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The Ehrenfest Markov Chain

A simple model for the exchange of molecules
between two boxes

We have d particles labelled 1, 2, . . . , d

At each step a particle is selected uniformly at
random and switches to the other box

If Ω = {0, 1, . . . , d} denotes the number of
particles in the red box, then:

Px,x−1 =
x
d

and Px,x+1 =
d − x

d
.
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Let us now enlarge the state space by looking at each particle individually!

For each particle an indicator variable⇒ Ω = {0, 1}d

At each step: pick a random coordinate in [d ] and flip it

Random Walk on the Hypercube
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Analysis of the Mixing Time

For each particle an indicator variable⇒ Ω = {0, 1}d

At each step: pick a random coordinate in [d ] and flip it

(Non-Lazy) Random Walk on the Hypercube

Problem: This Markov Chain is periodic, as the
number of ones always switches between odd to even!

Solution: Add self-loops to break periodic behaviour!

At each step t = 0, 1, 2 . . .
Pick a random coordinate in [d ]
With prob. 1/2 flip coordinate.

Lazy Random Walk (1st Version)

At each step t = 0, 1, 2 . . .
Pick a random coordinate in [d ]
Set coordinate to {0, 1} uniformly.

Lazy Random Walk (2nd Version)

These two chains are equivalent!
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Example of a Random Walk on a 4-Dimensional Hypercube

0000 0001
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0100 0101
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1100 1101

Once all coordinates have been picked at least
once, the state is uniformly at random in {0, 1}d .

Coupon Collector ; mixing time should be O(d log d)

We won’t formalise this argument here (see [Ex. 4/5.11] )

t Coord. Xt

0 2 0 0 0 0

1 3 0 1 0 0

2 3 0 1 0 0

3 4 0 1 1 0

4 2 0 1 1 1

5 4 0 1 1 1

6 2 0 1 1 0

7 4 0 0 1 0

8 3 0 0 1 0

9 1 0 0 1 0

10 done! 0 0 1 0
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Total Variation Distance of Random Walk on Hypercube (d = 22)
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Theoretical Results (by Diaconis, Graham and Morrison)

Source: “Asymptotic analysis of a random walk on a hypercube with many dimensions”, P. Diaconis, R.L. Graham, J.A. Morrison; Random
Structures & Algorithms, 1990.

This is a numerical plot of a theoretical bound, where d = 1012

(Minor Remark: This random walk is with a loop probability of 1/(d + 1))
The variation distance exhibits a so-called cut-off phenomena:

Distance remains close to its maximum value 1 until step 1
4 n log n −Θ(n)

Then distance moves close to 0 before step 1
4 n log n + Θ(n)
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Stopping and Hitting Times

A non-negative integer random variable τ is a stopping time for (Xt )t≥0 if for
every s ≥ 0 the event {τ = s} depends only on X0, . . . ,Xs.

Example - College Carbs Stopping times:

X “We had rice yesterday” ; τ := min {t ≥ 1 : Xt−1 = “rice”}
× “We are having pasta next Thursday”

For two states x , y ∈ Ω we call h(x , y) the hitting time of y from x :

h(x , y) := Ex [τy ] = E [ τy | X0 = x ] where τy = min{t ≥ 1 : Xt = y}.

Some distinguish between τ+
y = min{t ≥ 1 : Xt = y} and τy = min{t ≥ 0 : Xt = y}

Hitting times are the solution to a set of linear equations:

h(x , y)
Markov Prop.

= 1 +
∑

z∈Ω\{y}

P(x , z) · h(z, y) ∀x , y ∈ Ω.

A Useful Identity
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Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V (G) with

P(u, v) =

{
1

deg(u)
if {u, v} ∈ E ,

0 if {u, v} 6∈ E .
, and π(u) =

deg(u)

2|E |
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Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P̃ = (P + I) /2,

P̃u,v =


1

2 deg(u)
if {u, v} ∈ E ,

1
2 if u = v ,
0 otherwise.

P - SRW matrix
I - Identity matrix.

Fact: For any graph G the LRW on G is aperiodic.
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SRW on C4, Periodic
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LRW on C4, Aperiodic
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1921: The Birth of Random Walks on (Infinite) Graphs (Polyá)

Will a random walk always return to the origin?

