
Advanced topics in programming languages Michaelmas 2024

Module systems

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk

Module systems basics
“A module is a function which produces environments of a particular
signature when applied to argument instances of specified signatures.”

Modules for Standard ML (1984)
David MacQueen

Structures and signatures

Basics

History

Reading

module IntSet =
s t r u c t

type elem = int
type t = elem list
l e t empty = []
l e t r e c mem x = f u n c t i o n
| [] → (* ... *)

end

module type SET =
s i g

type elem
type t
v a l empty : t
v a l mem : elem → t → bool
(* ... *)

end

a structure a signature

Ascribing signatures to structures (IntSet :SET) involves subtyping, including
abstraction (turning concrete types into abstract types)
instantiation (turning polymorphic types into concrete types)

as well as width and depth subtyping (dropping and subtyping entries).

Structures and signatures

Basics

History

Reading

module IntSet =
s t r u c t

type elem = int
type t = elem list
l e t empty = []
l e t r e c mem x = f u n c t i o n
| [] → (* ... *)

end

module type SET =
s i g

type elem
type t
v a l empty : t
v a l mem : elem → t → bool
(* ... *)

end

a structure a signature

Ascribing signatures to structures (IntSet :SET) involves subtyping, including
abstraction (turning concrete types into abstract types)
instantiation (turning polymorphic types into concrete types)

as well as width and depth subtyping (dropping and subtyping entries).

Structures and signatures

Basics

History

Reading

module IntSet =
s t r u c t

type elem = int
type t = elem list
l e t empty = []
l e t r e c mem x = f u n c t i o n
| [] → (* ... *)

end

module type SET =
s i g

type elem
type t
v a l empty : t
v a l mem : elem → t → bool
(* ... *)

end

a structure a signature

Ascribing signatures to structures (IntSet :SET) involves subtyping, including
abstraction (turning concrete types into abstract types)
instantiation (turning polymorphic types into concrete types)

as well as width and depth subtyping (dropping and subtyping entries).

Functors

Basics

History

Reading

module type ORDERED =
s i g

type t
v a l compare : t → t → int

end

module MakeSet (Elem: ORDERED) =
s t r u c t

type elem = Elem.t
type t = elem list
l e t mem = List.mem
...

end

a functor

Functors: functions from modules to modules.

Abstract (and less abstract) types

Basics

History

Reading

module MakeSet (Elem: ORDERED) :
SET with type elem = Elem.t

a type for MakeSet

SET with type elem = Elem.t
⇝ s i g

type elem = Elem.t
type t
v a l mem : Elem.t → t → bool
...

end

expanded signature

In the type of mem: t is abstract, Elem.t is shared, bool is concrete.

Sharing as dependency

Basics

History

Reading

Module types involve various forms of dependency:
Dependency between types and values:

module type ORDERED =
s i g

type t
v a l compare : t → t → int (* depends on t *)

end

Dependency between arguments and results:

module MakeSet :
(Elem: ORDERED) →

SET with type elem = Elem.t (* depends on Elem.t *)

Sharing as dependency

Basics

History

Reading

Module types involve various forms of dependency:
Dependency between types and values:

module type ORDERED =
s i g

type t
v a l compare : t → t → int (* depends on t *)

end

Dependency between arguments and results:

module MakeSet :
(Elem: ORDERED) →

SET with type elem = Elem.t (* depends on Elem.t *)

Sharing as dependency

Basics

History

Reading

Module types involve various forms of dependency:
Dependency between types and values:

module type ORDERED =
s i g

type t
v a l compare : t → t → int (* depends on t *)

end

Dependency between arguments and results:

module MakeSet :
(Elem: ORDERED) →

SET with type elem = Elem.t (* depends on Elem.t *)

Higher-order modules

Basics

History

Reading

Using higher-order modules can lead to loss of type equalities:

module Apply (MakeSet : (Elem:ORDERED) → SET)
(Elem : ORDERED) = MakeSet(Elem)

module IS1 = Apply(MakeSet)(Int) (* IS1.t /= Int.t *)
module IS2 = MakeSet(Int) (* IS2.t == Int.t *)

higher-order functors

Leroy’s solution: extend the path notation to include applications

type t = MakeSet(Int).t

Module systems history
“In the case of constructions, we obtain the notion of a very high-level
functional programming language, with complex polymorphism well-
suited for module specification.”

