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A heap: of one or more blocks of contiguous words
A object: a heap-allocated contiguous region addressed by 0+ pointers
A mutator: application thread, opaque to the collector except for heap
operations (allocate, read, write)
A root: a heap pointer accessible to the mutator
(e.g. in static global storage, stack space, or registers)
An object is live if a mutator will access it in the future
An object is reachable if there is a chain of pointers to it from a root
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if not node.marked:

node.marked = True
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mark(c)
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The reference count tracks the number of pointers to each object.

1

•

An object’s reference count is 1 when the
object is created:

1

•

2

• •

The count is incremented when a pointer
newly references the object:

1

•

2

• •

The count is decremented when a
pointer no longer references the object:

01

•

The object is unreachable garbage when
the reference count goes to 0:
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Motivation: collector has imperfect information about object layout
(e.g. because language is compiled to C)

Idea: use an approximation to guess whether a value represents a pointer, e.g.:

1. does the value point into the heap?
2. does it point to valid metadata?

Drawbacks
1. (chance) can incorrectly classify addresses as pointers
2. (subterfuge) can fail to identify disguised pointers
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GC metrics
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Throughput: mutator performance

Latency: pauses in mutator execution

Space overhead: e.g. due to mark bits, layout information

More (combination of program behaviour and collector design):

maximum heap size allocation rate
collection frequency mean object size

proportion of heap occupied by large objects



Performance subtleties

Algorithms

Performance

Reading

Example
Pause times alone provide little information.
A good distribution of pause times is needed for mutators to make progress.

Example
Compaction can slow collection but improve locality (& hence throughput)



Hybrid systems
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Many mature systems combine several standard algorithms.

For example, Cedar (1985):

“[…] provides both a concurrent reference-counting collector that
runs in the background when needed, and a pre-emptive conven-
tional “trace-and-sweep” collector that can be invoked explicitly by
the user to reclaim circular data structures […]
“Both collectors treat procedure-call activation records (called frames)
“conservatively”; that is they assume that every ref-sized bit pattern
found in a frame might be a ref”



Reading



Background reading

Algorithms

Performance

Reading

���������	��
���������������	������������������
! ������#"$��
�%��&�('*)&���
+ ,.-0/2143657578:9�57;�<�=?>@=!;A1CB2-05D36E0FG,H-2I7JA8:KHLDM

NCOQP!R4SUT�VXWDRZY\[^]

_�`Ua�b?c?d�efb

gihUjlkQmon2h�prq^s.jotvu�wxs.moq^s.w0hyu{z0|}|}hAu:~ot}z2��sH|}w0z2mot}~o����jA��sH�^�
n0sHmltvsH~ot}z2�Qj	jok^ul��s.j�t}�^u:mlh���h���~:sH|QsH�^��w0h��Qh\m�sH~lt}z0�^s.|�u{z0|}|}hAul�
~ot}z2���H��h�~l�Qh�����t}j�u{kQjoj�|}zH���Z|}h�n2h�|�t����Q|}h��Gh���~�s.~ot}z0�Cu:z0��jotv�2�
h�m:sH~ot}z2�Qj�s.�^��~o��h�moh\|�s.~ot}z0��jo�Qt}�Qj�q�h�~7��h�h���jo~lz0m:sHw0h��&s.���
sHw2h���h\�x~	jlp�jo~oh\��jA�.|�s.�Qw0k�sHw0h\jA�HsH�^��u:z0���Qt}|�h\mojA���f�Qmlz0kQw2���
z0k�~A�?��hUsH~l~oh����Q~*~lzy��moh�jlh���~&s�kQ�Qt��^hA��n�t}h���q^s.johA��z0�
sHq�jo~om:s0u:~f~lm�s�n2h�moj:sH|�jl~om:sH~oh\w0t}h�jA��s0�Q��moh�jljot}�Qw�t}jljokQh�jfz.�u:z2���
joh\mon0sH~lt}jo�y��z0�Q��z0ml~okQ��t�jl�y�?s.�^��t����GhA��tvs0u{pUzH��moh�u:|vsH�&s(�
~ot}z2���f��h�s.|}joz��^z2t���~Gz2kQ~�s�n0sHmlt�h\~7pizH��t}���Q|}h��Gh���~:sH~ot}z2�
��h�~:sHt}|}j4~l�^sH~4s.moh�|�t} 2h�|}pG~oz���s�n0h�sGjlt�w2�Qt��¡u�s.�x~ft}���^s0u:~�z0�
��h�m7�¢z2mo��sH�^u:h2�

