
Randomised Algorithms
Lecture 7: Linear Programming: Simplex Algorithm

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2025

Extended Example: Visualization of SIMPLEX

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75

28

12

9.6

Exercise: How many basic solutions (including non-feasible ones) are there?

Algorithms and ML: Linear Programming and TSP Simplex Algorithm 30

Outline

Simplex Algorithm by Example

Details of the Simplex Algorithm

Finding an Initial Solution

Appendix: Cycling and Termination (non-examinable)

7. Linear Programming © T. Sauerwald Simplex Algorithm by Example 2

Simplex Algorithm: Introduction

classical method for solving linear programs (Dantzig, 1947)

usually fast in practice although worst-case runtime not polynomial

iterative procedure somewhat similar to Gaussian elimination

Simplex Algorithm

Basic Idea:
Each iteration corresponds to a “basic solution” of the slack form

All non-basic variables are 0, and the basic variables are
determined from the equality constraints

Each iteration converts one slack form into an equivalent one while
the objective value will not decrease

Conversion (“pivoting”) is achieved by switching the roles of one
basic and one non-basic variable

In that sense, it is a greedy algorithm.

7. Linear Programming © T. Sauerwald Simplex Algorithm by Example 3

Extended Example: Conversion into Slack Form

maximise 3x1 + x2 + 2x3

subject to
x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Conversion into slack form

7. Linear Programming © T. Sauerwald Simplex Algorithm by Example 4

Extended Example: Iteration 1

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)

Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:
Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

.1

7. Linear Programming © T. Sauerwald Simplex Algorithm by Example 5

Extended Example: Iteration 1

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.

Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.

The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:
Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

.2

7. Linear Programming © T. Sauerwald Simplex Algorithm by Example 5

Extended Example: Iteration 2

z = 27 + x2
4 + x3

2 − 3x6
4

x1 = 9 − x2
4 − x3

2 − x6
4

x4 = 21 − 3x2
4 − 5x3

2 + x6
4

x5 = 6 − 3x2
2 − 4x3 + x6

2

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)

Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27

Basic solution: (x1, x2, . . . , x6) = (33
4 , 0,

3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.

Increasing the value of x3 would increase the objective value.

Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:
Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

.3

7. Linear Programming © T. Sauerwald Simplex Algorithm by Example 5

Extended Example: Iteration 2

z = 27 + x2
4 + x3

2 − 3x6
4

x1 = 9 − x2
4 − x3

2 − x6
4

x4 = 21 − 3x2
4 − 5x3

2 + x6
4

x5 = 6 − 3x2
2 − 4x3 + x6

2

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.

The third constraint is the tightest and limits how much we can increase x3.

The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:
Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

.4

7. Linear Programming © T. Sauerwald Simplex Algorithm by Example 5

Extended Example: Iteration 3

z = 111
4 + x2

16 − x5
8 − 11x6

16

x1 = 33
4 − x2

16 + x5
8 − 5x6

16

x3 = 3
2 − 3x2

8 − x5
4 + x6

8

x4 = 69
4 + 3x2

16 + 5x5
8 − x6

16

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27

Basic solution: (x1, x2, . . . , x6) = (33
4 , 0,

3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75

Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.

Increasing the value of x2 would increase the objective value.

All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:
Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

.57. Linear Programming © T. Sauerwald Simplex Algorithm by Example 5

Extended Example: Iteration 3

z = 111
4 + x2

16 − x5
8 − 11x6

16

x1 = 33
4 − x2

16 + x5
8 − 5x6

16

x3 = 3
2 − 3x2

8 − x5
4 + x6

8

x4 = 69
4 + 3x2

16 + 5x5
8 − x6

16

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.

The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:
Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

.67. Linear Programming © T. Sauerwald Simplex Algorithm by Example 5

Extended Example: Iteration 4

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 + x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 + x6
3

x4 = 18 − x3
2 + x5

2

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75

Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.

All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:
Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

.77. Linear Programming © T. Sauerwald Simplex Algorithm by Example 5

Extended Example: Visualization of SIMPLEX

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75

28

12

9.6

Question: How many basic solutions (including non-feasible
ones) are there?

