝ, pair of vertices s, t ∈ V
- Goal: Find a path of minimum weight from *s* to *t* in *G*

$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimised.

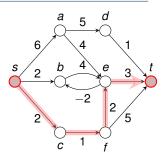


Exercise: Translate the SPSP problem into a linear program which finds the distance between s and v!

– Single-Pair Shortest Path Problem –

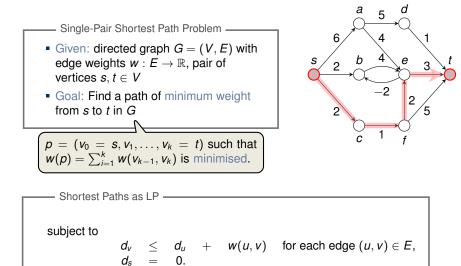
- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from *s* to *t* in *G*

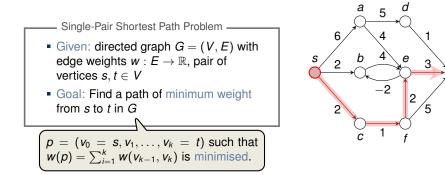
$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that
 $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimised.



Shortest Paths as LP -

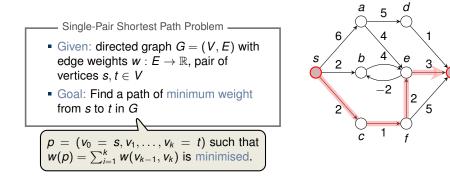
subject to

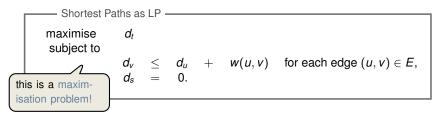


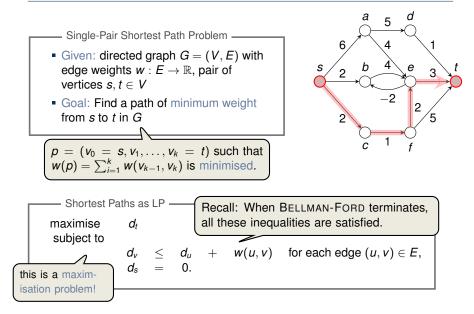


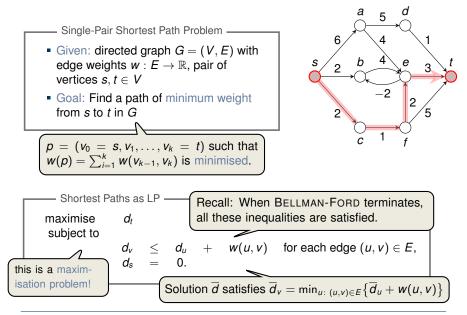
Shortest Paths as LP
maximise
$$d_t$$

subject to
 $d_v \leq d_u + w(u, v)$ for each edge $(u, v) \in E$,
 $d_s = 0$.







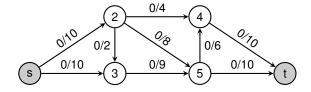


Maximum Flow Problem

• Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$ (recall c(u, v) = 0 if $(u, v) \notin E$), pair of vertices $s, t \in V$

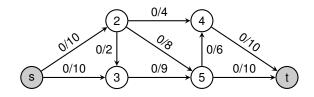
- Maximum Flow Problem

• Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$ (recall c(u, v) = 0 if $(u, v) \notin E$), pair of vertices $s, t \in V$



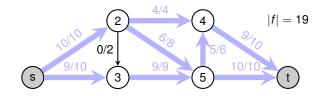
- Maximum Flow Problem

- Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$ (recall c(u, v) = 0 if $(u, v) \notin E$), pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \to \mathbb{R}$ from *s* to *t* which satisfies the capacity constraints and flow conservation



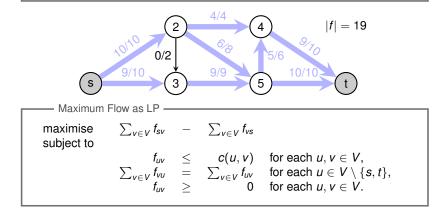
- Maximum Flow Problem

- Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$ (recall c(u, v) = 0 if $(u, v) \notin E$), pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \to \mathbb{R}$ from *s* to *t* which satisfies the capacity constraints and flow conservation

