

- linear programming is a powerful tool in optimisation
- inspired more sophisticated techniques such as quadratic optimisation, convex optimisation, integer programming and semi-definite programming
- we will later use the connection between linear and integer programming

Overall we will approach the following problems with linear programming:

- 1. a "generic" production problem, shortest path, maximum flow, minimum-cost flow (directly)
- 2. TSP, Vertex Cover, Set Cover, MAX-CNF (indirectly)

(8.25, 0, 1.5)

(9,0,0)

3

Outline

Introduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms

6. Linear Programming © T. Sauerwald

Introduction

2

Outline

ntroduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms

10

Outline A Simple Example of a Linear Program Formulating Problems as Linear Programs Standard and Slack Forms 6. Linear Programming © T. Sauerwald Formulating Problems as Linear Programs 9 **Shortest Paths** d 5

Maximum Flow

- Maximum Flow Problem —
- Given: directed graph G = (V, E) with edge capacities c : E → ℝ⁺ (recall c(u, v) = 0 if (u, v) ∉ E), pair of vertices s, t ∈ V
- Goal: Find a maximum flow $f: V \times V \to \mathbb{R}$ from *s* to *t* which satisfies the capacity constraints and flow conservation

Minimum-Cost Flow as a LP

 $\begin{array}{c|c} \mbox{Minimum-Cost Flow as LP} \\ \mbox{minimise} & \sum_{(u,v)\in E} a(u,v) f_{uv} \\ \mbox{subject to} \\ & f_{uv} & \leq & c(u,v) & \mbox{for } u,v\in V, \\ & \sum_{v\in V} f_{vu} - \sum_{v\in V} f_{uv} & = & 0 & \mbox{for } u\in V\setminus\{s,t\}, \\ & \sum_{v\in V} f_{sv} - \sum_{v\in V} f_{vs} & = & d , \\ & f_{uv} & \geq & 0 & \mbox{for } u,v\in V. \end{array}$

Real power of Linear Programming comes from the ability to solve **new problems**!

14

13

Converting into Standard Form (1/5)

1. The objective might be a minimisation rather than maximisation.

6. Linear Programming © T. Sauerwald

Converting into Standard Form (5/5)

Converting into Standard Form (4/5)

Converting Standard Form into Slack Form (1/3)

22

Converting Standard Form into Slack Form (2/3)

maximise subject to maximise subject to	$2x_{1} - 3x_{2} + 3x_{3}$ $x_{1} + x_{2} - x_{3} \leq 7$ $-x_{1} - x_{2} + x_{3} \leq -7$ $x_{1} - 2x_{2} + 2x_{3} \leq 4$ $x_{1}, x_{2}, x_{3} \geq 0$ \downarrow Introduce slack variables $2x_{1} - 3x_{2} + 3x_{3}$ $x_{4} = 7 - x_{1} - x_{2} + x_{3}$ $x_{5} = -7 + x_{1} + x_{2} - x_{3}$ $x_{6} = 4 - x_{1} + 2x_{2} - 2x_{3}$	
6. Linear Programming © T. S	$X_1, X_2, X_3, X_4, X_5, X_6 \ge 0$	23
Basic and Non-Bas	sic Variables	
Z X4 X5 X6	$= 2x_1 - 3x_2 + 3x_3$ = 7 - $x_1 - x_2 + x_3$ = -7 + $x_1 + x_2 - x_3$ = 4 - $x_1 + 2x_2 - 2x_3$	
Basic Variables: <i>B</i> =	= $\{4, 5, 6\}$ (Non-Basic Variables: $N = \{1, 2, 3\}$)
Slack Form (Form Slack form is given	nal Definition) by a tuple (N, B, A, b, c, v) so that $z = v + \sum_{j \in N} c_j x_j$ $x_i = b_i - \sum_{j \in N} a_{ij} x_j$ for $i \in B$,	

and all variables are non-negative.

Variables/Coefficients on the right hand side are indexed by B and N.