£�¤¦¥*b?§�¥*b?a

¨ª©G«!¬�^®i¯Q¬�°7±�²¡¬��³H¯Q´^µU¶¦µ�±.·¢¯�®i¯Q¬A°D�¸ ¹
º0�}ºª»�z2~ot}n0sH~lt}z0� ¼C¼C¼�¼C¼C¼�¼C¼�¼C¼�¼C¼C¼�¼C¼C¼ ½
º0�¾½¿�f�QhC�f��zH�oÀ!�^s.johCÁ4qQjl~om:s0u:~lt�z2��¼�¼C¼C¼�¼C¼C¼ Â
º0�¾Ã ÄÅq0Æ:hAu{~�Çfh\�Qmoh�jlh���~�s.~ot}z0�QjÈ¼�¼C¼�¼C¼C¼�¼C¼C¼ É
º0� Â ÄÅn0h\mon�t}h���z.�Ê~l�Qh*À!sH��h�mË¼C¼�¼C¼�¼C¼C¼�¼C¼C¼ É

¹¿Ì�¯�Í�°7±�Î�¯Q³HÏ!¯Q´�µUÐC^·D·¢µQ±.¬A°D^¸�Ñ?µQ±�Ò!¸!°ZÓ�«!µQÍ Ô
½Q�}ºªÇ�h:�¢h�mlh��^u:h*Õ�z2kQ��~ot}�Qw�¼C¼�¼C¼�¼C¼�¼C¼C¼�¼C¼C¼ Ö

½���º2�}º �f��h�Àmoz0q�|�h\�×�ft}~o��Õ�pQu:|}h�jØ¼�¼C¼C¼ Ù
½���º2�¾½ �f��h�ÚÊÛ&u:t}h��^u:p�À!moz2qQ|}h�� ¼C¼�¼C¼C¼ Ù
½���º2�¾Ã ÜÅh:�Dh�momlhA�UÇfh{�¢h�moh\�^u:h*Õ�z2kQ��~ot}�Qw^��¼C¼ Ý
½���º2� Â Þ�sHmotvs.~ot}z0�Qj�z0�UÇfh:�Dh�moh���u:h�Õ�z2kQ��~ot}�Qw Ý

½Q�¾½ »Us.mo 2�oß���h\h��UÕ�z0|}|}hAu:~ot}z2�à¼C¼�¼C¼�¼C¼C¼�¼C¼C¼ á
½Q�¾Ã »Us.mo 2�oÕ�z0����s0u:~�Õ�z2|}|�h�u:~ot}z0�â¼C¼�¼C¼C¼�¼C¼C¼�º�ã
½Q� Â Õ�z2�xp�t}�Qw*ä�sHmoq�sHw0h�Õ�z2|�|}hAu{~ot}z0�r¼�¼C¼C¼�¼C¼C¼�º�ã

½�� Â��}º Á ß�t}���Q|}h×Õ�z0��p�t}�QwåÕ�z2|�|}hAu{~oz0m�æ
ç ß�~oz2���osH�^�2�oÕ�z0��p�è�éfjlt���w×ß�h���t6�
jl�^s0u{h�jA�!¼C¼�¼C¼C¼�¼C¼�¼C¼�¼C¼C¼�¼C¼C¼�º�ã

½�� Â��¾½ ÚÊÛ&u:t}h��^u:p�zH�Õ�z2��pxt}�QwGÕ�z0|}|}hAu:~lt}z0���êº2º
½Q�¾É ë�z0���oÕ�z0��p�t}�Qw�ì7����|�tvu:t}~�Õ�z2|}|�h�u:~ot}z0�¿¼�¼C¼C¼�º�Ã
½Q�¾Ö Õ��Qz�z2jot}�Qw�Á4��z2�Qwyí�sHjlt�u��!m�s2u:t}�Qw��Êh�uo���

