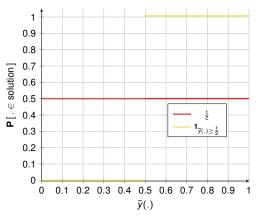
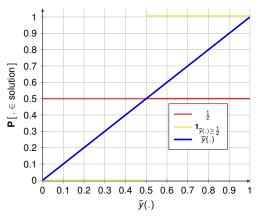
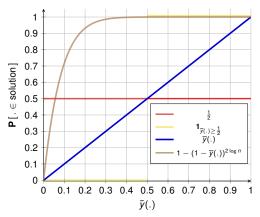
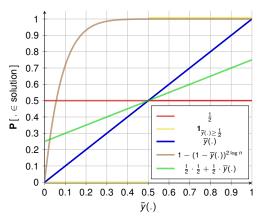

Randomised Algorithms


Lecture 11: Spectral Graph Theory

Thomas Sauerwald (tms41@cam.ac.uk)

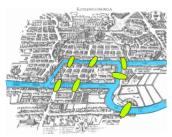

Lent 2025


MAX-CUT, MAX-3-CNF, MAX-CNF: Uniform Guessing


- MAX-CUT, MAX-3-CNF, MAX-CNF: Uniform Guessing
- Vertex-Cover: Deterministic Rounding with Threshold 1/2

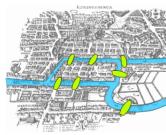
- MAX-CUT, MAX-3-CNF, MAX-CNF: Uniform Guessing
- Vertex-Cover: Deterministic Rounding with Threshold 1/2
- Set-Cover (First Try), MAX-CNF: Linear Randomised Rounding

- MAX-CUT, MAX-3-CNF, MAX-CNF: Uniform Guessing
- Vertex-Cover: Deterministic Rounding with Threshold 1/2
- Set-Cover (First Try), MAX-CNF: Linear Randomised Rounding
- Set-Cover (Final Algorithm): Non-Linear Randomised Rounding


- MAX-CUT, MAX-3-CNF, MAX-CNF: Uniform Guessing
- Vertex-Cover: Deterministic Rounding with Threshold 1/2
- Set-Cover (First Try), MAX-CNF: Linear Randomised Rounding
- Set-Cover (Final Algorithm): Non-Linear Randomised Rounding
- MAX-CNF (Hybrid Algorithm): Guessing + Linear Randomised Rouning

Outline

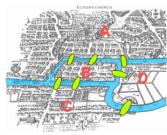
Introduction to (Spectral) Graph Theory and Clustering


Matrices, Spectrum and Structure

A Simplified Clustering Problem

Source: Wikipedia

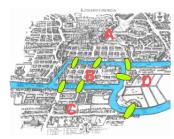
Seven Bridges at Königsberg 1737


Source: Wikipedia

Seven Bridges at Königsberg 1737

Source: Wikipedia

Leonhard Euler (1707-1783)


Source: Wikipedia

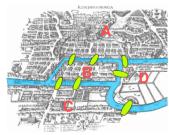
Seven Bridges at Königsberg 1737

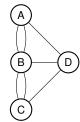
Source: Wikipedia

Leonhard Euler (1707-1783)

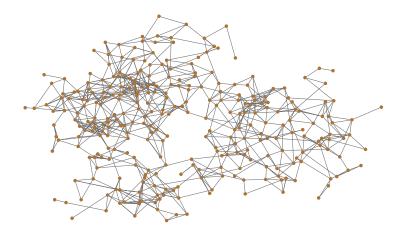
Source: Wikipedia

Seven Bridges at Königsberg 1737

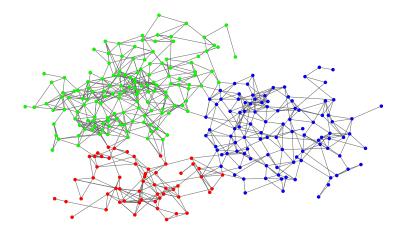

Leonhard Euler (1707-1783)

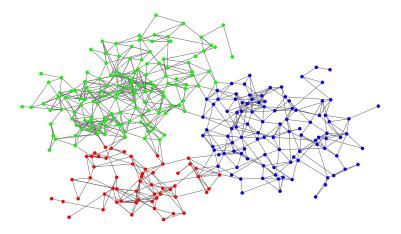

Source: Wikipedia

Seven Bridges at Königsberg 1737



Source: Wikipedia


Leonhard Euler (1707-1783)


Graphs Nowadays: Clustering

Graphs Nowadays: Clustering

Graphs Nowadays: Clustering

Goal: Use spectrum of graphs (unstructured data) to extract clustering (communitites) or other structural information.