The Calculus of Constructions (1988)
Thierry Coquand and Gérard Huet

Πx:A.B
(x)

Modules and dependent types

Basics

History

Reading

1974

1985

1986

1988

1990

1994

2010

Towards a theory of type structure
(Reynolds)

Abstract types have existential type
(Mitchell & Plotkin)
Using dependent types to express modular structure
(MacQueen)
The Calculus of Constructions
(Coquand & Huet)
Higher-order modules and the phase distinction
(Harper, Mitchell & Moggi)

A type-theoretic approach to higher-order modules with sharing
(Harper & Lillibridge)

F-ing modules
(Rossberg, Russo & Dreyer)

dependenttypes

Reading

Background reading (optional)

Basics

History

Reading

F-ing modules 597

contexts and types. In retrospect, it would perhaps have been simpler to just beef

up our target language with primitive records (as we have done on paper here). In

any case, this issue is orthogonal to the rest of the mechanization effort.

Our experience of applying the LN approach as advertised was more painful than

we had anticipated. Compared to the sample LN developments, ours was different

in making use of various forms of derived n-ary (as well as basic unary) binders and

in dealing with a larger number of syntactic categories. Although we implemented

the n-ary binders as derived forms over the unary ones provided by basic Fω , we still

needed derived lemmas for n-ary substitution (substituting locally closed terms for

free names) and n-ary open (for opening binders with locally closed terms). Then we

needed lemmas relating the commutation of all the combinations of n-ary and unary

operations. The final straw was dealing with rules (notably for sequencing of binding

and declarations) that required us to extend the scope of bindings over terms from

subderivations. Doing this the recommended way requires the introduction of a third

family of closing operations (the inverse of open), for turning named variables back

into bound indices, together with a plethora of lemmas needed to actually reason

about them (again with unary and n-versions of close and all possible commutations).

We managed to work around these two cases by expressing the desired properties

indirectly using additional (and thus unsatisfactory) premises stipulating equations

between opened terms.

In the end, out of a total of around 550 lemmas, approximately 400 were tedious

“infrastructure” lemmas; only the remainder had direct relevance to the meta-theory

of Fω or elaboration. The number of required infrastructure lemmas appears to be

quadratic in the number of variable classes (type and value variables for us), the

number of “substitution” operations needed per class (we got away with only using

LN’s subst and open, and avoiding close) and the arity classes (unary and n-ary)

of binding constructs. So we cannot, hand-on-heart, recommend the vanilla LN

style for anything but small, kernel language developments. It would, however, be

interesting to see whether more recent proposals to streamline the LN approach

(Aydemir et al., 2009) could significantly shorten larger developments like ours,

without obscuring the presentation.

Despite the tedium, the mechanization still turned out to be relatively straight-

forward overall, and did not require any technical ingenuity. We believe that a Coq

user with more experience than us (or somebody with respective experience using

another proof assistant) but without specialist background in modules, could easily

have carried it out without much effort.

11 Related work and discussion

The literature on ML module semantics is voluminous and varied. We will therefore

focus on the most closely related work. A more detailed history of various accounts

of ML-style modules can be found in Chapter 2 of Russo’s thesis (1998; 2003).

Existential types for ADTs. Mitchell & Plotkin (1988) were the first to connect the

informal notion of “abstract type” to the existential types of System F. In F, values

https://doi.org/10.1017/S0956796814000264 Published online by Cambridge University Press

Chapter 1

The Design Space of ML Modules

What is the ML module system? It is difficult to say. There are several dialects of the ML language,
and while the module systems of these dialects are certainly far more alike than not, there are
important and rather subtle differences among them, particularly with regard to the semantics of
data abstraction. The goal of Part I of this thesis is to offer a new way of understanding these
differences, and to derive from that understanding a unifying module system that harmonizes and
improves on the existing designs.