7. Linear Programming © T. Sauerwald Simplex Algorithm by Example 6

Extended Example: Alternative Runs (1/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 12 + 2x1 − x3
2 − x5

2

x2 = 12 − x1 − 5x3
2 − x5

2

x4 = 18 − x2 − x3
2 + x5

2

x6 = 24 − 3x1 + x3
2 + x5

2

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 + x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 + x6
3

x4 = 18 − x3
2 + x5

2

Switch roles of x2 and x5

Switch roles of x1 and x6

7. Linear Programming © T. Sauerwald Simplex Algorithm by Example 7

Extended Example: Alternative Runs (2/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 48
5 + 11x1

5 + x2
5 − 2x5

5

x4 = 78
5 + x1

5 + x2
5 + 3x5

5

x3 = 24
5 − 2x1

5 − 2x2
5 − x5

5

x6 = 132
5 − 16x1

5 − x2
5 + 2x3

5

z = 111
4 + x2

16 − x5
8 − 11x6

16

x1 = 33
4 − x2

16 + x5
8 − 5x6

16

x3 = 3
2 − 3x2

8 − x5
4 + x6

8

x4 = 69
4 + 3x2

16 + 5x5
8 − x6

16

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 + x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 + x6
3

x4 = 18 − x3
2 + x5

2

Switch roles of x3 and x5

Switch roles of x1 and x6 Switch roles of x2 and x3

7. Linear Programming © T. Sauerwald Simplex Algorithm by Example 8

Outline

Simplex Algorithm by Example

Details of the Simplex Algorithm

Finding an Initial Solution

Appendix: Cycling and Termination (non-examinable)

7. Linear Programming © T. Sauerwald Details of the Simplex Algorithm 9

The Pivot Step Formally

29.3 The simplex algorithm 869

necessarily integral. Furthermore, the final solution to a linear program need not
be integral; it is purely coincidental that this example has an integral solution.

Pivoting
We now formalize the procedure for pivoting. The procedure PIVOT takes as in-
put a slack form, given by the tuple .N; B; A; b; c; !/, the index l of the leav-
ing variable xl , and the index e of the entering variable xe. It returns the tuple
. yN ; yB; yA; yb; yc; y!/ describing the new slack form. (Recall again that the entries of
the m!n matrices A and yA are actually the negatives of the coefficients that appear
in the slack form.)

PIVOT.N; B; A; b; c; !; l; e/

1 // Compute the coefficients of the equation for new basic variable xe.
2 let yA be a new m ! n matrix
3 ybe D bl=ale

4 for each j 2 N " feg
5 yaej D alj =ale

6 yael D 1=ale

7 // Compute the coefficients of the remaining constraints.
8 for each i 2 B " flg
9 ybi D bi " aie

ybe

10 for each j 2 N " feg
11 yaij D aij " aieyaej

12 yai l D "aieyael

13 // Compute the objective function.
14 y! D ! C ce

ybe

15 for each j 2 N " feg
16 ycj D cj " ceyaej

17 ycl D "ceyael

18 // Compute new sets of basic and nonbasic variables.
19 yN D N " feg [flg
20 yB D B " flg [feg
21 return . yN ; yB; yA; yb; yc; y!/

PIVOT works as follows. Lines 3–6 compute the coefficients in the new equation
for xe by rewriting the equation that has xl on the left-hand side to instead have xe

on the left-hand side. Lines 8–12 update the remaining equations by substituting
the right-hand side of this new equation for each occurrence of xe. Lines 14–17
do the same substitution for the objective function, and lines 19 and 20 update the

Rewrite “tight” equation
for enterring variable xe.

Substituting xe into
other equations.

Substituting xe into
objective function.

Update non-basic
and basic variables

Need that ale 6= 0!

7. Linear Programming © T. Sauerwald Details of the Simplex Algorithm 10

Formalizing the Simplex Algorithm: Questions

Questions:
How do we determine whether a linear program is feasible?

What do we do if the linear program is feasible, but the initial basic
solution is not feasible?

How do we determine whether a linear program is unbounded?

How do we choose the entering and leaving variables?

Example before was a particularly nice one!

7. Linear Programming © T. Sauerwald Details of the Simplex Algorithm 11

The formal procedure SIMPLEX

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/
that takes as input a linear program in standard form, that is, an m ! n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are
non-positive

Line 4 picks enterring variable
xe with positive coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.

.1

7. Linear Programming © T. Sauerwald Details of the Simplex Algorithm 12

The formal procedure SIMPLEX

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/
that takes as input a linear program in standard form, that is, an m ! n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are
non-positive

Line 4 picks enterring variable
xe with positive coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.