Infinite 2D Grid Infinite 3D Grid

“A drunk man will find his way home, but a drunk bird may get lost forever.”

But for any regular (finite) graph, the expected return time to u is 1/π(u) = n
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SRW Random Walk on Two-Dimensional Grids: Animation

For animation, see full slides.
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Random Walk on a Path (1/2)

The n-path Pn is the graph with V (Pn) = [0, n], E(Pn) = {{i, j} : j = i + 1}.

0 1 2 3 4

For the SRW on Pn we have h(k , n) = n2 − k2, for any 0 ≤ k < n.

Proposition

Exercise: [Exercise 4/5.15] What happens for the LRW on Pn?
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Random Walk on a Path (2/2)

For the SRW on Pn we have h(k , n) = n2 − k2, for any 0 ≤ k < n.

Proposition

Recall: Hitting times are the solution to the set of linear equations:

h(x , y)
Markov Prop.

= 1 +
∑

z∈Ω\{y}

P(x , z) · h(z, y) ∀x , y ∈ V .

Proof: Let f (k) = h(k , n) and set f (n) := 0. By the Markov property

f (0) = 1 + f (1) and f (k) = 1 +
f (k − 1)

2
+

f (k + 1)

2
for 1 ≤ k ≤ n − 1.

System of n independent equations in n unknowns, so has a unique solution.

Thus it suffices to check that f (k) = n2 − k2 satisfies the above. Indeed

f (0) = 1 + f (1) = 1 + n2 − 12 = n2,

and for any 1 ≤ k ≤ n − 1 we have,

f (k) = 1 +
n2 − (k − 1)2

2
+

n2 − (k + 1)2

2
= n2 − k2.
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

Solution: x1 = True, x2 = False, x3 = False and x4 = True.

If each clause has k literals we call the problem k -SAT; n is the number of
variables.

In general, determining if a SAT formula has a solution is NP-hard
A huge amount of problems can be posed as a SAT:
→ Model checking and hardware/software verification
→ Design of experiments
→ Classical planning
→ . . .
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 1 : Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

T F F T T T T T T F

0 1 2 3 4

α = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F
1 F T F F
2 T T F F
3 T T F T
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 2 : (Another) Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

T F F T T T T F T F

0 1 2 3 4

α = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F
1 F F F T
2 F T F T
3 T T F T
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2-SAT and the SRW on the Path

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most n2.

Expected iterations of (2) in RANDOMISED-2-SAT

Proof: Fix any solution α, then for any i ≥ 0 and 1 ≤ k ≤ n − 1,
(i) P [ Xi+1 = 1 | Xi = 0 ] = 1
(ii) P [ Xi+1 = k + 1 | Xi = k ] ≥ 1/2
(iii) P [ Xi+1 = k − 1 | Xi = k ] ≤ 1/2.

Notice that if Xi = n then Ai = α thus solution found (may find another first).

Assume (pessimistically) that X0 = 0 (none of our initial guesses is right).

The process Xi is complicated to describe in full; however by (i)− (iii) we can
bound it by Yi (SRW on the n-path from 0). This gives (see also [Ex 4/5.17] )

E [ time to find sol ] ≤ E0[min{t : Xt = n}]≤ E0[min{t : Yt = n}] = h(0, n) = n2.

Running for 2n2 steps and using Markov’s inequality yields:

If the formula is satisfiable, RANDOMISED-2-SAT will return a valid solu-
tion in O

(
n2) steps with probability at least 1/2.

Proposition
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Boosting Success Probabilities

Suppose a randomised algorithm succeeds with probability (at least) p.
Then for any C ≥ 1, dC

p · log ne repetitions are sufficient to succeed (in at
least one repetition) with probability at least 1− n−C .

Boosting Lemma

Proof: Recall that 1− p ≤ e−p for all real p. Let t = dC
p log ne and observe

P [ t runs all fail ] ≤ (1− p)t

≤ e−pt

≤ n−C ,

thus the probability one of the runs succeeds is at least 1− n−C .

There is a O
(
n2 log n

)
-step algorithm for 2-SAT which succeeds w.h.p.

RANDOMISED-2-SAT
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