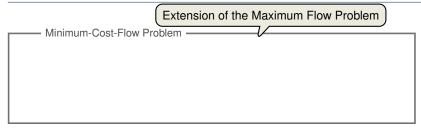


- Maximum Flow Problem

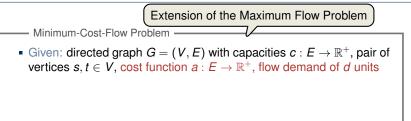
- Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$ (recall c(u, v) = 0 if $(u, v) \notin E$), pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \to \mathbb{R}$ from *s* to *t* which satisfies the capacity constraints and flow conservation



Minimum-Cost Flow



Minimum-Cost Flow



Minimum-Cost Flow

Minimum-Cost-Flow Problem
Given: directed graph G = (V, E) with capacities c : E → ℝ⁺, pair of vertices s, t ∈ V, cost function a : E → ℝ⁺, flow demand of d units
Goal: Find a flow f : V × V → ℝ from s to t with |f| = d while minimising the total cost ∑_{(u,v)∈E} a(u, v) f_{uv} incurred by the flow.

Minimum-Cost Flow

- - minimising the total cost $\sum_{(u,v)\in E} a(u,v) f_{uv}$ incurred by the flow.

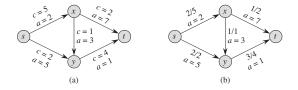


Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow from s to t. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s to t. For each edge, the flow and capacity are written as flow/capacity.

Minimum-Cost Flow

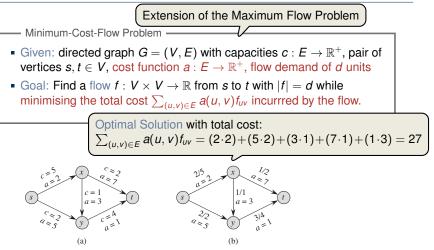


Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow from s to t. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s to t. For each edge, the flow and capacity are written as flow/capacity.

Minimum-Cost Flow as a LP

 $\begin{array}{c|c} \mbox{Minimum-Cost Flow as LP} \\ \hline \mbox{minimise} & \sum_{(u,v)\in E} a(u,v) f_{uv} \\ \mbox{subject to} & \\ & f_{uv} & \leq & c(u,v) & \mbox{for } u,v \in V, \\ & \sum_{v \in V} f_{vu} - \sum_{v \in V} f_{uv} & = & 0 & \mbox{for } u \in V \setminus \{s,t\}, \\ & \sum_{v \in V} f_{sv} - \sum_{v \in V} f_{vs} & = & d \ , \\ & f_{uv} & \geq & 0 & \mbox{for } u,v \in V. \end{array}$

Minimum-Cost Flow as a LP

 $\begin{array}{c|c} \mbox{Minimum-Cost Flow as LP} \\ \hline \mbox{minimise} & \sum_{(u,v)\in E} a(u,v) f_{uv} \\ \mbox{subject to} & \\ f_{uv} & \leq & c(u,v) & \mbox{for } u,v \in V, \\ & \sum_{v \in V} f_{vu} - \sum_{v \in V} f_{uv} & = & 0 & \mbox{for } u \in V \setminus \{s,t\}, \\ & \sum_{v \in V} f_{sv} - \sum_{v \in V} f_{vs} & = & d \ , \\ & f_{uv} & \geq & 0 & \mbox{for } u,v \in V. \end{array}$

Real power of Linear Programming comes from the ability to solve **new problems**!

Minimum-Cost Flow as a LP

 $\begin{array}{c|c} \mbox{Minimum-Cost Flow as LP} \\ \hline \mbox{minimise} & \sum_{(u,v)\in E} a(u,v) f_{uv} \\ \mbox{subject to} & \\ & f_{uv} & \leq & c(u,v) & \mbox{for } u,v \in V, \\ & \sum_{v \in V} f_{vu} - \sum_{v \in V} f_{uv} & = & 0 & \mbox{for } u \in V \setminus \{s,t\}, \\ & \sum_{v \in V} f_{sv} - \sum_{v \in V} f_{vs} & = & d \ , \\ & f_{uv} & \geq & 0 & \mbox{for } u,v \in V. \end{array}$

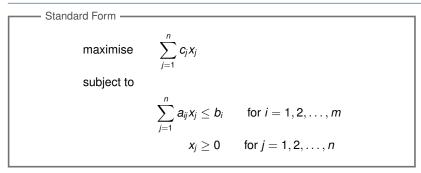
Real power of Linear Programming comes from the ability to solve **new problems**!

