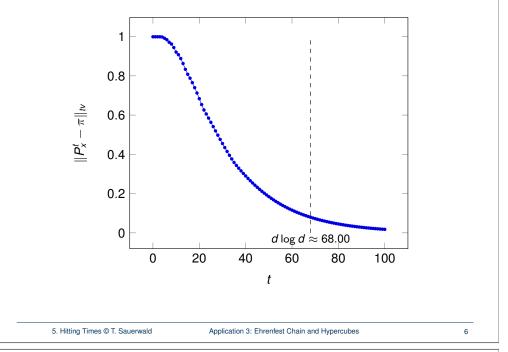


Total Variation Distance of Random Walk on Hypercube (d = 22)



Outline

Application 3: Ehrenfest Chain and Hypercubes

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

5. Hitting Times © T. Sauerwald

Stopping and Hitting Times

A non-negative integer random variable τ is a stopping time for $(X_t)_{t>0}$ if for every $s \ge 0$ the event $\{\tau = s\}$ depends only on X_0, \ldots, X_s .

Example - College Carbs Stopping times:

$$\checkmark$$
 "We had rice yesterday" \rightsquigarrow $\tau := \min \{t \ge 1 : X_{t-1} = \text{"rice"}\}$

× "We are having pasta next Thursday"

For two states $x, y \in \Omega$ we call h(x, y) the hitting time of y from x:

 $h(x, y) := \mathbf{E}_x[\tau_y] = \mathbf{E}[\tau_y \mid X_0 = x]$ where $\tau_y = \min\{t \ge 1 : X_t = y\}$.

Some distinguish between $\tau_y^+ = \min\{t \ge 1 : X_t = y\}$ and $\tau_y = \min\{t \ge 0 : X_t = y\}$

A Useful Identity _____

Hitting times are the solution to a set of linear equations:

$$h(x,y) \stackrel{\text{Markov Prop.}}{=} 1 + \sum_{z \in \Omega \setminus \{y\}} P(x,z) \cdot h(z,y) \quad \forall x,y \in \Omega.$$

5. Hitting Times © T. Sauerwald

Random Walks on Graphs, Hitting Times and Cover Times

9

11

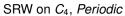
Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by $\tilde{P} = (P + I)/2$,

 $\widetilde{P}_{u,v} = \begin{cases} \frac{1}{2 \operatorname{deg}(u)} & \text{if } \{u,v\} \in E, \\ \frac{1}{2} & \text{if } u = v, \\ 0 & \text{otherwise.} \end{cases}$ I - Identity matrix.

Fact: For any graph *G* the LRW on *G* is aperiodic.