- Applications of Graph Clustering
 - Community detection
 - Group webpages according to their topics
 - Find proteins performing the same function within a cell
 - Image segmentation
 - Identify bottlenecks in a network
 - **.** . . .

- Applications of Graph Clustering
 - Community detection
 - Group webpages according to their topics
 - Find proteins performing the same function within a cell
 - Image segmentation
 - Identify bottlenecks in a network
 -
- Unsupervised learning method (there is no ground truth (usually), and we cannot learn from mistakes!)

- Applications of Graph Clustering
 - Community detection
 - Group webpages according to their topics
 - Find proteins performing the same function within a cell
 - Image segmentation
 - Identify bottlenecks in a network
 - . . .
- Unsupervised learning method (there is no ground truth (usually), and we cannot learn from mistakes!)
- Different formalisations for different applications

- Applications of Graph Clustering
 - Community detection
 - Group webpages according to their topics
 - Find proteins performing the same function within a cell
 - Image segmentation
 - Identify bottlenecks in a network
 - . . .
- Unsupervised learning method (there is no ground truth (usually), and we cannot learn from mistakes!)
- Different formalisations for different applications
 - Geometric Clustering: partition points in a Euclidean space
 - k-means. k-medians. k-centres. etc.

- Applications of Graph Clustering
 - Community detection
 - Group webpages according to their topics
 - Find proteins performing the same function within a cell
 - Image segmentation
 - Identify bottlenecks in a network
 - .
- Unsupervised learning method (there is no ground truth (usually), and we cannot learn from mistakes!)
- Different formalisations for different applications
 - Geometric Clustering: partition points in a Euclidean space
 - k-means. k-medians. k-centres. etc.
 - Graph Clustering: partition vertices in a graph
 - modularity, conductance, min-cut, etc.

- Applications of Graph Clustering
 - Community detection
 - Group webpages according to their topics
 - Find proteins performing the same function within a cell
 - Image segmentation
 - Identify bottlenecks in a network
 - ..
- Unsupervised learning method (there is no ground truth (usually), and we cannot learn from mistakes!)
- Different formalisations for different applications
 - Geometric Clustering: partition points in a Euclidean space
 - k-means. k-medians. k-centres. etc.
 - Graph Clustering: partition vertices in a graph
 - modularity, conductance, min-cut, etc.

Graphs and Matrices

Graphs

Matrices

$$\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

Graphs and Matrices

Graphs

- Connectivity
- Bipartiteness
- Number of triangles
- Graph Clustering
- Graph isomorphism
- Maximum Flow
- Shortest Paths

_

Matrices

$$\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

- Eigenvalues
- Eigenvectors
- Inverse
- Determinant
- Matrix-powers
 - l

Graphs and Matrices

Graphs

- Connectivity
- Bipartiteness
- Number of triangles
- Graph Clustering
- Graph isomorphism
- Maximum Flow
- Shortest Paths

Matrices

$$\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

- Eigenvalues
- Eigenvectors
- Inverse
- Determinant
- Matrix-powers
 -

Outline

Introduction to (Spectral) Graph Theory and Clustering

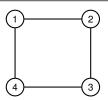
Matrices, Spectrum and Structure

A Simplified Clustering Problem

Adjacency Matrix

Adjacency matrix ——

Let G = (V, E) be an undirected graph. The adjacency matrix of G is the n by n matrix \mathbf{A} defined as

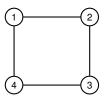

$$\mathbf{A}_{u,v} = \begin{cases} 1 & \text{if } \{u,v\} \in E \\ 0 & \text{otherwise.} \end{cases}$$

Adjacency Matrix

Adjacency matrix ——

Let G = (V, E) be an undirected graph. The adjacency matrix of G is the n by n matrix \mathbf{A} defined as

$$\mathbf{A}_{u,v} = \begin{cases} 1 & \text{if } \{u,v\} \in E \\ 0 & \text{otherwise.} \end{cases}$$


