

Randomised Algorithms

Lecture 7: Linear Programming: Simplex Algorithm

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2025

Outline

Simplex Algorithm by Example

Details of the Simplex Algorithm

Finding an Initial Solution

Appendix: Cycling and Termination (non-examinable)

Simplex Algorithm

- classical method for solving linear programs (Dantzig, 1947)
- usually fast in practice although worst-case runtime not polynomial
- iterative procedure somewhat similar to Gaussian elimination

Basic Idea:

- Each iteration corresponds to a "basic solution" of the slack form
- All non-basic variables are 0, and the basic variables are determined from the equality constraints
- Each iteration converts one slack form into an equivalent one while the objective value will not decrease In that sense, it is a greedy algorithm.
- Conversion ("pivoting") is achieved by switching the roles of one basic and one non-basic variable

 $3x_1 + x_2 + 2x_3$

maximise subject to

	Inc	reasi	ng the	e valu	ie of x ₃	wou	ld incre	ease	the objectiv	/e value.
	Ζ	=	27	+	$\frac{x_2}{4}$	+	<u>x</u> 3 2	_	$\frac{3x_{6}}{4}$	
	<i>x</i> ₁	=	9	_	$\frac{x_2}{4}$	_	<u>x₃</u> 2	_	$\frac{X_6}{4}$	
	<i>x</i> ₄	=	21	-	$\frac{3x_2}{4}$	_	$\frac{5x_{3}}{2}$	+	$\frac{x_6}{4}$	
	<i>x</i> ₅	=	6	_	$\frac{3x_2}{2}$	_	4 <i>x</i> ₃	+	$\frac{x_{6}}{2}$	
			1							
Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (9, 0, 0, 21, 6, 0)$ with objective value 27										

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{5x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$
The third constraint is the tightest and limits how much we can increase x_3 .
$$Switch roles of x_3 and x_5:$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} - \frac{x_6}{8}.$$

$$substitute this into x_3 in the other three equations$$

Increasing the value of x_2 would increase the objective value. <u>111</u> 4 $11x_{6}$ $\frac{X_2}{16}$ <u>x</u>5 8 +Ζ $\frac{33}{4}$ $\frac{X_2}{16}$ <u>5x</u>6 16 $\frac{X_5}{8}$ +*X*₁ 32 $\frac{3x_2}{8}$ $\frac{X_5}{4}$ $\frac{X_6}{8}$ Х3 $\frac{5x_{5}}{8}$ <u>69</u> $\frac{3x_2}{16}$ $\frac{x_{6}}{16}$ +**X**4 Basic solution: $(\overline{x_1}, \overline{x_2}, ..., \overline{x_6}) = (\frac{33}{4}, 0, \frac{3}{2}, \frac{69}{4}, 0, 0)$ with objective value $\frac{111}{4} = 27.75$

All coefficients are negative, and hence this basic solution is optimal!

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (8, 4, 0, 18, 0, 0)$ with objective value 28

Extended Example: Visualization of SIMPLEX

Extended Example: Alternative Runs (1/2)

Ζ	=			3 <i>x</i> 1	+	<i>x</i> ₂	+	$2x_{3}$			
<i>x</i> ₄	=	30	-	<i>x</i> ₁	_	<i>x</i> ₂	_	3 <i>x</i> ₃			
<i>x</i> 5	=	24	_	2 <i>x</i> ₁	_	2 <i>x</i> ₂	_	5 <i>x</i> ₃			
<i>x</i> ₆	=	36	_	$4x_{1}$	-	<i>x</i> ₂	-	2 <i>x</i> ₃			
		Switch roles of x_2 and x_5									
				¥							
Ζ	=	12	+	2 <i>x</i> ₁	_	<u>x₃</u> 2	-	$\frac{x_{5}}{2}$			
<i>x</i> ₂	=	12	_	<i>x</i> ₁	—	$\frac{5x_{3}}{2}$	-	<u>x</u> 5 2			
<i>x</i> ₄	=	18	-	<i>x</i> ₂	-	<u>x</u> 3 2	+	<u>x</u> 5 2			
<i>x</i> ₆	=	24	_	3 <i>x</i> 1	+	<u>x₃</u> 2	+	<u>x</u> 5 2			
			Switch roles of x_1 and x_6								
				¥							
Ζ	=	28	-	$\frac{x_3}{6}$	-	<u>x₅</u> 6	_	$\frac{2x_{6}}{3}$			
<i>x</i> ₁	=	8	+	$\frac{x_3}{6}$	+	<u>x</u> 5 6	_	<u>x₆ 3</u>			
<i>x</i> ₂	=	4	_	$\frac{8x_{3}}{3}$	_	$\frac{2x_{5}}{3}$	+	<u>x</u> 6 3			
<i>x</i> ₄	=	18	_	$\frac{x_3}{2}$	+	$\frac{x_{5}}{2}$					