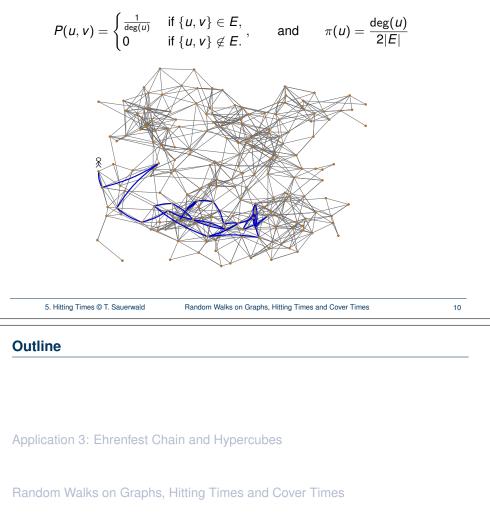
2



LRW on C₄, Aperiodic

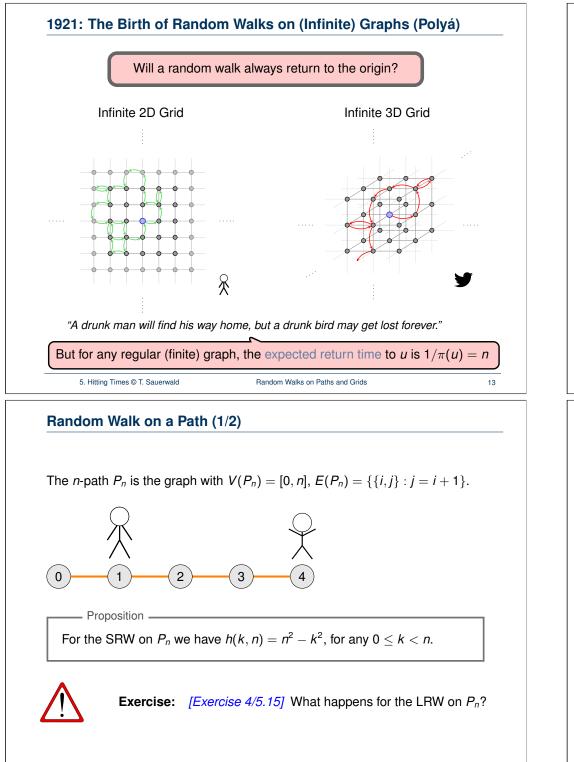
Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V(G) with



Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT



SRW Random Walk on Two	o-Dimensional Grids: Animat	ion
For animation, see full slides.		
5. Hitting Times © T. Sauerwald	Random Walks on Paths and Grids	14

Random Walk on a Path (2/2)

— Proposition

For the SRW on P_n we have $h(k, n) = n^2 - k^2$, for any $0 \le k < n$.

Recall: Hitting times are the solution to the set of linear equations:

$$h(x,y) \stackrel{\text{Markov Prop.}}{=} 1 + \sum_{z \in \Omega \setminus \{y\}} P(x,z) \cdot h(z,y) \quad \forall x,y \in V.$$

Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property

$$f(0) = 1 + f(1)$$
 and $f(k) = 1 + \frac{f(k-1)}{2} + \frac{f(k+1)}{2}$ for $1 \le k \le n-1$

System of n independent equations in n unknowns, so has a unique solution.

Thus it suffices to check that $f(k) = n^2 - k^2$ satisfies the above. Indeed

$$f(0) = 1 + f(1) = 1 + n^2 - 1^2 = n^2$$

and for any $1 \le k \le n - 1$ we have,

$$f(k) = 1 + \frac{n^2 - (k-1)^2}{2} + \frac{n^2 - (k+1)^2}{2} = n^2 - k^2.$$

5. Hitting Times © T. Sauerwald

Random Walks on Paths and Grids

16

5. Hitting Times © T. Sauerwald

Random Walks on Paths and Grids

15

Outline

Application 3: Ehrenfest Chain and Hypercubes

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

5. Hitting Times © T. Sauerwald

SAT and a Randomised Algorithm for 2-SAT

17

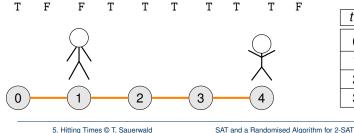
2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to $2n^2$ times
- Pick an arbitrary unsatisfied clause 3:
- Choose a random literal and switch its value 4:
- If formula is satisfied then return "Satisfiable" 5:
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |variable values shared by <math>A_i$ and $\alpha|$.

Example 1 : Solution Found

 $(x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_3}) \land (x_1 \lor x_2) \land (x_4 \lor \overline{x_3}) \land (x_4 \lor \overline{x_1})$



X4 t X_1 **X**2 Х3 0 F F F F 1 F Т F F 2 Т Т F F 3 Т Т F Т 19

 $\alpha = (\mathsf{T}, \mathsf{T}, \mathsf{F}, \mathsf{T}).$

SAT Problems

A Satisfiability (SAT) formula is a logical expression that's the conjunction (AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

Example:

SAT: $(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_3}) \land (x_1 \lor x_2 \lor x_4) \land (x_4 \lor \overline{x_3}) \land (x_4 \lor \overline{x_1})$ Solution: $X_1 = \text{True}$, $X_2 = \text{False}$, $X_3 = \text{False}$ and $X_4 = \text{True}$.