$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

Adjacency Matrix

Adjacency matrix —

Let G = (V, E) be an undirected graph. The adjacency matrix of G is the n by n matrix \mathbf{A} defined as

$$\mathbf{A}_{u,v} = \begin{cases} 1 & \text{if } \{u,v\} \in E \\ 0 & \text{otherwise.} \end{cases}$$

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

Properties of A:

- The sum of elements in each row/column i equals the degree of the corresponding vertex i, deg(i)
- Since G is undirected, A is symmetric

Eigenvalues and Eigenvectors ——

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ such that

$$\mathbf{M}\mathbf{x} = \lambda \mathbf{x}$$
.

We call x an eigenvector of **M** corresponding to the eigenvalue λ .

Eigenvalues and Eigenvectors —————

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ such that

$$\mathbf{M}\mathbf{x} = \lambda \mathbf{x}$$
.

We call x an eigenvector of **M** corresponding to the eigenvalue λ .

Let **A** be the adjacency matrix of a d-regular graph G with n vertices.

Eigenvalues and Eigenvectors

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ such that

$$\mathbf{M}\mathbf{x} = \lambda \mathbf{x}$$
.

We call x an eigenvector of **M** corresponding to the eigenvalue λ .

An undirected graph G is d-regular if every degree is d, i.e., every vertex has exactly d connections.

Graph Spectrum

7

Let **A** be the adjacency matrix of a d-regular graph G with n vertices.

Eigenvalues and Eigenvectors

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ such that

$$\mathbf{M}\mathbf{x} = \lambda \mathbf{x}$$
.

We call x an eigenvector of **M** corresponding to the eigenvalue λ .

An undirected graph G is d-regular if every degree is d, i.e., every vertex has exactly d connections.

Graph Spectrum

Let **A** be the adjacency matrix of a d-regular graph G with n vertices. Then, **A** has *n* real eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$ and *n* corresponding orthonormal eigenvectors f_1, \ldots, f_n .

Eigenvalues and Eigenvectors

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ such that

$$\mathbf{M}\mathbf{x} = \lambda \mathbf{x}$$
.

We call x an eigenvector of **M** corresponding to the eigenvalue λ .

An undirected graph G is d-regular if every degree is d, i.e., every vertex has exactly d connections.

Graph Spectrum

Let **A** be the adjacency matrix of a *d*-regular graph *G* with *n* vertices. Then, **A** has *n* real eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$ and *n* corresponding orthonormal eigenvectors f_1, \ldots, f_n .

= orthogonal and normalised

Eigenvalues and Eigenvectors

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ such that

$$\mathbf{M}\mathbf{x} = \lambda \mathbf{x}$$
.

We call x an eigenvector of **M** corresponding to the eigenvalue λ .

An undirected graph G is d-regular if every degree is d, i.e., every vertex has exactly d connections.

Graph Spectrum

Let **A** be the adjacency matrix of a d-regular graph G with n vertices. Then, **A** has n real eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$ and n corresponding orthonormal eigenvectors f_1, \ldots, f_n . These eigenvalues associated with their multiplicities constitute the spectrum of G.

Eigenvalues and Eigenvectors -

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ such that

$$\mathbf{M}\mathbf{x} = \lambda \mathbf{x}$$
.

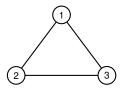
We call x an eigenvector of **M** corresponding to the eigenvalue λ .

An undirected graph G is d-regular if every degree is d, i.e., every vertex has exactly d connections.

Graph Spectrum

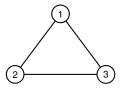
Let **A** be the adjacency matrix of a *d*-regular graph *G* with *n* vertices. Then, **A** has *n* real eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$ and *n* corresponding orthonormal eigenvectors f_1, \ldots, f_n . These eigenvalues associated with their multiplicities constitute the spectrum of *G*.

Remark: For symmetric matrices we have algebraic multiplicity = geometric multiplicity (otherwise \geq)


Example 1

Question: What are the Eigenvalues and Eigenvectors?

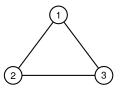
Question: What are the Eigenvalues and Eigenvectors?



$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Bonus: Can you find a short-cut to $det(\mathbf{A} - \lambda \cdot \mathbf{I})$?

Question: What are the Eigenvalues and Eigenvectors?



