
Advanced topics in programming languages Michaelmas 2024

Partial evaluation

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk

Partial evaluation basics

Partial evaluation

Partial
evaluation

Reading

For program q, with static inputs s
dynamic inputs d define partial evaluation:

PE(q, s) = qs such that qs(d) ≡ q(s, d)

Example: consider a parser with inputs g (grammar) and c (string). We want

PE(parser, g) = parserg such that parserg(c) ≡ parser(g, c)

Binding-time analysis (BTA)

Partial
evaluation

Reading

Key idea: start with inputs s and d; assign each expression a binding time.

l e t r e c pow x n =

i f n = 0 then 1

e l s e x * (pow x (n - 1))

Two key analogies: BTA as type inference; BTA as abstract interpretation.

Binding-time analysis (BTA)

Partial
evaluation

Reading

Key idea: start with inputs s and d; assign each expression a binding time.

l e t r e c pow x n =

i f n = 0 then 1

e l s e x * (pow x (n - 1))

Two key analogies: BTA as type inference; BTA as abstract interpretation.

Partial evaluation

Partial
evaluation

Reading

Take a static environment { n 7→ 3 } and annotated program P:

l e t r e c pow x n =

i f n = 0 then 1

e l s e x * (pow x (n - 1))

and β-reduce P to produce a (more efficient?) specialized program:

pow3 x = x * (x * (x * 1))

Check: pow3 x ≡ pow x 3.

Binding-time improvements

Partial
evaluation

Reading

Naive specialization can produce poor results. For example, in this program

s + (d + 1)

the sub-expression d + 1 is dynamic because d is dynamic.

Binding-time improvements can bring static expressions together:

d + (s + 1)

Reading

Background reading

Partial
evaluation

Reading

Partial Evaluation and Automatic Program Generation
N.D. Jones, C.K. Gomard, and P. Sestoft,
With chapters by L.O. Andersen and T. Mogensen.
Prentice Hall International
June 1993
ISBN 0-13-020249-5.

Online: https://www.itu.dk/people/sestoft/pebook/

https://www.itu.dk/people/sestoft/pebook/

Paper 1: Continuation-based partial evaluation

Partial
evaluation

Reading

Continuation-Based Partial Evaluation

Julia L. Lawall Olivier Danvy

Computer Science Department Computer Science Department

Brandeis University * Aarhus University **

(jll@cs.brandeis.edu) (danvy@daimi.aau. dk)

Abstract

Binding-time improvements aim at making partial evalua-
tion (a.k.a. program speciahzation) yield a better result.

‘I’hey have been achieved so far mostly by hand-transforming
the source program. We observe that as they are better un-

derstood, these hand-transformations are progressively inte-

grated into partial evaluators, thereby alleviating the need
for source-level binding-time improvements.

Control-baaed binding-time improvements, for example,

follow this pattern: they have evolved from ad-hoc source-
level rewrites to a systematic source-level transformation

into continuation-passing style (CPS). Recently, Bondorf
has explicitly integrated the CPS transformation into the
specialize, thus partly alleviating the need for source-level

CPS transformation. This CPS integration is remarkably
effective but very complex and goes beyond a simple CPS
transformation. We show that it can be achieved directly by

using the cent rol operators shift and reset, which provide ac-

cess to the current continuation as a composable procedure.

We automate, reproduce, and extend Bondorf’s results,

and describe how this approach scales up to hand-writing

partial-evaluation compilers. The first author has used this
method to bootstrap thenew release of Consel’s partial eval-
uator Schism. The control operators not only allow the par-

tial evaluator to remain in direct style, but also can speed

up partial evaluation significantly.

1 Introduction

Partial evaluation is a program-transformation technique for

specializing programs [11, 23]. It was developed in the six-

ties and seventies [1, 25], drastically simplified in the eight-

ies for purposes of self-application [24], and is now evolv-
ing both quantitatively and qualitatively. Quantitatively,

partial evaluators handle more and more programming-
language features — types, higher-order procedures, data

“ Waltham, Massachusetts 02254, USA, This work was initiated at

the Oregon Graduate Institute of Science & Technology m summer

1993; continued at Indiana University in fall 1993; and was completed

at Brande]s University. It was partially supported by NSF under

grant CCR-9224375 and by ONR under grant NOOO14-93-1-1O15,

* ●NY Munkegade, 8000 Aarhus C, Denmark,

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

structures, and so on. Qualitatively, these features need to

be handled effectively. This is where binding-time improvem-
ents intervene [23, Chap. 12].

1.1 Binding-time improvements

The notion of binding time arises naturally in partial eval-

uation since source programs are evaluated in two stages:
at partial-evaluation time (statically) and at run time (dy-

namically). The parts of the source program that can be

evaluated statically are referred to as “static” and the oth-
ers as “dynamic”.