Extended Example: Alternative Runs (2/2)

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

$$y$$
Switch roles of x_3 and x_5

$$z = \frac{48}{5} + \frac{11x_1}{5} + \frac{x_2}{5} - \frac{2x_5}{5}$$

$$x_4 = \frac{78}{5} + \frac{x_1}{5} + \frac{x_2}{5} - \frac{2x_2}{5}$$

$$x_3 = \frac{24}{5} - \frac{2x_1}{5} - \frac{2x_2}{5} - \frac{x_5}{5}$$

$$x_6 = \frac{132}{5} - \frac{16x_1}{5} - \frac{x_2}{5} + \frac{2x_3}{5}$$
Switch roles of x_1 and x_5

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_6}{6} - \frac{x_6}{3}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_6}{8} - \frac{x_6}{16}$$

$$x_1 = 18 - \frac{x_2}{2} + \frac{x_5}{2}$$

Simplex Algorithm by Example

Details of the Simplex Algorithm

Finding an Initial Solution

Appendix: Cycling and Termination (non-examinable)

The Pivot Step Formally

PIVOT(N, B, A, b, c, v, l, e)// Compute the coefficients of the equation for new basic variable x_e . let \widehat{A} be a new $m \times n$ matrix 2 3 $\hat{b}_e = b_l/a_{le}$ Rewrite "tight" equation for each $j \in N - \{e\}$ [Need that $a_{ie} \neq 0$! 4 5 $\hat{a}_{ei} = a_{li}/a_{le}$ for enterring variable x_e . 6 $\hat{a}_{el} = 1/a_{le}$ 7 // Compute the coefficients of the remaining constraints. for each $i \in B - \{l\}$ 8 $\hat{b}_i = b_i - a_{is}\hat{b}_s$ 9 Substituting x_e into for each $j \in N - \{e\}$ 10 other equations. 11 $\hat{a}_{ii} = a_{ii} - a_{ie}\hat{a}_{ei}$ $\hat{a}_{ii} = -a_{ie}\hat{a}_{el}$ 12 // Compute the objective function. 13 14 $\hat{v} = v + c_e \hat{b}_e$ Substituting xe into 15 for each $j \in N - \{e\}$ 16 $\hat{c}_i = c_i - c_e \hat{a}_{ei}$ objective function. 17 $\hat{c}_{l} = -c_{e}\hat{a}_{el}$ // Compute new sets of basic and nonbasic variables. 18 19 $\hat{N} = N - \{e\} \cup \{l\}$ Update non-basic 20 $\hat{B} = B - \{l\} \cup \{e\}$ and basic variables 21 return $(\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})$

Questions:

- How do we determine whether a linear program is feasible?
- What do we do if the linear program is feasible, but the initial basic solution is not feasible?
- How do we determine whether a linear program is unbounded?
- How do we choose the entering and leaving variables?

Example before was a particularly nice one!

The formal procedure SIMPLEX

The formal procedure SIMPLEX

```
SIMPLEX(A, b, c)
     (N, B, A, b, c, v) = INITIALIZE-SIMPLEX(A, b, c)
    let \Delta be a new vector of length m
 2
 3
     while some index j \in N has c_i > 0
          choose an index e \in N for which c_e > 0
 4
 5
          for each index i \in B
               if a_{ie} > 0
 6
                   \Delta_i = b_i / a_{ie}
 7
 8
               else \Delta_i = \infty
 9
          choose an index l \in B that minimizes \Delta_i
10
          if \Delta_I == \infty
               return "unbounded"
```

Proof is based on the following three-part loop invariant:

- 1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,
- 2. for each $i \in B$, we have $b_i \ge 0$,

Lemma 29.2 -

3. the basic solution associated with the (current) slack form is feasible.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible solution. If SIMPLEX returns "unbounded", the linear program is unbounded.

Simplex Algorithm by Example

Details of the Simplex Algorithm

Finding an Initial Solution

Appendix: Cycling and Termination (non-examinable)

Finding an Initial Solution

Geometric Illustration

 $\sum_{i=1}^{n} c_i x_i$ maximise subject to $\begin{array}{rcl} \sum_{j=1}^{n} a_{ij} x_{j} & \leq & b_{i} & \text{ for } i = 1, 2, \dots, m, \\ x_{i} & > & 0 & \text{ for } i = 1, 2, \dots, n \end{array}$ Formulating an Auxiliary Linear Program maximise $-X_0$ subject to $\begin{array}{rcl} \sum_{j=1}^n a_{ij} x_j - x_0 & \leq & b_i & \text{ for } i = 1, 2, \dots, m, \\ x_j & \geq & 0 & \text{ for } j = 0, 1, \dots, n \end{array}$ - Lemma 29.11 Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

Proof. Exercise!

