Randomised Algorithms

Lecture 3: Concentration Inequalities, Application to Quick-Sort, Extensions

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2025

Outline

Application 2: Randomised QuickSort

Extensions of Chernoff Bounds

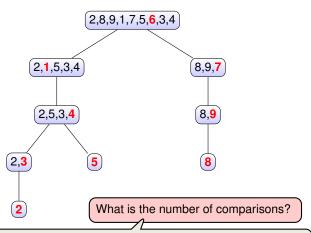
Applications of Method of Bounded Differences

```
QUICKSORT (Input A[1], A[2], \ldots, A[n])
1: Pick an element from the array, the so-called pivot
2. If n = 0 or n = 1 then
3.
       return A
4. else
5:
        Create two subarrays A_1 and A_2 (without the pivot) such that:
           A_1 contains the elements that are smaller than the pivot
6.
           A<sub>2</sub> contains the elements that are greater (or equal) than the pivot
7:
        QUICKSORT(A_1)
8.
        QUICKSORT(A_2)
9:
        return A
10.
```

- Example: Let A = (2, 8, 9, 1, 7, 5, 6, 3, 4) with A[7] = 6 as pivot. $\Rightarrow A_1 = (2, 1, 5, 3, 4)$ and $A_2 = (8, 9, 7)$
- Worst-Case Complexity (number of comparisons) is $\Theta(n^2)$, while Average-Case Complexity is $O(n \log n)$.

We will now give a proof of this "well-known" result!

QuickSort: How to Count Comparisons



Note that the number of comparison by QUICKSORT is equivalent to the sum of the depths of all nodes in the tree (why?). In this case:

$$0+1+1+2+2+3+3+3+4=19.$$

Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don't, just pick one at random.

This should be your standard answer in this course ©

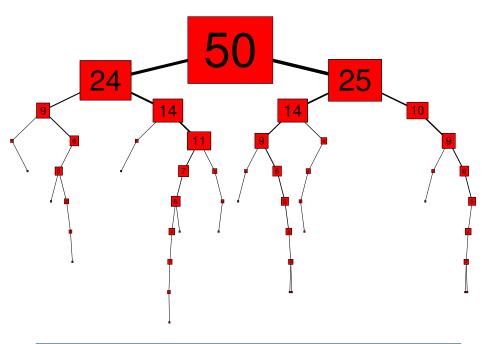
Let us analyse QUICKSORT with random pivots.

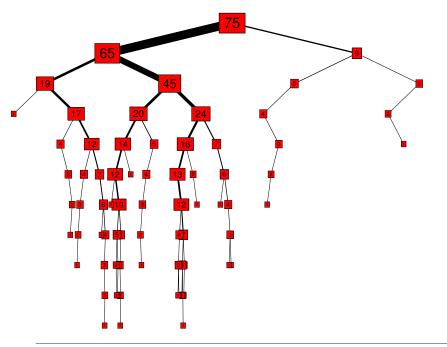
- 1. Assume A consists of n different numbers, w.l.o.g., $\{1, 2, ..., n\}$
- 2. Let H_i be the deepest level where element i appears in the tree. Then the number of comparison is $H = \sum_{i=1}^{n} H_i$
- 3. We will prove that there exists C > 0 such that

$$P[H < Cn \log n] > 1 - n^{-1}$$
.

4. Actually, we will prove sth slightly stronger:

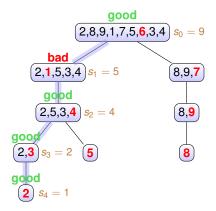
$$\mathbf{P}\left[\bigcap_{i=1}^n \{H_i \leq C \log n\}\right] \geq 1 - n^{-1}.$$





Randomised QuickSort: Analysis (2/4)

- Let P be a path from the root to the deepest level of some element
 - A node in P is called good if the corresponding pivot partitions the array into two subarrays each of size at most 2/3 of the previous one
 - otherwise, the node is bad
- Further let s_t be the size of the array at level t in P.



■ Element 2: $(2,8,9,1,7,5,6,3,4) \rightarrow (2,1,5,3,4) \rightarrow (2,5,3,4) \rightarrow (2,3) \rightarrow (2)$

Randomised QuickSort: Analysis (3/4)

- Consider now any element $i \in \{1, 2, ..., n\}$ and construct the path P = P(i) one level by one
- For P to proceed from level k to k+1, the condition $s_k > 1$ is necessary

How far could such a path P possibly run until we have $s_k = 1$?

- We start with s₀ = n
- First Case, good node: $s_{k+1} \leq \frac{2}{3} \cdot s_k$.
- Second Case, bad node: $s_{k+1} \leq s_k$.

This even holds always,

i.e., deterministically!