$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Bonus: Can you find a short-cut to $det(\mathbf{A} - \lambda \cdot \mathbf{I})$?

Question: What are the Eigenvalues and Eigenvectors?

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Solution:

- The three eigenvalues are $\lambda_1 = \lambda_2 = -1, \lambda_3 = 2$.
- The three eigenvectors are (for example):

$$f_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad f_2 = \begin{pmatrix} -\frac{1}{2} \\ 1 \\ -\frac{1}{2} \end{pmatrix}, \quad f_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Laplacian Matrix ——

Let G = (V, E) be a d-regular undirected graph. The (normalised) Laplacian matrix of G is the n by n matrix L defined as

$$\mathbf{L} = \mathbf{I} - \frac{1}{d}\mathbf{A},$$

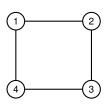
where **I** is the $n \times n$ identity matrix.

Laplacian Matrix —

Let G = (V, E) be a d-regular undirected graph. The (normalised) Laplacian matrix of G is the n by n matrix \mathbf{L} defined as

$$\mathbf{L} = \mathbf{I} - \frac{1}{d}\mathbf{A},$$

where **I** is the $n \times n$ identity matrix.

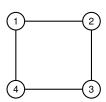

Question: How does the matrix $I - \frac{1}{d} \cdot \mathbf{A}$ look like?

Laplacian Matrix ————

Let G = (V, E) be a *d*-regular undirected graph. The (normalised) Laplacian matrix of G is the n by n matrix L defined as

$$\mathbf{L} = \mathbf{I} - \frac{1}{d}\mathbf{A},$$

where **I** is the $n \times n$ identity matrix.



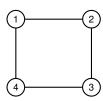
$$\boldsymbol{L} = \begin{pmatrix} 1 & -1/2 & 0 & -1/2 \\ -1/2 & 1 & -1/2 & 0 \\ 0 & -1/2 & 1 & -1/2 \\ -1/2 & 0 & -1/2 & 1 \end{pmatrix}$$

Let G = (V, E) be a d-regular undirected graph. The (normalised) Laplacian matrix of G is the n by n matrix \mathbf{L} defined as

$$\mathbf{L} = \mathbf{I} - \frac{1}{d}\mathbf{A},$$

where **I** is the $n \times n$ identity matrix.

$$\boldsymbol{L} = \begin{pmatrix} 1 & -1/2 & 0 & -1/2 \\ -1/2 & 1 & -1/2 & 0 \\ 0 & -1/2 & 1 & -1/2 \\ -1/2 & 0 & -1/2 & 1 \end{pmatrix}$$


Properties of L:

■ The sum of elements in each row/column equals zero

Let G = (V, E) be a *d*-regular undirected graph. The (normalised) Laplacian matrix of G is the n by n matrix L defined as

$$\mathbf{L} = \mathbf{I} - \frac{1}{d}\mathbf{A},$$

where **I** is the $n \times n$ identity matrix.

$$\boldsymbol{L} = \begin{pmatrix} 1 & -1/2 & 0 & -1/2 \\ -1/2 & 1 & -1/2 & 0 \\ 0 & -1/2 & 1 & -1/2 \\ -1/2 & 0 & -1/2 & 1 \end{pmatrix}$$

Properties of L:

- The sum of elements in each row/column equals zero
- L is symmetric

Relating Spectrum of Adjacency Matrix and Laplacian Matrix

- Correspondence between Adjacency and Laplacian Matrix -

A and L have the same set of eigenvectors.

Exercise: Prove this correspondence. Hint: Use that $\mathbf{L} = \mathbf{I} - \frac{1}{d}\mathbf{A}$. [Exercise 11/12.1]

Eigenvalues and Graph Spectrum of L

Eigenvalues and eigenvectors -

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ such that

$$\mathbf{M}\mathbf{x} = \lambda \mathbf{x}$$
.

We call x an eigenvector of **M** corresponding to the eigenvalue λ .

- Graph Spectrum -

Let **L** be the Laplacian matrix of a d-regular graph G with n vertices. Then, **L** has n real eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$ and n corresponding orthonormal eigenvectors f_1, \ldots, f_n . These eigenvalues associated with their multiplicities constitute the spectrum of G.

Useful Facts of Graph Spectrum

Lemma

Let **L** be the Laplacian matrix of an undirected, regular graph G = (V, E) with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$.