Obviously, the more static parts there are in a source

program, the better it gets specialized. A binding-time
improvement is a source-level transformation that enables

more parts to be classified aa static. Say that we want to
partially evaluate the expression

z+ (?/-l)

where we know that x is bound statically and y is bound

dynamically. A naive binding-time analysis would classify

both the subtraction and the addition to be dynamic, since
in each case one of the operands is dynamic. Using the

associativity and commutativity laws of arithmetic, we can

rewrite the expression as follows.

?/+ (Z-l)

The same naive binding-time analysis would now classify the

subtraction to be static (since z will be known at partial-

evaluation time and 1 is an immediate constant) and the

addition to be dynamic (since y will not be known until

run time). By rewriting the expression, we have achieved a

binding-time improvement: the same binding-time analysis

classifies more expressions as static, thus enabling the same

specialize to do a better job. Overall, the same partial
evaluator yields a better result.

1.2 Evaluation and partial evaluation

Partial evaluation mimics evaluation — computing values

of static expressions, but residualizing (i. e., reconstructing)

dynamic expressions, to produce the specialized program.

When an expression is residualized, the continuation of the
partial evaluation of its components may differ from the con-

tinuation of their evaluation. This can cause a loss of static

information. Consider the Scheme expression*

1 The square brackets can be read as parentheses,

LISP 94- 6/94 Orlando, Florida USA
@ 1994 ACM 0-89791 -643-319410006..$3.50

227

“Control-based binding-time improvements […] have
evolved from ad-hoc source-level rewrites to
a systematic source-level transformation into
continuation-passing style (CPS).

“Recently, Bondorf has explicitly integrated the CPS
transformation into the specializer, thus partly alle-
viating the need for source-level CPS transformation.
This CPS integration is remarkably effective […] We
show that it can be achieved directly by using the
control operators shift and reset […]

“The control operators not only allow the partial eval-
uator to remain in direct style, but also can speed
up partial evaluation significantly.”

Paper 2: eta expansion

Partial
evaluation

Reading

Eta-Expansion Does The Trick ∗

Olivier Danvy Karoline Malmkjær

BRICS
†

Aarhus University‡

Jens Palsberg

MIT§

May 1996

Abstract

Partial-evaluation folklore has it that massaging one’s source pro-
grams can make them specialize better. In Jones, Gomard, and
Sestoft’s recent textbook, a whole chapter is dedicated to listing
such “binding-time improvements”: nonstandard use of continuation-
passing style, eta-expansion, and a popular transformation called “The
Trick”. We provide a unified view of these binding-time improvements,
from a typing perspective.

Just as a proper treatment of product values in partial evaluation
requires partially static values, a proper treatment of disjoint sums re-
quires moving static contexts across dynamic case expressions. This re-
quirement precisely accounts for the nonstandard use of continuation-
passing style encountered in partial evaluation. Eta-expansion thus
acts as a uniform binding-time coercion between values and contexts,
be they of function type, product type, or disjoint-sum type. For the
latter case, it enables “The Trick”.

In this article, we extend Gomard and Jones’s partial evaluator
for the λ-calculus, λ-Mix, with products and disjoint sums; we point
out how eta-expansion for (finite) disjoint sums enables The Trick; we
generalize our earlier work by identifying that eta-expansion can be
obtained in the binding-time analysis simply by adding two coercion
rules; and we specify and prove the correctness of our extension to
λ-Mix.
Keywords: Partial evaluation, binding-time analysis, program spe-
cialization, binding-time improvement, eta-expansion, static reduction.

∗To appear in the ACM Transactions on Programming Languages and Systems
†Basic Research in Computer Science,

Centre of the Danish National Research Foundation.
‡Computer Science Department, Ny Munkegade, Building 540, DK-8000 Aarhus C,

Denmark; E-mail: {danvy, kar ol i ne}@br i cs. dk.
§Laboratory for Computer Science, NE43-340, 545 Technology Square, Cambridge, MA

02139, USA; E-mail: pal sber g@t heor y. l cs. mi t . edu.

1

“Just as a proper treatment of product values in
partial evaluation requires partially static values, a
proper treatment of disjoint sums requires mov-
ing static contexts across dynamic case expressions.
This requirement precisely accounts for the nonstan-
dard use of continuation-passing style encountered
in partial evaluation. Eta-expansion thus acts as a
uniform binding-time coercion between values and
contexts, be they of function type, product type, or
disjoint-sum type. For the latter case, it enables
“The Trick”.”