In this chapter, I will give an overview of the existing ML module system design space. I begin
in Section 1.1 by developing a simple example—a module implementing sets—that establishes some
basic terminology and illustrates some of the key features shared by all the modern variants of the
ML module system. Then, in Section 1.2, I describe several dialects that represent key points in
the design space, and discuss the major axes along which they differ.

1.1 Key Features of the ML Module System

1.1.1 Structures and Signatures

In ML, code and data are grouped together in modules. The basic module construct is called a
structure, and Figure 1.1 shows an example of a structure implementing integer sets.1 The structure
IntSet is defined by a structure expression struct ... end, which contains a sequence of bindings.
The first binding defines the type name set as an abbreviation for the type int list of integer lists,
thus indicating that sets are being implemented by this module as lists. Type bindings are much
like typedefs in C; the type set and the type int list are interchangeable. The second binding in
IntSet is a value binding, defining emptyset to be the empty list [], which has type set because
it has type int list. The remaining bindings are function bindings: an insert operation that
takes an integer and a set and returns the result of pushing the integer onto the front of the list
representing the set, and a member operation that checks whether an integer belongs to a set by
performing a sequential search on the list representing the set.2 Although this example does not
illustrate it, structures in ML may also contain substructure bindings, thereby allowing modules to
be built up as composites of other modules and enabling flexible namespace management.

Now that we have defined this module IntSet, we can use it essentially as we would use an
object in Java or a struct in C—by projecting out its components using the “dot notation.” For

1This example, as well as the others in this section, is written in Standard ML syntax.
2Note that, in keeping with functional programming style, this is a persistent implementation of sets, e.g., inserting

an integer into a set does not modify the input set but merely returns a new set containing the integer.

§11 (Related work and discussion) of
F-ing modules, extended version
(Rossberg, Russo, Dreyer, 2015)

Chapter 1 (The Design Space of ML Modules) of
Understanding and Evolving the ML Module System
(Dreyer, 2005)

Paper 1: Translucent sums

Basics

History

Reading

A Type-Theoretic Approach to Higher-Order Modules with Sharing*

Abstract

Robert Harpert Mark Lillibridge$

School of Computer Science

Carnegie Mellon University

Pittsbwgh, PA 15213-3891

The design of a module system for constructing and main-

taining Ilarge programs is a difficult task that raises a number

of theoretical and practical issues. A fundamental issue is

the management of the flow of information between program

units at compile time via the notion of an interface. Expe-

rience has shown that fully opaque interfaces are awkward

to use in practice since too much information is hidden, and

that fully transparent interfaces lead to excessive interde-

pendencies, creating problems for maintenance and separate

compilation. The “sharing” specifications of Standard ML

address this issue by allowing the programmer to specify

equational relationships between types in separate modules,

but are not expressive enough to allow the programmer com-

plete control over the propagation of type information be-

t ween modules.

These problems are addressed from a type-theoretic view-

point by considering a calculus based on Girard’s system

FU. The calculus differs from those considered in previous

studies by relying exclusively on a new form of weak sum

type to propagate information at compile-time, in contrast

to approaches based on strong sums which rely on substi-

tution. The new form of sum type allows for the specifica-

tion of equational, as well as type and kind, information in

interfaces. This provides complete control over the propa-

gation of compile-time information between program units

and is sufficient to encode in a straightforward way most

uses of type sharing specifications in Standard ML. Modules

are treated as “first-class” citizens, and therefore the sys-

tem supports higher-order modules and some object-oriented

*Thk work was sponsored by the Advanced Research Projects
Agency, CSTO, under the title “The Fox Project: Advanced De-
velopment of Systems Software”, ARPA Order No. 8313, issued
by ESD/AVS under Contract No. F19628-91-C-0168.

t Electro& ~~1 ad&e~~: rWh@c~ , ~mu. ~d~.

~Electronic mail address: mdl@cs . cmu. edu.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for
direct commercial advantaga, the ACM copyright notica and tha

titfe of the publication and its data appear, and notica ia givan

that copying ia by parrtiasion of the Association for Computing
Machinery. To copy otharwiaat or to repubfish, raquirea a fee
and/or specific permission.

POPL 94- 1/94, Portland Oregon, USA

programming idioms; the language may be easily restricted

to “second-class” modules found in ML-like languages.