- \Rightarrow There are at most $T = \frac{\log n}{\log(3/2)} < 3 \log n$ many good nodes on any path P.
 - Assume $|P| \ge C \log n$ for C := 24
 - \Rightarrow number of **bad** nodes in the first 24 log *n* levels is more than 21 log *n*.

Let us now upper bound the probability that this "bad event" happens!

Randomised QuickSort: Analysis (4/4)

- Consider the first 24 log n nodes of P to the deepest level of element i.
- For any level $j \in \{0, 1, \dots, 24 \log n 1\}$, define an indicator variable X_i :

 - X_j = 1 if the node at level j is bad,
 X_i = 0 if the node at level j is good.

• **P**[$X_j = 1 \mid X_0 = x_0, \dots, X_{i-1} = x_{i-1}$] < $\frac{2}{\pi}$ • $X := \sum_{i=0}^{24 \log n - 1} X_i$ satisfies relaxed independence assumption (Lecture 2)

Question: Edge Case: What if the path P does not reach level j?

Randomised QuickSort: Analysis (4/4)

- Consider the first 24 log n nodes of P to the deepest level of element i.
- For any level $j \in \{0, 1, \dots, 24 \log n 1\}$, define an indicator variable X_i :
- X_j = 1 if the node at level j is bad,
 X_i = 0 if the node at level j is good. • **P**[$X_j = 1 \mid X_0 = X_0, \dots, X_{j-1} = X_{j-1}$] $\leq \frac{2}{7}$

$$\begin{array}{c|c}
 & \text{bad} & \text{good} & \text{bad} \\
1 & \ell/3 & 2\ell/3 & \ell
\end{array}$$
 pivot

• $X := \sum_{i=0}^{24 \log n - 1} X_i$ satisfies relaxed independence assumption (Lecture 2)

Question: Edge Case: What if the path P does not reach level j?

Answer: We can then simply define X_i as 0.

Randomised QuickSort: Analysis (4/4)

- Consider the first 24 log n nodes of P to the deepest level of element i.
- For any level $j \in \{0, 1, \dots, 24 \log n 1\}$, define an indicator variable X_i :

 - X_j = 1 if the node at level j is bad,
 X_i = 0 if the node at level j is good.

- **P**[$X_i = 1 \mid X_0 = X_0, ..., X_{i-1} = X_{i-1}$] $\leq \frac{2}{3}$
- $X := \sum_{i=0}^{24 \log n 1} X_i$ satisfies relaxed independence assumption (Lecture 2)

We can now apply a **Chernoff Bound!** (We use the "nice" version.)

- We have $\mathbf{E}[X] < (2/3) \cdot 24 \log n = 16 \log n$
- Then, by the "nicer" Chernoff Bounds $\left\{ \mathbf{P}[X \geq \mathbf{E}[X] + t] \leq e^{-2t^2/n} \right\}$

$$P[X > 21 \log n] \le P[X > E[X] + 5 \log n] \le e^{-2(5 \log n)^2/(24 \log n)} \le n^{-2}$$

- Hence P has more than $24 \log n$ nodes with probability at most n^{-2} .
- As there are in total n paths, by the union bound, the probability that at least one of them has more than $24 \log n$ nodes is at most n^{-1} .
- This implies $P \left[\bigcap_{i=1}^{n} \{ H_i < 24 \log n \} \right] > 1 n^{-1}$, as needed.

Randomised QuickSort: Final Remarks

- Well-known: any comparison-based sorting algorithm needs $\Omega(n \log n)$
- A classical result: expected number of comparison of randomised QUICKSORT is $2n \log n + O(n)$ (see, e.g., book by Mitzenmacher & Upfal)

Exercise: [Ex 2-3.6] Our upper bound of $O(n \log n)$ whp also immediately implies a $O(n \log n)$ bound on the expected number of comparisons!

- It is possible to deterministically find the best pivot element that divides the array into two subarrays of the same size.
- The latter requires to compute the median of the array in linear time, which is not easy...
- The presented randomised algorithm for QUICKSORT is much easier to implement!

Outline

Application 2: Randomised QuickSort

Extensions of Chernoff Bounds

Applications of Method of Bounded Differences

Hoeffding's Extension

- Besides sums of independent Bernoulli random variables, sums of independent and bounded random variables are very frequent in applications.
- Unfortunately the distribution of the X_i may be unknown or hard to compute, thus it will be hard to compute the moment-generating function.

• Hoeffding's Lemma helps us here: You can always consider
$$X' = X - \mathbf{E}[X]$$

Hoeffding's Extension Lemma —

Let X be a random variable with mean 0 such that a < X < b. Then for all $\lambda \in \mathbb{R}$,

$$\mathbf{E}\left[e^{\lambda X}\right] \leq \exp\left(\frac{(b-a)^2\lambda^2}{8}\right)$$

We omit the proof of this lemma!