.2

7. Linear Programming © T. Sauerwald Details of the Simplex Algorithm 12

Outline

Simplex Algorithm by Example

Details of the Simplex Algorithm

Finding an Initial Solution

Appendix: Cycling and Termination (non-examinable)

7. Linear Programming © T. Sauerwald Finding an Initial Solution 13

Finding an Initial Solution

maximise 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

z = 2x1 − x2

x3 = 2 − 2x1 + x2

x4 = −4 − x1 + 5x2

Conversion into slack form

Basic solution (x1, x2, x3, x4) = (0, 0, 2,−4) is not feasible!

7. Linear Programming © T. Sauerwald Finding an Initial Solution 14

Geometric Illustration
maximise 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

x1

x2

2x
1
−

x 2
≤

2
x1 − 5x2 ≤ −4

Questions:

How to determine whether
there is any feasible solution?

If there is one, how to determine
an initial basic solution?

7. Linear Programming © T. Sauerwald Finding an Initial Solution 15

Formulating an Auxiliary Linear Program

maximise
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximise −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof. Exercise!

7. Linear Programming © T. Sauerwald Finding an Initial Solution 16

Let us illustrate the role of x0 as “distance from feasibility”
We’ll also see that increasing x0 enlarges the feasible region

7. Linear Programming © T. Sauerwald Finding an Initial Solution 17

Geometric Illustration

maximise −x0

subject to
2x1 − x2 − x0 ≤ 2

x1 − 5x2 − x0 ≤ −4
x0, x1, x2 ≥ 0

For the animation see the full slides.

7. Linear Programming © T. Sauerwald Finding an Initial Solution 18

Let us now modify the original linear program so that it is not
feasible

⇒ Hence the auxiliary linear program has only a solution for a
sufficiently large x0 > 0!

7. Linear Programming © T. Sauerwald Finding an Initial Solution 19

Geometric Illustration

maximise −x0

subject to
2x1 − x2 − x0 ≤ −2
−x1 + 5x2 − x0 ≤ 4

x0, x1, x2 ≥ 0

For the animation see the full slides.

7. Linear Programming © T. Sauerwald Finding an Initial Solution 20

INITIALIZE-SIMPLEX

29.5 The initial basic feasible solution 887

maximize !x0 (29.106)
subject to

nX

j D1

aij xj ! x0 " bi for i D 1; 2; : : : ; m ; (29.107)

xj # 0 for j D 0; 1; : : : ; n : (29.108)
Then L is feasible if and only if the optimal objective value of Laux is 0.

Proof Suppose that L has a feasible solution Nx D . Nx1; Nx2; : : : ; Nxn/. Then the
solution Nx0 D 0 combined with Nx is a feasible solution to Laux with objective
value 0. Since x0 # 0 is a constraint of Laux and the objective function is to
maximize !x0, this solution must be optimal for Laux.

Conversely, suppose that the optimal objective value of Laux is 0. Then Nx0 D 0,
and the remaining solution values of Nx satisfy the constraints of L.

We now describe our strategy to find an initial basic feasible solution for a linear
program L in standard form:

INITIALIZE-SIMPLEX.A; b; c/

1 let k be the index of the minimum bi

2 if bk # 0 // is the initial basic solution feasible?
3 return .f1; 2; : : : ; ng ; fnC 1; nC 2; : : : ; nCmg ; A; b; c; 0/
4 form Laux by adding !x0 to the left-hand side of each constraint

and setting the objective function to !x0

5 let .N; B; A; b; c; !/ be the resulting slack form for Laux
6 l D nC k
7 // Laux has nC 1 nonbasic variables and m basic variables.
8 .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; 0/
9 // The basic solution is now feasible for Laux.

10 iterate the while loop of lines 3–12 of SIMPLEX until an optimal solution
to Laux is found

11 if the optimal solution to Laux sets Nx0 to 0
12 if Nx0 is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of Laux, remove x0 from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form
16 else return “infeasible”

Test solution with N = {1, 2, . . . , n}, B = {n + 1, n +

2, . . . , n + m}, x i = bi for i ∈ B, x i = 0 otherwise.

` will be the leaving variable so

that x` has the most negative value.

Pivot step with x` leaving and x0 entering.

This pivot step does not change

the value of any variable.

7. Linear Programming © T. Sauerwald Finding an Initial Solution 21

Example of INITIALIZE-SIMPLEX (1/3)

maximise 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

maximise − x0

subject to
2x1 − x2 − x0 ≤ 2

x1 − 5x2 − x0 ≤ −4
x1, x2, x0 ≥ 0

Formulating the auxiliary linear program
(as basic solution would not be feasible!)