- 1. $\lambda_1 = 0$ with eigenvector 1
- 2. the multiplicity of the eigenvalue 0 is equal to the number of connected components in G

Useful Facts of Graph Spectrum

Lemma

Let **L** be the Laplacian matrix of an undirected, regular graph G = (V, E) with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$.

- 1. $\lambda_1 = 0$ with eigenvector 1
- 2. the multiplicity of the eigenvalue 0 is equal to the number of connected components in G
- 3. $\lambda_n < 2$
- 4. $\lambda_n = 2$ iff there exists a bipartite connected component.

Useful Facts of Graph Spectrum

Lemma

Let **L** be the Laplacian matrix of an undirected, regular graph G = (V, E) with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$.

- 1. $\lambda_1 = 0$ with eigenvector **1**
- 2. the multiplicity of the eigenvalue 0 is equal to the number of connected components in G
- 3. $\lambda_n < 2$
- 4. $\lambda_n = 2$ iff there exists a bipartite connected component.

The proof of these properties is based on a powerful characterisation of eigenvalues/vectors!

Courant-Fischer Min-Max Formula (non-examinable)

Let **M** be an *n* by *n* symmetric matrix with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. Then,

$$\lambda_k = \min_{S: \ \dim(S) = k} \max_{x \in S, x \neq \mathbf{0}} \frac{x^T \mathbf{M} x}{x^T x},$$

where S is a subspace of \mathbb{R}^n . The eigenvectors corresponding to $\lambda_1,\ldots,\lambda_k$ minimise such expression.

Courant-Fischer Min-Max Formula (non-examinable)

Let **M** be an *n* by *n* symmetric matrix with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. Then,

$$\lambda_k = \min_{S \colon \dim(S) = k} \max_{x \in S, x \neq \mathbf{0}} \frac{x^T \mathbf{M} x}{x^T x},$$

where S is a subspace of \mathbb{R}^n . The eigenvectors corresponding to $\lambda_1,\ldots,\lambda_k$ minimise such expression.

$$\lambda_1 = \min_{\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}} \frac{\mathbf{x}^T \mathbf{M} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$$

minimised by an eigenvector f_1 for λ_1

Courant-Fischer Min-Max Formula (non-examinable)

Let **M** be an *n* by *n* symmetric matrix with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. Then,

$$\lambda_k = \min_{S: \ \dim(S) = k} \max_{x \in S, x \neq \mathbf{0}} \frac{x^T \mathbf{M} x}{x^T x},$$

where S is a subspace of \mathbb{R}^n . The eigenvectors corresponding to $\lambda_1,\ldots,\lambda_k$ minimise such expression.

$$\lambda_1 = \min_{x \in \mathbb{R}^n \setminus \{0\}} \frac{x^T \mathbf{M} x}{x^T x} \qquad \qquad \lambda_2 = \min_{\substack{x \in \mathbb{R}^n \setminus \{0\} \\ x \mid f_x}} \lambda_2$$

minimised by an eigenvector f_1 for λ_1

minimised by f2

Courant-Fischer Min-Max Formula (non-examinable)

Let **M** be an *n* by *n* symmetric matrix with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. Then,

$$\lambda_{k} = \min_{\mathcal{S}: \ \dim(\mathcal{S}) = k} \max_{x \in \mathcal{S}, x \neq \mathbf{0}} \frac{x^{T} \mathbf{M} x}{x^{T} x},$$

where S is a subspace of \mathbb{R}^n . The eigenvectors corresponding to $\lambda_1,\ldots,\lambda_k$ minimise such expression.

$$\lambda_1 = \min_{x \in \mathbb{R}^n \setminus \{\mathbf{0}\}} \frac{x^T \mathbf{M} x}{x^T x}$$

minimised by an eigenvector f_1 for λ_1

$$\lambda_2 = \min_{\substack{x \in \mathbb{R}^n \setminus \{\mathbf{0}\} \\ x \perp h}} \frac{x^T \mathbf{M} x}{x^T x}$$

minimised by f_2

- Courant-Fischer Min-Max Formula (non-examinable)