- Let us illustrate the role of x₀ as "distance from feasibility"
- We'll also see that increasing x₀ enlarges the feasible region

For the animation see the full slides.

- Let us now modify the original linear program so that it is not feasible
- ⇒ Hence the auxiliary linear program has only a solution for a sufficiently large $x_0 > 0!$

For the animation see the full slides.

INITIALIZE-SIMPLEX

Example of INITIALIZE-SIMPLEX (1/3)

Example of INITIALIZE-SIMPLEX (3/3)

$$z = -x_{0}$$

$$x_{2} = \frac{4}{5} - \frac{x_{0}}{5} + \frac{x_{1}}{5} + \frac{x_{4}}{5}$$

$$x_{3} = \frac{14}{5} + \frac{4x_{0}}{5} - \frac{9x_{1}}{5} + \frac{x_{4}}{5}$$

$$z_{1} - x_{2} = 2x_{1} - (\frac{4}{5} - \frac{x_{0}}{5} + \frac{x_{1}}{5} + \frac{x_{4}}{5})$$

$$y = 0 \text{ and express objective function}$$
by non-basic variables
$$z = -\frac{4}{5} + \frac{9x_{1}}{5} - \frac{x_{4}}{5}$$

$$x_{2} = \frac{14}{5} - \frac{9x_{1}}{5} + \frac{x_{4}}{5}$$
Basic solution $(0, \frac{4}{5}, \frac{14}{5}, 0)$, which is feasible!

Lemma 29.12

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX returns "infeasible". Otherwise, it returns a valid slack form for which the basic solution is feasible.

— Theorem 29.13 (Fundamental Theorem of Linear Programming) For any linear program L, given in standard form, either:

- 1. *L* is infeasible \Rightarrow SIMPLEX returns "infeasible".
- 2. *L* is unbounded \Rightarrow SIMPLEX returns "unbounded".
- 3. *L* has an optimal solution with a finite objective value
 - \Rightarrow SIMPLEX returns an optimal solution with a finite objective value.

Small Technicality: need to equip SIMPLEX with an "anti-cycling strategy" (see extra slides)

Proof requires the concept of duality, which is not covered in this course (for details see CLRS3, Chapter 29.4)

Linear Programming and Simplex: Summary and Outlook

Linear Programming -

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

1.2 Famous Failures and the Need for Alternatives

For many problems a bit beyond the scope of an undergraduate course, the downside of worst-case analysis rears its ugly head. This section reviews four famous examples in which worst-case analysis gives misleading or useless advice about how to solve a problem. These examples motivate the alternatives to worst-case analysis that are surveyed in Section 1.4 and described in detail in later chapters of the book.

1.2.1 The Simplex Method for Linear Programming

Perhaps the <u>most famous failure of worst-case analysis concerns linear programming</u>, the problem of optimizing a linear function subject to linear constraints (Figure 1.1). Dantzig proposed in the 1940s an algorithm for solving linear programs called the *simplex method*. The simplex method solves linear programs using greedy local

Source: "Beyond the Worst-Case Analysis of Algorithms" by Tim Roughgarden, 2020

Outline

Simplex Algorithm by Example

Details of the Simplex Algorithm

Finding an Initial Solution

Appendix: Cycling and Termination (non-examinable)

Termination

Cyo iteration Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

$$z = X_1 + X_2 + X_3$$

$$x_4 = 8 - X_1 - X_2$$

$$x_5 = X_2 - X_3$$
Pivot with x_1 entering and x_4 leaving
$$z = 8 + X_3 - X_4$$

$$x_1 = 8 - X_2 - X_3$$
Pivot with x_3 entering and x_5 leaving
$$z = 8 + X_2 - X_3$$
Pivot with x_3 entering and x_5 leaving
$$z = 8 + X_2 - X_4$$

$$x_5 = X_2 - X_3$$
Pivot with x_3 entering and x_5 leaving
$$z = 8 + X_2 - X_4 - X_5$$

$$x_1 = 8 - X_2 - X_4$$

$$x_3 = X_2 - X_4$$

Exercise: Execute one more step of the Simplex Algorithm on the tableau from the previous slide.

Termination and Running Time

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

- 1. Bland's rule: Choose entering variable with smallest index
- 2. Random rule: Choose entering variable uniformly at random
- 3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

Replace each b_i by $\hat{b}_i = b_i + \epsilon_i$, where $\epsilon_i \gg \epsilon_{i+1}$ are all small.

Lemma 29.7

Assuming INITIALIZE-SIMPLEX returns a slack form for which the basic solution is feasible, SIMPLEX either reports that the program is unbounded or returns a feasible solution in at most $\binom{n+m}{m}$ iterations.

Every set *B* of basic variables uniquely determines a slack form, and there are at most $\binom{n+m}{m}$ unique slack forms.