�Qtvî2kQh�j�¼C¼�¼C¼C¼C¼�¼C¼C¼�¼C¼�¼C¼�¼C¼C¼�¼C¼C¼�º�É
½Q�¾Ù À!mlz0qQ|}h���j��ft}~l�&ß�t}����|�hf�!m:s0u:t}�Qw�Õ�z2|�|}hAu{~oz0mlj�º�Ö
½Q�¾Ý Õ�z2�Qjoh�mln0sH~lt�jl��t}�Uä�sHmlq^sHw2h�Õ�z0|}|}hAu:~lt}z0� ¼C¼�º�Ù

ïÈð�¸?±.³Hµx®iµ�¸�¬A¯Q·?Ñ�³H¯^±H°D¸!´àÐC�·¢·DµQ±H¬�^³0Í ¨^ñ
Ã���ºòÕ�z2�Qh�moh\�^u:hGsH�^��Õ�z0��joh�mln0sH~ot}jl� ¼�¼�¼C¼�¼C¼Ëº�Ý
Ã�� ½È�!motvu:z2|}z0mf»UsHml xt}�Qw�¼�¼C¼C¼�¼C¼C¼�¼�¼�¼C¼�¼C¼Ëº�Ý

Ã�� ½��}º ì7��u:moh���h���~�s.|ÊsH���Qmoz�s0ul�Qh�jó¼�¼C¼�¼C¼Ëº�á
Ã�� ÃÈgimlt�~lh�í�s.momot}h�mÅÁ4|}w0z2mot}~o����jê¼C¼�¼�¼�¼C¼�¼C¼r½2ã

Ã�� Ã��}º ß��^sH�Qjl�Qz0~ô�ôs.~7�7q^h\w0t}�Q�Qt}�Qw
ÁÅ|}w0z0mlt}~o�Q��jå¼C¼C¼�¼C¼C¼�¼�¼�¼C¼�¼C¼r½2ã

Ã�� Ã��¾½ ì7��u:moh���h���~�s.|Êéf�	�Qs.~oh�gimlt�~lh:�oí�s.m7�
mlt}h�m4ÁÅ|�w2z0mlt�~l�Q��j�¼�¼C¼C¼�¼�¼�¼C¼�¼C¼r½�º

Ã�� Â í�sH 2h�mAõ j�Ç�hAs0��í�sHmlmot}h�mfÁ4|}w2z0mot}~l�Q��j�¼C¼�¼C¼r½2½
Ã�� Â��}º ì7��u:moh���h���~�s.|ÊÕ�z0��p�t}�Qw�¼�¼�¼�¼C¼�¼C¼r½2½
Ã�� Â��¾½ í�sH 2h�mAõ j�ì7�^u:moh\��h���~�s.|�ëfz0���ôu:z2��p0�

t}�QwGÁÅ|}w0z0mlt}~o�Q�¦ö÷�f��h��!moh�s0����t�|}|�¼r½2Ã
Ã�� Â��¾Ã Õ�z2�Qjoh\mon0sH~lt}jo�øz.��í�sH 0h\mAõ jùÇ�hAs0�

í�sHmlmot}h�m4¼C¼C¼�¼C¼C¼�¼C¼C¼�¼�¼�¼C¼�¼C¼r½.Â
Ã�� Â�� Â Þ�sHmotvs.~ot}z0�Qj�z0��~l�Qh�ÇfhAs2�&í�sHmlmot}h�m�¼r½.Â

Ã�� É¿Ç�h��Q|}tvu�sH~lt�z2�&Õ�z2�xp�t}�QwGÕ�z0|}|}hAu:~lt�z2�ê¼�¼C¼�¼C¼r½2É
Ã�� Ö¿Õ�z2�Qh�moh\�^u:hGsH�^��Õ�z0��joh�mln0sH~ot}jl�úÇ�h�n�t�jlt}~ohA��¼r½2É

Ã�� Ö��}º Õ�z2�Qh�mlh��^u:hGsH�^��Õ�z0�Qjlh�mon0s.~ot}jo�ût}�
ë�z0���ou:z2�xp�t}�QwGu:z0|}|}hAu:~lt}z0��¼�¼�¼C¼�¼C¼r½2É

Ã�� Ö��¾½ Õ�z2�Qh�mlh��^u:hGsH�^��Õ�z0�Qjlh�mon0s.~ot}jo�ût}�
Õ�z2��pxt}�QwGÕ�z0|}|}hAu:~lt}z0�Ë¼C¼�¼�¼�¼C¼�¼C¼r½2Ö