1 Introduction

Modularity is an essential technique for developing and

maintaining large software systems [46, 24, 36]. Most

modern programming languages provide some form of

module system that supports the construction of large

systems from a collection of separately-defined program

units [7, 8, 26, 32]. A fundamental problem is the man-

agement of the tension between the need to treat the

components of a large system in relative isolation (for

both conceptual and pragmatic reasons) and the need

to combine these components into a coherent whole.

In typical cases this problem is addressed by equipping

each module with a well-defined interface that mediates

all access to the module and requiring that interfaces be

enforced at system link time.

The Standard ML (SML) module system [17, 32]

is a particularly interesting design that has proved to

be useful in the development of large software sys-

tems [2, 1, 3, 11, 13]. The main constituents of the

SML module system are signatures, structures, and

functors, with the latter two sometimes called modules.

A structure is a program unit defining a collection of

types, exceptions, values, and structures (known as sub-

structures of the structure). A functor may be thought

of as a “parameterized structure”, a first-order function

mapping structures to structures. A signature is an in-

terface describing the constituents of a structure — the

types, values, except ions, and structures that it defines,

along with their kinds, types, and interfaces. See Fig-

ure 1 for an illustrative example of the use of the SML

module system; a number of sources are available for

further examples and information [15, 39].

A crucial feature of the SML module system is the no-

tion of type sharingl which allows for the specification

1The closely-related notion of structur-c sharing ia not consid-

ered in this paper.

@ 1994 ACM C-897914336-IY941001 ..$3.S()

123

“The calculus differs from those considered in
previous studies by relying exclusively on a new
form of weak sum type to propagate informa-
tion at compile-time, in contrast to approaches
based on strong sums which rely on substitution
[…]

“Modules are treated as “first-class” citizens,
and therefore the system supports higher-order
modules and some object-oriented program-
ming idioms”

Paper 2: Applicative functors

Basics

History

Reading

Applicative functors and fully transparent higher-order modules

Xavier Leroy

INRIA

B.P. 105, Rocquencourt, 78153 LeChesnay, France.

Xavier.Leroy@inria .fr

Abstract

We present a variant of the Standard ML module system

where parameterized abstract types (i.e. functors returning

generative types) map provably equal arguments to compat-

ible abstract types, instead of generating distinct types at

each application as in Standard ML. This extension solves

the full transparency problem (how to give syntactic sig-

natures for higher-order functors that express exactly their

propagation of type equations), and also provides better sup-

port for non-closed code fragments.

1 Introduction

Most modern programming languages provide support for
type abstraction: the important programming technique
where a named type t is equipped with operations f,g, . . .

then theconcrete implementation oft is hidden, leaving an
abstract type t that can only be accessed through the

operations f, g,. . . Type abstraction provides fundamental
typing support for modularity, since it enables a
type-checker to catch violations of themodular structure of

programs.

Type abstraction is usually implemented through gener-
ative data type declarations: to make atypet abstract, the
type-checker generates anew typet incompatible with any

other type, including types with the same structure. From

this, it is tempting to explain type abstraction in terms of

generativity of type declarations and say for instance that
“a type is abstract because it is created each time its defi-

nition is evaluated”. The Definition of Standard ML [14, 8]

formalizes this approach as a calculus over type stamps that

defines when “new” types are generated and when “old”

types are propagated. This approach is adequate for spec-

ifying a type-checker, but too low-level and operational in

nature to help understanding type abstraction and reason

about programs using it.

Independently, Mitchell and Plotkin [16] have proposed

a more abstract, less operational account of type abstrac-

tion based on a parallel with existential quantification in

logic. Instead of operational intuitions about type generativ-

ity, this approach uses a precise semantic characterization:

representation independence [17, 15], to show that type ab-

straction is enforced. This abstract approach has since been

extended to account for the main features of the Standard

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial acfvanta~e, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copyin is by permission of the Association of Computing

+Machinery. o copy otherwise, or to republish, requires a fee
andor specific permission.
POPL ’951/95 San Francisco CA USA
0 1995 ACM O-89791-692-l f9uOWl$3.50

ML module system: the “dot notation” as elimination con-
st ruct for abstract types [3, 4] and the notion oft ype sharing
and its propagation through functors [7, 10].