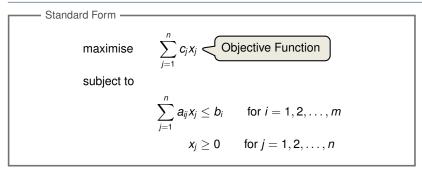
Question: Can we use a similar approach to solve the shortest path problem?

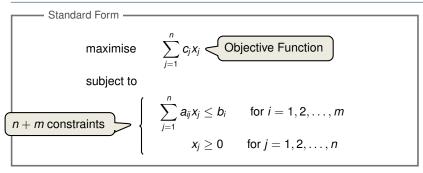
Introduction

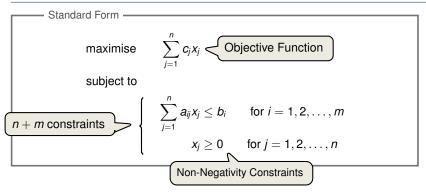
A Simple Example of a Linear Program

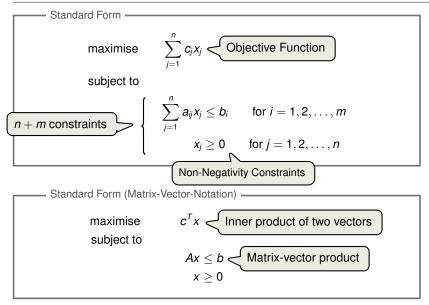
Formulating Problems as Linear Programs











- 1. The objective might be a minimisation rather than maximisation.
- 2. There might be variables without nonnegativity constraints.
- 3. There might be equality constraints.
- 4. There might be inequality constraints (with \geq instead of \leq).

- 1. The objective might be a minimisation rather than maximisation.
- 2. There might be variables without nonnegativity constraints.
- 3. There might be equality constraints.
- 4. There might be inequality constraints (with \geq instead of \leq).

Goal: Convert linear program into an equivalent program which is in standard form

- 1. The objective might be a minimisation rather than maximisation.
- 2. There might be variables without nonnegativity constraints.
- 3. There might be equality constraints.
- 4. There might be inequality constraints (with \geq instead of \leq).

Goal: Convert linear program into an equivalent program which is in standard form

Equivalence: a correspondence (not necessarily a bijection) between solutions.

minimise	$-2x_{1}$	+	3 <i>x</i> 2		
subject to					
	<i>X</i> ₁	+	<i>X</i> 2	=	7
	<i>X</i> ₁	_	$2x_2$	\leq	4
	<i>X</i> ₁			\geq	0

minimise	$-2x_{1}$	+	3 <i>x</i> 2						
subject to									
	<i>X</i> ₁	+	<i>X</i> 2	=	7				
	<i>X</i> ₁	_	$2x_{2}^{-}$	\leq	4				
	<i>X</i> ₁			\geq	0				
	Negate objective functio								
		1							

minimise	$-2x_{1}$	+	3 <i>x</i> 2		
subject to					
	<i>X</i> ₁	+	<i>X</i> ₂	=	7
	<i>X</i> ₁	_	$2x_2$	\leq	4
	<i>X</i> ₁		x ₂ 2x ₂	\geq	0
		Ne	gate o	oject	ive function
	<u> </u>	Ý			
maximise	$2x_1$	—	3 <i>x</i> 2		
subject to					
,					
,	<i>x</i> ₁	+	<i>X</i> ₂	=	7
,	<i>X</i> 1 <i>X</i> 1	+ -	x ₂ 2x ₂	= 	7 4

2 <i>x</i> ₁	-	3 <i>x</i> ₂		
<i>X</i> ₁	+	<i>X</i> 2	=	7
<i>X</i> ₁	—	$2x_{2}$	\leq	4
<i>X</i> 1			\geq	0
	<i>x</i> ₁	$x_1 +$	$x_1 + x_2$	$x_1 + x_2 =$