Let **M** be an *n* by *n* symmetric matrix with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. Then,

$$\lambda_k = \min_{S: \ \dim(S) = k} \max_{x \in S, x \neq \mathbf{0}} \frac{x^T \mathbf{M} x}{x^T x},$$

where S is a subspace of \mathbb{R}^n . The eigenvectors corresponding to $\lambda_1,\ldots,\lambda_k$ minimise such expression.

$$\lambda_1 = \min_{x \in \mathbb{R}^n \setminus \{\mathbf{0}\}} \frac{x^T \mathbf{M} x}{x^T x}$$

minimised by an eigenvector f_1 for λ_1

$$\lambda_2 = \min_{\substack{x \in \mathbb{R}^n \setminus \{\mathbf{0}\}\\ x + f_x}} \frac{\mathbf{x}^T \mathbf{M} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$$

minimised by f_2

Quadratic Forms of the Laplacian

– Lemma ·

Let **L** be the Laplacian matrix of a *d*-regular graph G = (V, E) with n vertices. For any $x \in \mathbb{R}^n$,

$$x^T \mathbf{L} x = \sum_{\{u,v\} \in E} \frac{(x_u - x_v)^2}{d}.$$

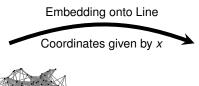
Quadratic Forms of the Laplacian

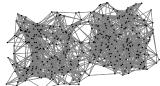
- Lemma

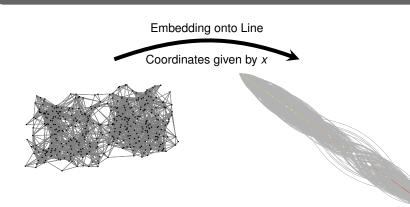
Let **L** be the Laplacian matrix of a *d*-regular graph G = (V, E) with *n* vertices. For any $x \in \mathbb{R}^n$,

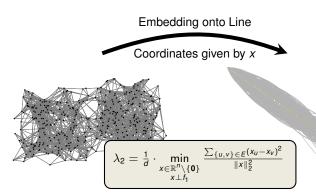
$$x^T L x = \sum_{\{u,v\} \in E} \frac{(x_u - x_v)^2}{d}.$$

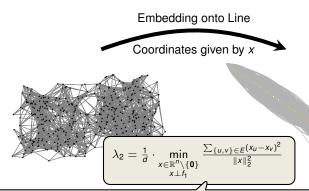
Proof:


$$x^{T} \mathbf{L} x = x^{T} \left(\mathbf{I} - \frac{1}{d} \mathbf{A} \right) x = x^{T} x - \frac{1}{d} x^{T} \mathbf{A} x$$


$$= \sum_{u \in V} x_{u}^{2} - \frac{2}{d} \sum_{\{u,v\} \in E} x_{u} x_{v}$$

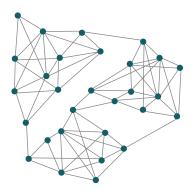

$$= \frac{1}{d} \sum_{\{u,v\} \in E} (x_{u}^{2} + x_{v}^{2} - 2x_{u} x_{v})$$


$$= \sum_{\{v,v\} \in E} \frac{(x_{u} - x_{v})^{2}}{d}.$$

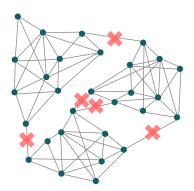


Question: How can we visualize a complicated object like an unknown graph with many vertices in low-dimensional space?

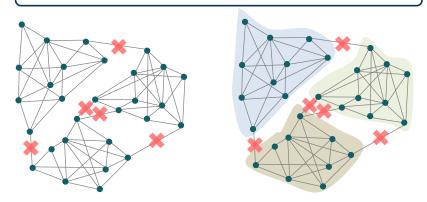
The coordinates in the vector **x** indicate how similar/dissimilar vertices are. Edges between dissimilar vertices are penalised quadratically.

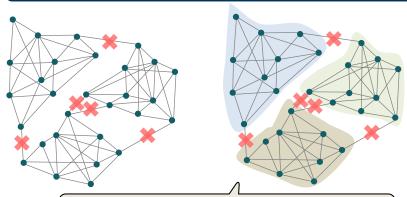

Outline

Introduction to (Spectral) Graph Theory and Clustering


Matrices, Spectrum and Structure

A Simplified Clustering Problem


Partition the graph into **connected components** so that any pair of vertices in the same component is connected, but vertices in different components are not.