Unfortunately, some features described by operational
frameworks remain unaccounted for in the abstract

approach, such as structure sharing and the “fully
transparent” behavior of higher-order functors predicted

by the operational approach [13]. Also, even though the

abstract approach is syntactic in nature and therefore

highly compatible with separate compilation [10], code

fragments with free functor identifiers could be supported
better (see section 2.4 for an example). MacQueen [13, 1]

claims that the problem with higher-order functors is

serious enough to invalidate the abstract approach
and justify the recourse to complicated stamp-based
descriptions of higher-order functors and separate
compilation mechanisms.

The work presented in this paper is an attempt to solve
two of these problems (fully transparent higher-order func-

tors and support for non-closed code fragments) in a syntac-
tic framework derived from [10]. It relies on a modification

of the behavior of functors (parameterized modules). In

Standard ML and other models based on type generativity,
a functor defining an abstract type returns a different type

each time it is applied. We say that functors are genera-

tive. In this work, we consider functors as applicative if the

functor is applied twice to provably equal arguments, the

two abstract types returned remain compatible. Functors

therefore map equals to equals, which enables equational

reasoning on functor applications during type-checking, In

turn, this allows more precise signatures for higher-order

functors, thereby solving the full transparency problem.

Applicative functors are also interesting as an exam-

ple of a module system that ensures type abstraction (the

representation independence properties still hold) without

respecting strict type generativity (some applications of a

given functor may return new types while others return com-

patible types). In this approach, type abstraction mecha-

nisms are considered from a semantic point of view (how

to make programs robust with respect to changes of im-

plementations?) rather than from an operational point of

view (when are two structurally identical types compati-

ble?). This work illustrates the additional expressiveness

and flexibility allowed by this shift of perspective.

The remainder of this paper is organized as follows. Sec-

tion 2 introduces informally the applicative semantics of

functors and the main technical devices that implement it.

Section 3 formalizes a calculus with applicative functors.

Section 4 shows that the representation independence prop-

erty still holds, and section 5 that higher-order functors are

fully transparent in this calculus. Section 6 discusses related

work and section 7 gives concluding remarks.

142

“We present a variant of the Standard ML mod-
ule system where parameterized abstract types
[…] map provably equal arguments to compati-
ble abstract types, instead of generating distinct
types at each application as in Standard ML.

“This extension solves the full transparency
problem (how to give syntactic signatures for
higher-order functors that express exactly their
propagation of type equations)”

Paper 3: F-ing modules

Basics

History

Reading

F-ing Modules

Andreas Rossberg
MPI-SWS

rossberg@mpi-sws.org

Claudio V. Russo
Microsoft Research

crusso@microsoft.com

Derek Dreyer
MPI-SWS

dreyer@mpi-sws.org

Abstract
ML modules are a powerful language mechanism for decomposing
programs into reusable components. Unfortunately, they also have
a reputation for being “complex” and requiring fancy type theory
that is mostly opaque to non-experts. While this reputation is cer-
tainly understandable, given the many non-standard methodologies
that have been developed in the process of studying modules, we
aim here to demonstrate that it is undeserved. To do so, we give a
very simple elaboration semantics for a full-featured, higher-order
ML-like module language. Our elaboration defines the meaning of
module expressions by a straightforward, compositional translation
into vanilla System Fω (the higher-order polymorphic λ-calculus),
under plain Fω typing environments. We thereby show that ML
modules are merely a particular mode of use of System Fω .

Our module language supports the usual second-class modules
with Standard ML-style generative functors and local module def-
initions. To demonstrate the versatility of our approach, we further
extend the language with the ability to package modules as first-
class values—a very simple extension, as it turns out. Our approach
also scales to handle OCaml-style applicative functor semantics,
but the details are significantly more subtle, so we leave their pre-
sentation to a future, expanded version of this paper.