Paper 3: LR Parsing

Partial
evaluation

Reading

The Essence of LR Parsing

Michael Sperber Peter Thiemann
Wilhelm-Schickard-Institut fur Informatik

Universitat Tubingen

Sand 13, D-72076 Tubingen, Germany

Abstract

Partial evaluation can turn a general parser into a parser
generator. The generated parsers surpass those produced
by traditional parser generators in speed and compact-
ness. We use an inherently functional approach to imple-
ment general LR(k) parsers and specialize them using the
partial evaluator Similix. The functional implementation
of LR parsing allows for concise implementation of the
algorithms themselves and requires only straightforward
changes to achieve good specialization results. In contrast,
a traditional, stack-based implementation of a general LR
parser requires significant structural changes to make it
amenable to satisfactory specialization.

1 Introduction

We present two inherently functional implementations of
general LR(k) parsers: a direct-style first-order textbook
version and one using continuation-passing style (CPS) for
state transitions. Neither requires the handling of an ex-
plicit parsing stack.

These parsers, when specialized with respect to a gram-
mar and lookahead k, yield efficient residual parsers. To
achieve good results with offline partial evaluation, only a
small number of changes to the general parsers are neces-
sary:

• some standard binding-time improvements, notably
some applications of "The Trick" [9] as well as some
duplication of procedures which occur in multiple
binding-time contexts,

• unrolling loops over lists to discard unneeded com-
putations,

• prevention of infinite specialization of LR transitions
for the CPS-based parser.

We describe the most important applications of the
above improvements. The generated parsers are com-
pact and are either about as fast or faster than those pre-
sented by Mossin [12]. His traditional stack-based parser
requires substantial changes in the representation of the
stack, and thus the structure of the parsing algorithm. Fur-
thermore, since the parse stack is a static data structure un-
der dynamic control, specialization suffers from termina-
tion problems. These issues do not arise in our first-order

approach as it does not deal with explicit stacks at all. For
the CPS approach, it is immediately obvious where gen-
eralization is necessary to prevent infinite specialization.
Thus, the parsers modified for good specialization retain
the structure of their ancestors and most of their simplic-
ity.

The paper is organized as follows: the first section in-
troduces the basic concepts of LR parsing along with a
non-deterministic functional algorithm for it. Section 3
presents a deterministic, first-order, direct-style imple-
mentation of the algorithm in Scheme, and describes the
binding-time improvements made to it. Section 4 de-
scribes an alternative formulation and Scheme implemen-
tation of functional LR parsing using CPS, again with a
description of the binding-time improvements made to it.
Section 5 describes some additional features which can be
added to the parsing algorithms. Section 6 gives the results
of practical experiments, Sec. 7 discusses related work, and
Sec. 8 concludes.

2 LR Parsing

2.1 Notational Preliminaries

We use mainly standard notation for context-free gram-
mars. However, the definition of bunches which follows
is specific to the functional interpretation of LR parsing.

A context-free grammar is tuple G = N , T, P, S). N
is the set of nonterminals, T the set of terminals, S E N
the start symbol, V	 TUN the set of grammar sym-
bols, and P the set of productions of the form A a for
a nonterminal A and a sequence oc of grammar symbols.
Additionally, V* denotes the set of sequences of grammar
symbols—analogously T* and N*.

c is the empty sequence, IL,1 is the length of sequence
Furthermore, ak denotes a sequence of k copies of a, and
Elk is the sequence consisting of the first k terminals in

Some letters are by default assumed to be elements of
certain sets: A, B, C, E E N; t,, E T*; , z E T;
a, p , 'y, 5, v, 1.1 E V*, and X, Y, Z E V. All grammar rules
in the text are implicitly elements of P.

G induces the derives relation on V* with

: <=>	 = 5A-y A f3 b.ry A A	 p.

and	 denotes the reflexive and transitive closure of
A derivation from ao to a, is a sequence cco, aj , ... ,
where ai_	 ai for 1 < i < n. Leftmost-symbol rewrit-
ing 0 is a relation defined as

Ba	 ,S(3 ..<=> B	 .5 A

with reflexive and transitive closure

146

“Partial evaluation can turn a general parser into
a parser generator. The generated parsers surpass
those produced by traditional parser generators in
speed and compactness. […]

“The functional implementation of LR parsing allows
for concise implementation of the algorithms them-
selves and requires only straightforward changes to
achieve good specialization results. In contrast, a
traditional, stack-based implementation of a general
LR parser requires significant structural changes to
make it amenable to satisfactory specialization.”

Writing suggestions

Partial
evaluation

Reading

Binding-time improvements
How useful are CPS conversion and eta expansion in practice?
Are there any other generally-useful binding-time improvements

Applicability and limitations
How widely applicable is partial evaluation in practice?
What kind of performance improvements might we expect?

Compilation
Might it be practical to use partial evaluation as a compilation technique?

Demise
What happened to partial evaluation as a research field?