Ã�� Ö��¾Ã ç Ç4s2��tvu�sH|}è�Õ�z0|}|}hAu:~lt}z0�×s.�^��ÄÅ���
��z0ml~okQ��t�jl~otvuC�!m�s2u:t}�Qwi¼C¼�¼�¼�¼C¼�¼C¼r½2Ö

Ã�� Ù¿Õ�z2���^s.mot}�Qw�ì7�^u{moh���h���~�sH|��!hAul�Q�Qtvî2kQh�j�¼�¼C¼r½2Ù
Ã�� Ý¿Ç�hAsH|��7~ot}��hf�!m�s2u:t}�QwGÕ�z0|}|}hAu:~ot}z2� ¼�¼�¼C¼�¼C¼r½2Ý

Ã�� Ý��}º Ç�z�z0~4ß�h�~4ß�u�sH�Q��t���wØ¼C¼�¼�¼�¼C¼�¼C¼r½2á
Ã�� Ý��¾½ ä�k^sHm:sH��~oh�h\t���w�ß�k�Û&u:t}h���~4À!mlz0w0mlh�joj Ã2ã
Ã�� Ý��¾Ã �!m:s0��t}�QwÅ��z2mojo~ô�ôu\sHjoh���h�m7�¢z2mo��sH�^u:h

�Dz0mfh:üQ��hAu:~oh��U��h�m7�Dz0mo��sH�^u{hý¼C¼�¼C¼rÃ�º
Ã�� Ý�� Â ÜÅt}j�u{kQjojlt�z2�à¼�¼C¼C¼�¼C¼C¼�¼�¼�¼C¼�¼C¼rÃ�º

Ã�� á¿Õ��Qz�z2jot}�Qw�sH��ì7�^u:mlh���h���~:sH|�ÁÅ|}w0z0mlt}~o�Q� ¼C¼rÃ2½
þ Î�µ�¸!µ�³H¯Q¬�°¢�¸!¯Q·?Î�¯�³HÏÊ¯�´^µ�ÐC^·D·¢µQ±.¬A°D^¸ ï^¹
Â���ºò»�k�|�~lt}�Q|}hùß�k�qQ�QhAs.�Qj��ft�~l�rÞ�s.mop�t}�Qw$Õ�z2|6�

|}hAu:~lt}z0�UÿQmlhAî2kQh��^u{t�h\j ¼C¼C¼�¼C¼C¼�¼�¼�¼C¼�¼C¼rÃ2Ã
Â�� ½ÈÁC��n0sH�^u{h���h���~4À�z0|}tvu:t}h�j ¼�¼C¼C¼�¼�¼�¼C¼�¼C¼rÃ2Ö
Â�� Ã���hAsH�yÄÅmlwxsH��t���sH~ot}z2�å¼C¼C¼�¼C¼C¼�¼�¼�¼C¼�¼C¼rÃ2Ù

Â�� Ã��}º ß�kQq^sHmlhAsHjÅt}�&u:z2�xp�t}�QwGj:uo��h���h�jø¼C¼rÃ2Ù
Â�� Ã��¾½ ä�h��Qh�m:sH~ot}z2�Qj t}� ëfz2���ôu{z0��p�t���w

ß�uo��h���h�ji¼C¼�¼C¼C¼�¼C¼C¼�¼�¼�¼C¼�¼C¼rÃ2Ý
Â�� Ã��¾Ã ÜÅt}j�u{kQjojlt�z2�à¼�¼C¼C¼�¼C¼C¼�¼�¼�¼C¼�¼C¼rÃ2Ý

º



Paper 1: Bacon et al (2004)

Algorithms

Performance

Reading

A Unified Theory of Garbage Collection

David F. Bacon
dfb@watson.ibm.com

Perry Cheng
perryche@us.ibm.com

V.T. Rajan
vtrajan@us.ibm.com

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

ABSTRACT
Tracing and reference counting are uniformly viewed as being fun-
damentally different approaches to garbage collection that possess
very distinct performance properties. We have implemented high-
performance collectors of both types, and in the process observed
that the more we optimized them, the more similarly they behaved
— that they seem to share some deep structure.

We present a formulation of the two algorithms that shows that
they are in fact duals of each other. Intuitively, the difference is that
tracing operates on live objects, or “matter”, while reference count-
ing operates on dead objects, or “anti-matter”. For every operation
performed by the tracing collector, there is a precisely correspond-
ing anti-operation performed by the reference counting collector.