Reasons for a LP not being in standard form:

maximise subject to	2 <i>x</i> ₁	-	3 <i>x</i> 2			
	<i>X</i> 1	+	<i>X</i> ₂	=	7	
	<i>X</i> 1	_	$2x_2$	\leq	4	
	<i>X</i> 1			\geq	0	
						difference of two ables x_2' and x_2''

maximise subject to	2 <i>x</i> ₁	—	3 <i>x</i> 2					
	<i>X</i> 1	+	<i>X</i> 2	=	7			
	<i>X</i> 1	_	$2x_2$	\leq	4			
	<i>X</i> 1			\geq	0			
					the dif variabl			
maximise subject to	2 <i>x</i> ₁	-	3 <i>x</i> ₂ ′	+	3 <i>x</i> ₂ ''			
	<i>x</i> ₁	+	X_2'	_	x''	=	7	
	<i>X</i> ₁	_	$2x_{2}^{'}$	+	$2x_{2}^{''}$	\leq	4	
	<i>X</i> 1	$, x_{2}', y$	<2″			\geq	0	

3. There might be equality constraints.

3. There might be equality constraints.

maximise subject to

3. There might be equality constraints.

maximise subject to

$$2x_{1} - 3x'_{2} + 3x''_{2}$$

$$x_{1} + x'_{2} - x''_{2} = 7$$

$$x_{1} - 2x'_{2} + 2x''_{2} \leq 4$$

$$x_{1}, x'_{2}, x''_{2} \geq 0$$

$$\begin{cases} \text{Replace each equality} \\ \text{by two inequalities.} \end{cases}$$

3. There might be equality constraints.

maximise $2x_1$ $3x_2'$ 3x₂" +subject to *x*₂'' $+ x'_{2}$ *X*1 = \leq $2x_2$ $2x_{2}^{T'}$ +*X*₁ _ x_1, x_2', x_2'' 0 Replace each equality by two inequalities. maximise 3x2 $2x_1$ $+ 3x_{2}''$ subject to $egin{array}{rcl} x'_2 & - & x''_2 \ x'_2 & - & x''_2 \ 2x'_2 & + & 2x''_2 \end{array}$ $\begin{array}{ccc} \leq & 7\\ \geq & 7\\ \leq & 4\\ \geq & 0 \end{array}$ X_1 +*X*1 $2x_2'$ *X*1 _ x_1, x_2', x_2''

4. There might be inequality constraints (with \geq instead of \leq).

4. There might be inequality constraints (with \geq instead of \leq).

~

maximise subject to

~ //

4. There might be inequality constraints (with \geq instead of \leq).

maximise subject to	2 <i>x</i> ₁	_	3 <i>x</i> ₂ ′	+	3 <i>x</i> ₂ ″		
-	<i>X</i> ₁	+	x_2'	_	<i>x</i> ₂ ''	\leq	7
	<i>X</i> 1	+	<i>x</i> ₂ '	_	<i>x</i> ₂ ''	\geq	7
	<i>X</i> ₁	—	2 <i>x</i> ₂ '	+	$2x_{2}^{\prime\prime}$	\leq	4
	<i>X</i> ₁	, x ₂ ', x	<2″			\geq	0
		 ▼	egate	respe	ective in	nequa	lities.

4. There might be inequality constraints (with \geq instead of \leq).

maximise subject to	2 <i>x</i> ₁	_	3 <i>x</i> ₂ ′	+	3 <i>x</i> 2″		
-	<i>X</i> ₁	+	x_2'	_	<i>x</i> ₂ ''	\leq	7
	<i>X</i> 1	+	<i>x</i> ₂ '	_	x2''	\geq	7
	<i>x</i> ₁	-	2 <i>x</i> ₂ '	+	2 <i>x</i> ₂ ''	\leq	4
	<i>X</i> 1	$, x_{2}', x_{2}'$	<2 ^{''}			\geq	0
		↓ Ne	egate i	respe	ective in	nequa	lities.
maximise subject to	2 <i>x</i> ₁	-	3 <i>x</i> ₂ ′	+	3 <i>x</i> 2′′		
	<i>x</i> ₁	+	<i>X</i> ₂ '	_	<i>x</i> ₂ ''	\leq	7
	$-x_1$	_	x_2'	+	x''_2	\leq	-7
	<i>x</i> ₁	-	$2x_{2}^{'}$	+	$2x_{2}^{''}$	\leq	4
	<i>x</i> ₁	$, x_{2}', x_{2}'$	$c_{2}^{\prime\prime}$			\geq	0

Rename	variable	e nan	nes (fo	r con	sisten	cy).)
			V				
maximise subject to	2 <i>x</i> ₁	_	3 <i>x</i> ₂	+	3 <i>x</i> ₃		
	<i>X</i> 1	+	X 2	_	<i>X</i> 3	<	7
	$-x_1$	_	<i>x</i> ₂	+	<i>X</i> 3	\leq	-7
	<i>X</i> 1	_	$2x_2$	+	$2x_{3}$	\leq	4
	<i>X</i> 1	, x ₂ , x	K 3			\geq	0