Hoeffding Bounds

Hoeffding's Inequality

Let X_1,\ldots,X_n be independent random variables with mean μ_i such that $a_i \leq X_i \leq b_i$. Let $X = X_1 + \ldots + X_n$, and let $\mu = \mathbf{E}[X] = \sum_{i=1}^n \mu_i$. Then for any t > 0,

$$\mathbf{P}[X \ge \mu + t] \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right),\,$$

and

$$\mathbf{P}[X \leq \mu - t] \leq \exp\left(-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right).$$

Proof Outline (skipped):

■ Let
$$X_i' = X_i - \mu_i$$
 and $X' = X_1' + \ldots + X_n'$, then $\mathbf{P}[X \ge \mu + t] = \mathbf{P}[X' \ge t]$

$$\bullet \ \mathbf{P}[\,X' \geq t\,] \leq e^{-\lambda t} \textstyle\prod_{i=1}^n \mathbf{E}\left[\,e^{\lambda X_i'}\,\right] \leq \exp\left[-\lambda t + \frac{\lambda^2}{8} \textstyle\sum_{i=1}^n (b_i - a_i)^2\right]$$

■ Choose $\lambda = \frac{4t}{\sum_{i=1}^{n} (b_i - a_i)^2}$ to get the result.

This is not "magic" – you just need to optimise λ !

Method of Bounded Differences

Framework

Suppose, we have independent random variables X_1, \ldots, X_n . We want to study the random variable:

$$f(X_1,\ldots,X_n)$$

Some examples:

- 1. $X = X_1 + ... + X_n$ (our setting earlier)
- 2. In balls into bins, X_i indicates where ball i is allocated, and $f(X_1, \ldots, X_m)$ is the number of empty bins
- 3. In a randomly generated graph, X_i indicates if the *i*-th edge is present and $f(X_1, \ldots, X_{\binom{n}{2}})$ represents the number of connected components of G

In all those cases (and more) we can easily prove concentration of $f(X_1, ..., X_n)$ around its mean by the so-called **Method of Bounded Differences**.

Method of Bounded Differences

A function f is called Lipschitz with parameters $\mathbf{c} = (c_1, \dots, c_n)$ if for all $i = 1, 2, \dots, n$,

$$|f(x_1, x_2, \ldots, x_{i-1}, \mathbf{x}_i, x_{i+1}, \ldots, x_n) - f(x_1, x_2, \ldots, x_{i-1}, \widetilde{\mathbf{x}}_i, x_{i+1}, \ldots, x_n)| \leq c_i,$$

where x_i and \tilde{x}_i are in the domain of the *i*-th coordinate.

McDiarmid's inequality

Let $X_1, ..., X_n$ be independent random variables. Let f be Lipschitz with parameters $\mathbf{c} = (c_1, ..., c_n)$. Let $X = f(X_1, ..., X_n)$. Then for any t > 0,

$$\mathbf{P}[X \ge \mu + t] \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right),\,$$

and

$$\mathbf{P}[X \le \mu - t] \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right).$$

- Notice the similarity with Hoeffding's inequality! [Exercise 2/3.14]
- The proof is omitted here (it requires the concept of martingales).

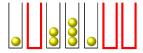
Outline

Application 2: Randomised QuickSort

Extensions of Chernoff Bounds

Applications of Method of Bounded Differences

Application 3: Balls into Bins (again...)

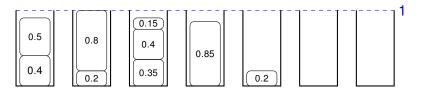


- Consider again *m* balls assigned uniformly at random into *n* bins.
- Enumerate the balls from 1 to m. Ball i is assigned to a random bin X_i
- Let Z be the number of empty bins (after assigning the m balls)
- $Z = Z(X_1, ..., X_m)$ and Z is Lipschitz with $\mathbf{c} = (1, ..., 1)$ (If we move one ball to another bin, number of empty bins changes by ≤ 1 .)
- By McDiarmid's inequality, for any $t \ge 0$,

$$P[|Z - E[Z]| > t] \le 2 \cdot e^{-2t^2/m}$$

This is a decent bound, but for some values of m it is far from tight and stronger bounds are possible through a refined analysis.

Application 4: Bin Packing



- We are given *n* items of sizes in the unit interval [0, 1]
- We want to pack those items into the fewest number of unit-capacity bins
- Suppose the item sizes X_i are independent random variables in [0, 1]
- Let $B = B(X_1, ..., X_n)$ be the optimal number of bins
- The Lipschitz conditions holds with c = (1, ..., 1). Why?
- Therefore

$$P[|B - E[B]| \ge t] \le 2 \cdot e^{-2t^2/n}$$
.

This is a typical example where proving concentration is much easier than calculating (or estimating) the expectation!