Partition the graph into **connected components** so that any pair of vertices in the same component is connected, but vertices in different components are not.

Partition the graph into **connected components** so that any pair of vertices in the same component is connected, but vertices in different components are not.

Partition the graph into **connected components** so that any pair of vertices in the same component is connected, but vertices in different components are not.

We could obviously solve this easily using DFS/BFS, but let's see how we can tackle this using the spectrum of L!

 $\label{eq:Question: Question: What are the Eigenvectors with Eigenvalue 0 of L?}$

$\textbf{Question:} \ \ \textbf{What are the Eigenvectors with Eigenvalue 0 of L?}$

/0	1	1	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	0	0	0
0	0	0	0	1	0	1
0	0	0	1	0	1	0
0	0	0	0	1	0	1
0/	0	0	1	0	1	0,
	$\begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0$	$\begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \end{pmatrix}$

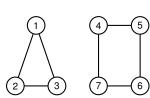
Question: What are the Eigenvectors with Eigenvalue 0 of L?

$$\mathbf{L} = \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -\frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{3} \\ 0 & 0 & 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} \\ \end{pmatrix}$$

Question: What are the Eigenvectors with Eigenvalue 0 of L?

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

$$\mathbf{L} = \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 1 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 \\ 0$$


Solution:

- Two smallest eigenvalues are $\lambda_1 = \lambda_2 = 0$.
- The corresponding two eigenvectors are:

$$f_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad f_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

Question: What are the Eigenvectors with Eigenvalue 0 of L?

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

$$\mathbf{L} = \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -\frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \end{pmatrix}$$

Solution:

- Two smallest eigenvalues are $\lambda_1 = \lambda_2 = 0$.
- The corresponding two eigenvectors are:

$$f_{1} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad f_{2} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} \text{ (or } f_{1} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad f_{2} = \begin{pmatrix} -1/3 \\ -1/3 \\ -1/3 \\ 1/4 \\ 1/4 \\ 1/4 \end{pmatrix} \text{)}$$

Example 2

Question: What are the Eigenvectors with Eigenvalue 0 of L?

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

$$\mathbf{L} = \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -\frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\ 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1 \end{pmatrix}$$

Solution:

- The corresponding two eigenvectors are:

• Two smallest eigenvalues are $\lambda_1 = \lambda_2 = 0$. Thus we can easily solve the simplified clustering problem by computing the eigenvectors with eigenvalue 0

$$f_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad f_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

Example 2

Question: What are the Eigenvectors with Eigenvalue 0 of L?

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

$$\mathbf{L} = \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -\frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1 \end{pmatrix}$$

Solution:

- Two smallest eigenvalues are $\lambda_1 = \lambda_2 = 0$.
- The corresponding two eigenvectors are:

Thus we can easily solve the simplified clustering problem by computing the eigenvectors with eigenvalue 0

$$f_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad f_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

Next Lecture: A fine-grained approach works even if the clusters are **sparsely** connected!

Let us generalise and formalise the previous example!

Let us generalise and formalise the previous example!

Let us generalise and formalise the previous example!

Proof (multiplicity of 0 equals the no. of connected components):

1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show: G has exactly k connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$

Let us generalise and formalise the previous example!

Proof (multiplicity of 0 equals the no. of connected components):

1. (" \Longrightarrow " $cc(G) \le \text{mult}(0)$). We will show: G has exactly k connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$ • Take $\chi_{C_i} \in \{0, 1\}^n$ such that $\chi_{C_i}(u) = \mathbf{1}_{u \in C_i}$ for all $u \in V$

Let us generalise and formalise the previous example!

- 1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show:
 - *G* has exactly *k* connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$
 - Take $\chi_{C_i} \in \{0,1\}^n$ such that $\chi_{C_i}(u) = \mathbf{1}_{u \in C_i}$ for all $u \in V$
 - Clearly, the χ_{C_i} 's are orthogonal

Let us generalise and formalise the previous example!

- 1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show:
 - G has exactly k connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$
 - Take $\chi_{C_i} \in \{0,1\}^n$ such that $\chi_{C_i}(u) = \mathbf{1}_{u \in C_i}$ for all $u \in V$
 - Clearly, the χ_{C_i} 's are orthogonal

Let us generalise and formalise the previous example!