- If each clause has k literals we call the problem k-SAT; n is the number of variables.
- In general, determining if a SAT formula has a solution is NP-hard
- A huge amount of problems can be posed as a SAT:
 - \rightarrow Model checking and hardware/software verification
 - \rightarrow Design of experiments
 - \rightarrow Classical planning
 - $\rightarrow \dots$

5. Hitting Times © T. Sauerwald

SAT and a Randomised Algorithm for 2-SAT

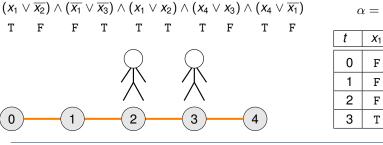
18

2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to $2n^2$ times
- Pick an arbitrary unsatisfied clause 3:
- Choose a random literal and switch its value 4:
- If formula is satisfied then return "Satisfiable" 5.
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |variable values shared by <math>A_i$ and $\alpha|$.

Example 2 : (Another) Solution Found



$\alpha = ($	T, F	, F,	T)
--------------	------	------	----

*X*2

F

Х3

F

5. Hitting Times © T. Sauerwald

SAT and a Randomised Algorithm for 2-SAT

X4

F

2-SAT and the SRW on the Path

— Expected iterations of (2) in RANDOMISED-2-SAT —

If the formula is satisfiable, then the expected number of steps before RANDOMISED-2-SAT outputs a valid solution is at most n^2 .

Proof: Fix any solution α , then for any $i \ge 0$ and $1 \le k \le n-1$,

(i) $\mathbf{P}[X_{i+1} = 1 \mid X_i = 0] = 1$ (ii) $\mathbf{P}[X_{i+1} = k+1 \mid X_i = k] \ge 1/2$

(iii) $\mathbf{P}[X_{i+1} = k - 1 \mid X_i = k] \le 1/2.$

Notice that if $X_i = n$ then $A_i = \alpha$ thus solution found (may find another first).

Assume (pessimistically) that $X_0 = 0$ (none of our initial guesses is right).

The process X_i is complicated to describe in full; however by (i) - (iii) we can **bound** it by Y_i (SRW on the *n*-path from 0). This gives (see also [Ex 4/5.17])

E [time to find sol] \leq **E**₀[min{ $t : X_t = n$ }] \leq **E**₀[min{ $t : Y_t = n$ }] = $h(0, n) = n^2$.

Running for $2n^2$ steps and using Markov's inequality yields:

Proposition

If the formula is satisfiable, RANDOMISED-2-SAT will return a valid solution in $O(n^2)$ steps with probability at least 1/2.

5. Hitting Times © T. Sauerwald

SAT and a Randomised Algorithm for 2-SAT

21

Boosting Success Probabilities

Boosting Lemma —

Suppose a randomised algorithm succeeds with probability (at least) *p*. Then for any $C \ge 1$, $\lceil \frac{c}{p} \cdot \log n \rceil$ repetitions are sufficient to succeed (in at least one repetition) with probability at least $1 - n^{-C}$.

Proof: Recall that $1 - p \le e^{-p}$ for all real *p*. Let $t = \lfloor \frac{c}{p} \log n \rfloor$ and observe

 $\begin{aligned} \mathbf{P}[t \text{ runs all fail}] &\leq (1-p)^t \\ &\leq e^{-\rho t} \\ &\leq n^{-C}, \end{aligned}$

thus the probability one of the runs succeeds is at least $1 - n^{-C}$.

— RANDOMISED-2-SAT -

There is a $O(n^2 \log n)$ -step algorithm for 2-SAT which succeeds w.h.p.

5. Hitting Times © T. Sauerwald

SAT and a Randomised Algorithm for 2-SAT

22