Rename	variable	e nan	nes (fo	r con	sisten	cy).)
maximise subject to	2 <i>x</i> ₁	_	3 <i>x</i> ₂	+	3 <i>x</i> ₃		
	<i>X</i> ₁	+	<i>X</i> 2	_	<i>X</i> 3	\leq	7
	$-x_{1}$	_	<i>X</i> 2	+	<i>X</i> 3	\leq	-7
	<i>X</i> ₁	_	$2x_{2}$	+	$2x_{3}$	\leq	4
	<i>X</i> 1	$, x_2, x_2$	X 3			\geq	0

It is always possible to convert a linear program into standard form.

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

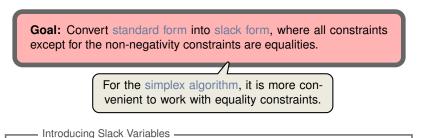
Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities. For the simplex algorithm, it is more convenient to work with equality constraints. Introducing Slack Variables -



• Let $\sum_{i=1}^{n} a_{ij} x_j \le b_i$ be an inequality constraint

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

Introducing Slack Variables -

- Let $\sum_{i=1}^{n} a_{ii} x_i \le b_i$ be an inequality constraint
- Introduce a slack variable s by

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables -

- Let $\sum_{i=1}^{n} a_{ii} x_i \le b_i$ be an inequality constraint
- Introduce a slack variable s by

$$s = b_i - \sum_{j=1}^n a_{ij} x_j$$

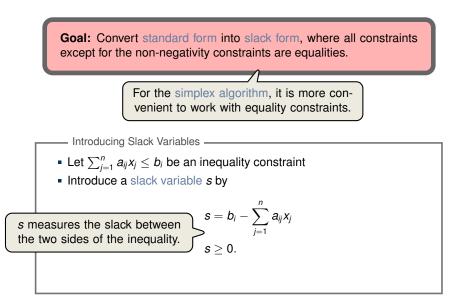
Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

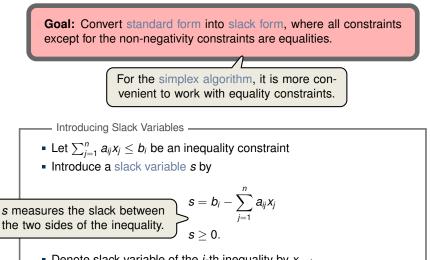
For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables -

- Let $\sum_{i=1}^{n} a_{ii} x_i \le b_i$ be an inequality constraint
- Introduce a slack variable s by

$$s = b_i - \sum_{j=1}^n a_{ij} x_j$$
$$s \ge 0.$$





Denote slack variable of the *i*-th inequality by x_{n+i}

maximise $2x_1 - 3x_2 + 3x_3$ subject to $x_1 + x_2 - x_3 \leq 7$ $-x_1 - x_2 + x_3 \leq -7$ $x_1 - 2x_2 + 2x_3 \leq 4$ $x_1, x_2, x_3 \geq 0$ \downarrow Introduce slack variables

 $x_4 = 7 - x_1 - x_2 + x_3$

maximise $2x_1 - 3x_2 + 3x_3$ subject to $x_1 + x_2 - x_3 \leq 7$ $-x_1 - x_2 + x_3 \leq -7$ $x_1 - 2x_2 + 2x_3 \leq 4$ $x_1, x_2, x_3 \geq 0$ Introduce slack variables

maximise subject to	2 <i>x</i> ₁	_	3 <i>x</i> ₂	+	3 <i>x</i> ₃				
	<i>X</i> ₁	+	<i>X</i> 2	_	<i>X</i> 3	\leq	7		
	$-x_{1}$	_	<i>X</i> 2	+	<i>X</i> 3	<	-7		
	<i>X</i> 1	_	$2x_{2}^{-}$	+	$2x_3$		4		
	-	x_1, x_2, \dots			0	>	0		
			 ↓ ↓	ntrod	uce s	lack	variat	les	
subject to									
	<i>X</i> 4	=	7	_	<i>x</i> ₁	_	<i>X</i> 2	+	<i>X</i> 3
	X 5	=	-7	+	<i>X</i> 1	+	<i>X</i> 2	_	<i>X</i> 3
	<i>x</i> ₆	=	4	_	<i>X</i> ₁	+	$2x_2$	_	2 <i>x</i> ₃