Lastly, we report on our experience using the “locally nameless”
approach in order to mechanize the soundness of our elaboration
semantics in Coq.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features—Modules, Ab-
stract data types; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages—Operational semantics;
F.3.3 [Logics and Meanings of Programs]: Studies of Program
Constructs—Type structure

General Terms Languages, Design, Theory

Keywords Type systems, ML modules, abstract data types, exis-
tential types, System F, elaboration, first-class modules

1. Introduction
Modularity is essential to the development and maintenance of
large programs. Although most modern languages support modular
programming and code reuse in one form or another, the languages

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
TLDI’10, January 23, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-891-9/10/01. . . $10.00

in the ML family employ a particularly expressive style of mod-
ule system. The key features shared by all the dialects of the ML
module system are their support for hierarchical namespace man-
agement (via structures), a fine-grained variety of interfaces (via
translucent signatures), client-side data abstraction (via functors),
and implementor-side data abstraction (via sealing).

Unfortunately, while the utility of ML modules is not in dis-
pute, they have nonetheless acquired a reputation for being “com-
plex”. Simon Peyton Jones, in an oft-cited POPL 2003 keynote
address [35], likened ML modules to a Porsche, due to their
“high power, but poor power/cost ratio”. (In contrast, he likened
Haskell—extended with various “sexy” type system extensions—
to a Ford Cortina with alloy wheels.) Although we disagree with
Peyton Jones’ amusing analogy, it seems, based on conversations
with many others in the field, that the view that ML modules are
too complex for mere mortals to understand is sadly predominant.

Why is this so? Are ML modules really more difficult to
program/implement/understand than other ambitious modularity
mechanisms, such as GHC’s type classes with type equality coer-
cions [44] or Java’s classes with generics and wildcards [45]? We
think not (although this is obviously a fundamentally subjective
question). One can certainly engage in a constructive debate about
whether the mechanisms that comprise the ML module system are
put together in the ideal way, and in fact the first and third authors
have recently done precisely that [11]. But we do not believe that
the design of the ML module system is the primary source of the
“complexity” complaint.

Rather, we believe the problem is that the literature on the se-
mantics of ML-style module systems is so vast and fragmented that,
to an outsider, it must surely be bewildering. Many non-standard
type-theoretic [18, 16, 26, 25, 41, 9] (as well as several ad hoc, non-
type-theoretic [30, 31, 3]) methodologies have been developed for
explaining, defining, studying, and evolving the ML module sys-
tems, most with subtle semantic differences that are not spelled out
clearly and are known only to experts. As a rich type theory has de-
veloped around a number of these methodologies—e.g., the beauti-
ful metatheory of singleton kinds [43]—it is perfectly understand-
able for someone encountering a paper on module systems for the
first time to feel intimidated by the apparent depth and breadth of
knowledge required to understand module typechecking, let alone
module compilation.

In response to this problem, Dreyer, Crary and Harper [9] de-
veloped a unifying type theory, in which previous systems can be
understood as sublanguages that selectively include different fea-
tures. Although formally and conceptually elegant, their unifying
account—which relies on singleton kinds, dependent types, and a
subtle effect system—still gives one the impression that ML mod-
ule typechecking requires sophisticated type theory.

In this paper, we take a different approach. Our modest goal is to
show once and for all that, contrary to popular belief, the semantics
of ML modules is immediately accessible to anyone familiar with
System Fω (the higher-order polymorphic λ-calculus).

1

“Our elaboration defines the meaning of
module expressions by a straightforward,
compositional translation into vanilla Sys-
tem Fω […] We thereby show that ML mod-
ules are merely a particular mode of use of
System Fω. […]

“[T]he previous [translations] all start from a
pre-existing dependently-typed module lan-
guage and show how to compile it down to
Fω […] [O]ur approach is simpler and more
accessible to someone who already under-
stands Fω and does not want to learn a new
dependent type system just in order to un-
derstand the semantics of ML modules.”

Writing suggestions

Basics

History

Reading

Abstract types
How do approaches to abstract types differ between designs?

Separate compilation
How do ML-style modules systems support separate compilation?

Higher-order functors
Are higher-order functors practically important?

Importance of sharing
What is the role and significance of sharing specifications?

Dependent types vs polymorphism
Are modules better approached via dependent types or polymorphism?