- 1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show:
 - *G* has exactly *k* connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$
 - Take $\chi_{C_i} \in \{0,1\}^n$ such that $\chi_{C_i}(u) = \mathbf{1}_{u \in C_i}$ for all $u \in V$
 - Clearly, the χ_{C_i} 's are orthogonal
- 2. (" \Leftarrow " $cc(G) \ge mult(0)$). We will show:

Let us generalise and formalise the previous example!

- 1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show:
 - *G* has exactly *k* connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$
 - Take $\chi_{C_i} \in \{0,1\}^n$ such that $\chi_{C_i}(u) = \mathbf{1}_{u \in C_i}$ for all $u \in V$
 - Clearly, the χ_{C_i} 's are orthogonal
- 2. (" \Leftarrow " $cc(G) \ge mult(0)$). We will show:

$$\lambda_1 = \cdots = \lambda_k = 0 \implies G$$
 has at least k connected comp. C_1, \ldots, C_k

Let us generalise and formalise the previous example!

- 1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show:
 - *G* has exactly *k* connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$
 - Take $\chi_{C_i} \in \{0,1\}^n$ such that $\chi_{C_i}(u) = \mathbf{1}_{u \in C_i}$ for all $u \in V$
 - Clearly, the χ_{C_i} 's are orthogonal
- 2. (" \Leftarrow " $cc(G) \ge mult(0)$). We will show:
 - $\lambda_1 = \cdots = \lambda_k = 0 \implies G$ has at least k connected comp. C_1, \ldots, C_k
 - there exist f_1, \ldots, f_k orthonormal such that $\sum_{\{u,v\} \in E} (f_i(u) f_i(v))^2 = 0$

Let us generalise and formalise the previous example!

- 1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show:
 - *G* has exactly *k* connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$
 - Take $\chi_{C_i} \in \{0,1\}^n$ such that $\chi_{C_i}(u) = \mathbf{1}_{u \in C_i}$ for all $u \in V$
 - Clearly, the χ_{C_i} 's are orthogonal
- 2. (" \Leftarrow " $cc(G) \ge mult(0)$). We will show:
 - $\lambda_1 = \cdots = \lambda_k = 0 \implies G$ has at least k connected comp. C_1, \ldots, C_k
 - there exist f_1, \ldots, f_k orthonormal such that $\sum_{\{u,v\} \in E} (f_i(u) f_i(v))^2 = 0$
 - $\Rightarrow f_1, \dots, f_k$ constant on connected components

Let us generalise and formalise the previous example!

Proof (multiplicity of 0 equals the no. of connected components):

1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show:

G has exactly *k* connected comp.
$$C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$$

- Take $\chi_{C_i} \in \{0,1\}^n$ such that $\chi_{C_i}(u) = \mathbf{1}_{u \in C_i}$ for all $u \in V$
- Clearly, the χ_{C_i} 's are orthogonal

2. (" \Leftarrow " $cc(G) \ge mult(0)$). We will show:

$$\lambda_1 = \cdots = \lambda_k = 0 \implies G$$
 has at least k connected comp. C_1, \ldots, C_k

- there exist f_1, \ldots, f_k orthonormal such that $\sum_{\{u,v\} \in E} (f_i(u) f_i(v))^2 = 0$
- $\Rightarrow f_1, \dots, f_k$ constant on connected components
- as f₁,..., f_k are pairwise orthogonal, G must have k different connected components.

Let us generalise and formalise the previous example!

Proof (multiplicity of 0 equals the no. of connected components):

1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show:

G has exactly *k* connected comp.
$$C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$$

- Take $\chi_{C_i} \in \{0,1\}^n$ such that $\chi_{C_i}(u) = \mathbf{1}_{u \in C_i}$ for all $u \in V$
- Clearly, the χ_{C_i} 's are orthogonal

2. (" \Leftarrow " $cc(G) \ge mult(0)$). We will show:

$$\lambda_1 = \cdots = \lambda_k = 0 \implies G$$
 has at least k connected comp. C_1, \ldots, C_k

- there exist f_1, \ldots, f_k orthonormal such that $\sum_{\{u,v\} \in E} (f_i(u) f_i(v))^2 = 0$
- $\Rightarrow f_1, \dots, f_k$ constant on connected components
- as f₁,..., f_k are pairwise orthogonal, G must have k different connected components.