maximise subject to	2 <i>x</i> ₁	_	3 <i>x</i> ₂	+	3 <i>x</i> ₃			
	<i>X</i> 1	+	<i>X</i> 2	_	<i>X</i> 3	\leq	7	
	$-x_1$	_	<i>x</i> ₂	+	<i>X</i> 3	\leq	-7	
	<i>x</i> ₁		$2x_2$				4	
	<i>x</i> ₁	$, x_2, y$	K 3			\geq	0	
			h	ntrod	uce sla	ack va	ariables	
			↓					

subject to

 $- 3x_2$ maximise $2x_1$ $3x_3$ +subject to Introduce slack variables maximise $2x_1$ $3x_3$ $3x_2$ +_ subject to = 7 – x_1 X4 — X₂ + X_3 $\begin{array}{rcl} x_{1} & & x_{2} & \\ x_{5} & = & -7 & + & x_{1} & + & x_{2} & - \\ x_{6} & = & 4 & - & x_{1} & + & 2x_{2} & - \end{array}$ X_3 $2x_3$ \geq 0 $X_1, X_2, X_3, X_4, X_5, X_6$

2 <i>x</i> ₁	_	3 <i>x</i> ₂	+	3 <i>x</i> ₃				
<i>x</i> ₄	=					_	+	<i>X</i> 3
<i>X</i> 5	=	-7	+	<i>x</i> ₁	+	<i>x</i> ₂	—	<i>X</i> 3
<i>X</i> 6	=	4	—	<i>X</i> ₁	+	$2x_{2}$	—	$2x_3$
	$x_1, x_2,$	$x_3, x_4,$	<i>x</i> ₅ , <i>x</i> ₆	;	\geq	0		

2 <i>x</i> ₁	_	3 <i>x</i> ₂	+	3 <i>x</i> ₃					
<i>X</i> 4	=	7	_	<i>x</i> ₁	_	<i>x</i> ₂	+	<i>x</i> 3	
X 5	=	-7	+	<i>X</i> ₁	$^+$	<i>X</i> ₂	_	<i>X</i> 3	
<i>X</i> 6	=	4	_	<i>X</i> 1	+	$2x_2$	_	2 <i>x</i> ₃	
	$x_1, x_2,$	$x_3, x_4,$	<i>x</i> ₅ , <i>x</i> ₆		\geq	0			
		Us	e vari	able z				tive fur straints	

$2x_1$	-	3 <i>x</i> ₂	+	3 <i>x</i> ₃					
<i>x</i> ₄	=	7	_	<i>x</i> ₁	_	<i>x</i> ₂	+	<i>x</i> 3	
X 5	=	-7	+	<i>X</i> ₁	+	<i>X</i> ₂	—	<i>X</i> 3	
<i>X</i> 6	=	4	—	<i>X</i> ₁	+	$2x_{2}$	—	$2x_{3}$	
	$x_1, x_2,$	$x_3, x_4,$	<i>x</i> ₅ , <i>x</i> ₆	6	\geq	0			
		Us	e var	iable 2	z to d	enote	obje	ctive fu	nction
		🖞 and	d omi	it the r	nonne	egativi	ty co	nstrain	ts.
		•		~		0		•	
Ζ	=			$2x_1$	—	3 <i>x</i> 2	+	3 <i>x</i> ₃	
<i>X</i> 4	=	7	_	<i>X</i> 1	—	<i>X</i> ₂	+	<i>X</i> 3	

<i>X</i> 4	=	7	_	<i>X</i> 1	-	<i>X</i> 2	+	Х3
<i>X</i> 5	=	-7	+	<i>X</i> ₁	+	<i>x</i> ₂	_	<i>X</i> 3
				<i>x</i> ₁				

 $2x_1 - 3x_2 + 3x_3$ $x_4 = 7 - x_1 - x_2 + x_3$ $x_5 = -7 + x_1 + x_2 - x_3$ $x_6 = 4 - x_1 + 2x_2 - 2x_3$ $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

Use variable *z* to denote objective function and omit the nonnegativity constraints.