25

Converting Standard Form into Slack Form (3/3)

maximise subject to	2 <i>x</i> ₁	_	3 <i>x</i> ₂	+	3 <i>x</i> ₃								
,	<i>X</i> 4	=	7	_	<i>X</i> 1	_	<i>X</i> ₂	+	<i>X</i> 3				
	X 5	=	-7	+	<i>X</i> ₁	+	<i>X</i> ₂	_	<i>X</i> 3				
	<i>x</i> ₆	=	4	_	<i>X</i> 1	+	$2x_2$	_	2 <i>x</i> ₃				
		x_1, x_2	, x ₃ , x ₄	x_{5}, x_{5}, x_{1}	6	\geq	0						
Use variable z to denote objective function and omit the nonnegativity constraints.													
	Ζ	=			2 <i>x</i> 1	_	3 <i>x</i> 2	+	3 <i>x</i> ₃				
	<i>X</i> 4	=	7	_	<i>X</i> 1	_	<i>X</i> ₂	+	<i>X</i> 3				
	<i>X</i> 5	=	-7	+	<i>X</i> 1	+	<i>X</i> ₂	_	<i>X</i> 3				
	<i>x</i> ₆	=	4	_	<i>X</i> ₁	+	$2x_2$	—	$2x_{3}$				
This	s is ca	lled s	lack fo	orm.									
6. Linear Programming © T. S	auerwald			Stand	ard and SI	ack Form	s			24			
6. Linear Programming © T. S Slack Form (Exam)	auerwald			Stand	ard and SI	lack Form	s			24			
6. Linear Programming © T. S Slack Form (Examp Z	ple)	28		Stand	ard and SI	lack Form: $\frac{X_5}{6}$	s 	$\frac{2x_6}{3}$		24			
6. Linear Programming © T. S Slack Form (Examp Z X ₁	ple)	28 8	- +	Stand <u>X3</u> 6 <u>X3</u> 6	ard and SI	Ack Form	s 	$\frac{2x_6}{3}$ $\frac{x_6}{3}$		24			
6. Linear Programming © T. S Slack Form (Examp Z X ₁ X ₂	iauerwald DIE) = = =	28 8 4	- +	Stand <u>X3</u> 6 <u>X3</u> 6 <u>X3</u> 6 8 <u>X3</u> 3		$\frac{x_5}{6}$ $\frac{2x_5}{3}$	s _ _ +	$\frac{2x_6}{3}$ $\frac{x_6}{3}$ $\frac{x_6}{3}$		24			
6. Linear Programming © T. S Slack Form (Examp Z X1 X2 X4	cole)	28 8 4 18	- + -	Stand <u>X₃</u> 6 <u>X₃</u> 6 8 X ₃ 3 <u>X₃</u> 2	- + - +	$\frac{x_5}{6}$ $\frac{2x_5}{3}$ $\frac{x_5}{2}$	s _ +	$\frac{2x_6}{3}$ $\frac{x_6}{3}$ $\frac{x_6}{3}$		24			
6. Linear Programming © T. S Slack Form (Example Z X_1 X_2 X_4 Slack Form Notat • $B = \{1, 2, 4\}, N$	auerwald ple) = = tion	28 8 4 18 ,5,6}	- +	Stand $\frac{X_3}{6}$ $\frac{X_3}{6}$ $\frac{X_3}{3}$ $\frac{X_3}{2}$ xt lect ic" sol = 4	- + - ure: e ution: and x	$\frac{x_5}{6}$ $\frac{x_5}{6}$ $\frac{2x_5}{3}$ $\frac{x_5}{2}$ ach sl $x_3 =$ $x_4 = 18$	s - + Hack for $x_5 = x$ β , with	$\frac{2x_6}{3}$ $\frac{x_6}{3}$ $\frac{x_6}{3}$	rresponds and so <i>x</i> tive value	$\frac{1}{1} = 8,$ 28.			

$$h = \begin{pmatrix} a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix}^{-1} \begin{pmatrix} 0/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$
$$b = \begin{pmatrix} b_1 \\ b_2 \\ b_4 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix}, \ c = \begin{pmatrix} c_3 \\ c_5 \\ c_6 \end{pmatrix} = \begin{pmatrix} -1/6 \\ -1/6 \\ -2/3 \end{pmatrix}$$

6. Linear Programming © T. Sauerwald

▪ *v* = 28

26