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

Converting into slack form

Basic solution
(0, 0, 0, 2,−4) not feasible!

7. Linear Programming © T. Sauerwald Finding an Initial Solution 22

Example of INITIALIZE-SIMPLEX (2/3)

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

z = −4 − x1 + 5x2 − x4

x0 = 4 + x1 − 5x2 + x4

x3 = 6 − x1 − 4x2 + x4

z = − x0

x2 = 4
5 − x0

5 + x1
5 + x4

5
x3 = 14

5 + 4x0
5 − 9x1

5 + x4
5

Pivot with x0 entering and x4 leaving

Pivot with x2 entering and x0 leaving
Basic solution (4, 0, 0, 6, 0) is feasible!

Optimal solution has x0 = 0, hence the initial problem was feasible!

7. Linear Programming © T. Sauerwald Finding an Initial Solution 23

Example of INITIALIZE-SIMPLEX (3/3)

z = − x0

x2 = 4
5 − x0

5 + x1
5 + x4

5
x3 = 14

5 + 4x0
5 − 9x1

5 + x4
5

z = −4
5 + 9x1

5 − x4
5

x2 = 4
5 + x1

5 + x4
5

x3 = 14
5 − 9x1

5 + x4
5

Set x0 = 0 and express objective function
by non-basic variables2x1 − x2 = 2x1 − (4

5 −
x0
5 + x1

5 + x4
5)

Basic solution (0, 4
5 ,

14
5 , 0), which is feasible!

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.

Lemma 29.12

7. Linear Programming © T. Sauerwald Finding an Initial Solution 24

Fundamental Theorem of Linear Programming

For any linear program L, given in standard form, either:

1. L is infeasible⇒ SIMPLEX returns “infeasible”.

2. L is unbounded⇒ SIMPLEX returns “unbounded”.

3. L has an optimal solution with a finite objective value
⇒ SIMPLEX returns an optimal solution with a finite objective value.

Theorem 29.13 (Fundamental Theorem of Linear Programming)

Small Technicality: need to equip SIMPLEX with an “anti-cycling strategy” (see extra slides)

Proof requires the concept of duality, which is not covered
in this course (for details see CLRS3, Chapter 29.4)

7. Linear Programming © T. Sauerwald Finding an Initial Solution 25

Workflow for Solving Linear Programs

Linear Program (in any form)

Standard Form

Slack Form

No Feasible Solution
INITIALIZE-SIMPLEX terminates

Feasible Basic Solution
INITIALIZE-SIMPLEX followed by SIMPLEX

LP bounded
SIMPLEX returns optimum

LP unbounded
SIMPLEX terminates

7. Linear Programming © T. Sauerwald Finding an Initial Solution 26

Linear Programming and Simplex: Summary and Outlook

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

7. Linear Programming © T. Sauerwald Finding an Initial Solution 27

Outlook: Alternatives to Worst Case Analysis (non-examinable)

Source: “Beyond the Worst-Case Analysis of Algorithms” by Tim Roughgarden, 2020

7. Linear Programming © T. Sauerwald Finding an Initial Solution 28

Outline

Simplex Algorithm by Example

Details of the Simplex Algorithm

Finding an Initial Solution

Appendix: Cycling and Termination (non-examinable)

7. Linear Programming © T. Sauerwald Appendix: Cycling and Termination (non-examinable) 29

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = x1 + x2 + x3

x4 = 8 − x1 − x2

x5 = x2 − x3

z = 8 + x3 − x4

x1 = 8 − x2 − x4

x5 = x2 − x3

z = 8 + x2 − x4 − x5

x1 = 8 − x2 − x4

x3 = x2 − x5

Pivot with x1 entering and x4 leaving

Pivot with x3 entering and x5 leavingCycling: If additionally slack form at two
iterations are identical, SIMPLEX fails to terminate!

7. Linear Programming © T. Sauerwald Appendix: Cycling and Termination (non-examinable) 30

Exercise: Execute one more step of the Simplex Algorithm on
the tableau from the previous slide.

7. Linear Programming © T. Sauerwald Appendix: Cycling and Termination (non-examinable) 31

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the basic
solution is feasible, SIMPLEX either reports that the program is unboun-
ded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

7. Linear Programming © T. Sauerwald Appendix: Cycling and Termination (non-examinable) 32

	Simplex Algorithm by Example
	Details of the Simplex Algorithm
	Finding an Initial Solution
	Appendix: Cycling and Termination (non-examinable)