	Ζ	=			2 <i>x</i> ₁	—	3 <i>x</i> 2	+	3 <i>x</i> 3
	<i>X</i> 4	=	7	-	<i>X</i> 1	—	<i>X</i> 2	+	<i>X</i> 3
	<i>X</i> 5	=	-7	+	<i>X</i> ₁	+	<i>x</i> ₂	_	<i>X</i> 3
	<i>X</i> 6	=	4	—	<i>X</i> ₁	+	$2x_{2}$	—	2 <i>x</i> ₃
		\square							
This	is ca	lled s	lack fo	orm.)				

$$z = 2x_1 - 3x_2 + 3x_3$$

$$x_4 = 7 - x_1 - x_2 + x_3$$

$$x_5 = -7 + x_1 + x_2 - x_3$$

$$x_6 = 4 - x_1 + 2x_2 - 2x_3$$
Basic Variables: $B = \{4, 5, 6\}$

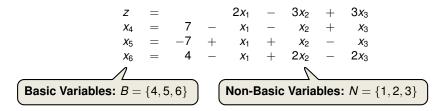
$$z = 2x_1 - 3x_2 + 3x_3$$

$$x_4 = 7 - x_1 - x_2 + x_3$$

$$x_5 = -7 + x_1 + x_2 - x_3$$

$$x_6 = 4 - x_1 + 2x_2 - 2x_3$$

Basic Variables: $B = \{4, 5, 6\}$
Non-Basic Variables: $N = \{1, 2, 3\}$

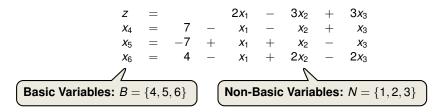


Slack Form (Formal Definition) —

Slack form is given by a tuple (N, B, A, b, c, v) so that

$$egin{aligned} z &= v + \sum_{j \in N} c_j x_j \ x_i &= b_i - \sum_{j \in N} a_{ij} x_j \ & ext{for } i \in B, \end{aligned}$$

and all variables are non-negative.



Slack Form (Formal Definition) —

Slack form is given by a tuple (N, B, A, b, c, v) so that

$$egin{aligned} z &= v + \sum_{j \in N} c_j x_j \ x_i &= b_i - \sum_{j \in N} a_{ij} x_j \ & ext{ for } i \in B, \end{aligned}$$

and all variables are non-negative.

Variables/Coefficients on the right hand side are indexed by *B* and *N*.

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

	Ζ	=	28	_	<u>x₃</u> 6	_	<u>x</u> 5 6	_	$\frac{2x_{6}}{3}$	
	<i>x</i> ₁	=	8	+	$\frac{x_{3}}{6}$	+	<u>x</u> 5 6	_	<u>x₆ 3</u>	
	<i>x</i> ₂	=	4	_	$\frac{8x_{3}}{3}$	_	$\frac{2x_{5}}{3}$	+	<u>x₆</u> 3	
	<i>X</i> ₄	=	18	_	<u>x</u> 3 2	+	<u>x</u> 5 2			
Slack Form	I Nota	tion –								

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

- Slack Form Notation -

• $B = \{1, 2, 4\}, N = \{3, 5, 6\}$

	Ζ	=	28	_	$\frac{x_{3}}{6}$	_	<u>x₅</u> 6	_	$\frac{2x_{6}}{3}$	
	<i>x</i> ₁	=	8	+	x ₃ 6 x <u>3</u> 6 8x <u>3</u> 3 x <u>3</u> 2	+	<u>x₅</u> 6	_	<u>x₆ 3</u>	
	<i>x</i> ₂	=	4	_	$\frac{8x_{3}}{3}$	_	$\frac{2x_{5}}{3}$	+	<u>x₆ 3</u>	
	<i>x</i> ₄	=	18	_	<u>x</u> 3 2	+	<u>x</u> 5 2			
Slack Form	n Nota	ition -								
■ <i>B</i> = {1,2,	4 }, ∧	/ = {	3, 5, 6	}						
• A		9 ₁₃ 9 ₂₃ 9 ₄₃	a ₁₅ a ₂₅ a ₄₅	$\left(\begin{array}{c} a_{16} \\ a_{26} \\ a_{46} \end{array} \right)$		-1/6 8/3 1/2	-1/6 2/3 -1/2	6 1, -1 2 ($\begin{pmatrix} /3 \\ //3 \\ 0 \end{pmatrix}$	

	Ζ	=	28	_	$\frac{x_3}{6}$ $\frac{x_3}{6}$ $\frac{8x_3}{3}$ $\frac{x_3}{2}$	_	<u>x</u> 5 6	_	$\frac{2x_{6}}{3}$	
	<i>X</i> ₁	=	8	+	<u>x</u> 3 6	+	<u>x</u> 5 6	_	<u>x₆ 3</u>	
	<i>X</i> ₂	=	4	_	$\frac{8x_{3}}{3}$	_	$\frac{2x_{5}}{3}$	+	<u>x₆ 3</u>	
	<i>X</i> ₄	=	18	_	<u>x₃</u> 2	+	<u>x</u> 5 2			
Slack Form	Nota	tion -								
■ <i>B</i> = {1,2,4	4}, Λ	/ = {	3, 5, 6	}						
$B = \{1, 2, 4\}, N = \{3, 5, 6\}$ $A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$										
	b =	$\begin{pmatrix} b_1 \\ b_2 \\ b_4 \end{pmatrix}$) =	$\begin{pmatrix} 8\\4\\18 \end{pmatrix}$,					

	Ζ	=	28	_	<u>x₃</u> 6	_	<u>x</u> 5 6	_	$\frac{2x_{6}}{3}$		
	<i>X</i> 1	=	8	+	$\frac{X_3}{6}$	+	$\frac{X_5}{6}$	_	<u>x₆ 3</u>		
	<i>x</i> ₂	=	4	_	$\frac{8x_3}{3}$ $\frac{x_3}{2}$	_	$\frac{2x_{5}}{3}$	+	<u>x₆ 3</u>		
	<i>x</i> ₄	=	18	_	<u>x</u> 3 2	+	<u>x</u> 5 2				
Slack Form	n Nota	tion -									
■ <i>B</i> = {1,2,4	4}, ∧	l = {	3, 5, 6	5}							
$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$											
	b=	$\begin{pmatrix} b_1 \\ b_2 \\ b_4 \end{pmatrix}$) =	$ \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix} $, c =	$= \begin{pmatrix} C_3 \\ C_5 \\ C_6 \end{pmatrix}$		(-1/0 -1/0 (-2/3	$\begin{pmatrix} 6\\6\\3 \end{pmatrix}$		

	Ζ	=	28	_	$\frac{x_{3}}{6}$	_	<u>x</u> 5 6	_	$\frac{2x_{6}}{3}$	
	<i>x</i> ₁	=	8	+	<u>x</u> 3 6	+	<u>x</u> 5 6	_	<u>x₆ 3</u>	
	<i>x</i> ₂	=	4	_	$\frac{8x_3}{3}$ $\frac{x_3}{2}$	_	$\frac{2x_{5}}{3}$	+	<u>x₆ 3</u>	
	<i>x</i> ₄	=	18	_	<u>x</u> 3 2	+	<u>x</u> 5 2			
Slack Forn	ו Nota	tion -								
■ <i>B</i> = {1,2,	4 }, ∧	/ = {	3, 5, 6	i}						
$B = \{1, 2, 4\}, N = \{3, 5, 6\}$ $A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$										
•	b=	$\begin{pmatrix} b_1 \\ b_2 \\ b_4 \end{pmatrix}$) =	$ \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix} $, C =	$= \begin{pmatrix} C_3 \\ C_5 \\ C_6 \end{pmatrix}$		(-1/6 -1/6 (-2/3	$\begin{pmatrix} 6\\ 6\\ 3 \end{pmatrix}$	
■ <i>v</i> = 28										

	Ζ	=	28	_	<u>x</u> 3 6	_	<u>x</u> 5 6	_	$\frac{2x_{6}}{3}$		
					-		<u>x</u> 5 6		-		
	X 2	=	4	_	$\frac{8x_{3}}{3}$	_	$\frac{2x_{5}}{3}$	+	<u>x₆ 3</u>		
	<i>X</i> ₄	=	18	_	<u>x</u> 3 2	+	$\frac{X_{5}}{2}$				
Slack Form Notation • $B = \{1, 2, 4\}, N = \{3, 5, 6\}$ Next lecture: each slack form corresponds to a "basic" solution: $x_3 = x_5 = x_6 = 0$ and so $x_1 = 8$, $x_2 = 4$ and $x_4 = 18$, with objective value 28.											
$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$											
$b = \begin{pmatrix} b_1 \\ b_2 \\ b_4 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix}, c = \begin{pmatrix} c_3 \\ c_5 \\ c_6 \end{pmatrix} = \begin{pmatrix} -1/6 \\ -1/6 \\ -2/3 \end{pmatrix}$											
■ <i>v</i> = 28											