Using this framework, we show that all high-performance col-
lectors (for example, deferred reference counting and generational
collection) are in fact hybrids of tracing and reference counting.
We develop a uniform cost-model for the collectors to quantify the
trade-offs that result from choosing different hybridizations of trac-
ing and reference counting. This allows the correct scheme to be
selected based on system performance requirements and the ex-
pected properties of the target application.

General Terms
Algorithms, Languages, Performance

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Dynamic storagemanagement; D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection);
D.4.2 [Operating Systems]: Storage Management—Garbage col-
lection
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Tracing, Mark-and-Sweep, Reference Counting, Graph Algorithms
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1. INTRODUCTION
By 1960, the two fundamental approaches to storage reclama-

tion, namely tracing [33] and reference counting [18] had been de-
veloped.

Since then there has been a great deal of work on garbage collec-
tion, with numerous advances in both paradigms. For tracing, some
of the major advances have been iterative copying collection [15],
generational collection [41, 1], constant-space tracing [36], barrier
optimization techniques [13, 45, 46], soft real-time collection [2, 7,
8, 14, 26, 30, 44], hard real-time collection [5, 16, 23], distributed
garbage collection [29], replicating copying collection [34], and
multiprocessor concurrent collection [21, 22, 27, 28, 39].

For reference counting, some of the major advances have been
incremental freeing [42], deferred reference counting [20], cycle
collection [17, 32, 6], compile-time removal of counting opera-
tions [9], and multiprocessor concurrent collection [3, 19, 31].

However, all of these advances have been refinements of the two
fundamental approaches that were developed at the dawn of the era
of high-level languages.

Tracing and reference counting have consistently been viewed as
being different approaches to storage reclamation. We have imple-
mented both types of collector: a multiprocessor concurrent refer-
ence counting collector with cycle collection [3, 6] and a uniproces-
sor real-time incremental tracing collector [4, 5]. In this process,
we found some striking similarities between the two approaches.
In particular, once substantial optimizations had been applied to
the naı̈ve algorithms, the difficult issues that arose were remark-
ably similar. This led us to speculate that the two algorithms in fact
share a “deep structure”.

In this paper we show that the two fundamental approaches to
storage reclamation, namely tracing and reference counting, are al-
gorithmic duals of each other. Intuitively, one can think of tracing
as operating upon live objects or “matter”, while reference count-
ing operates upon dead objects or “anti-matter”. For every oper-
ation performed by the tracing collector, there is a corresponding
“anti-operation” performed by the reference counting collector.

Approaching the two algorithms in this way sheds new light on
the trade-offs involved, the potential optimizations, and the pos-
sibility of combining reference counting and tracing in a unified
storage reclamation framework.

We begin with a qualitative comparison of tracing and reference
counting (Section 2) and then show that the two algorithms are in
fact duals of each other (Section 3). We then show that all real-
istic, high-performance collectors are in fact hybrids that combine
tracing and reference counting (Section 4). We then discuss the
problem of cycle collection (Section 5) and extend our framework
to collectors with arbitrary numbers of separate heaps (Section 6).
Using our categorization of collectors, we then present a uniform
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“Tracing and reference counting […]
seem to share some deep structure”

“For every operation performed by the
tracing collector, there is a precisely
corresponding anti-operation performed by
the reference counting collector.”

“[A]ll high-performance collectors […] are in
fact hybrids of tracing and reference
counting”
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ABSTRACT
Garbage collection yields numerous software engineering benefits,
but its quantitative impact on performance remains elusive. One
can compare the cost of conservative garbage collection to explicit
memory management in C/C++ programs by linking in an appro-
priate collector. This kind of direct comparison is not possible for
languages designed for garbage collection (e.g., Java), because pro-
grams in these languages naturally do not contain calls to free.
Thus, the actual gap between the time and space performance of
explicit memory management and precise, copying garbage collec-
tion remains unknown.

We introduce a novel experimental methodology that lets us quan-
tify the performance of precise garbage collection versus explicit
memory management. Our system allows us to treat unaltered Java
programs as if they used explicit memory management by relying
on oracles to insert calls to free. These oracles are generated
from profile information gathered in earlier application runs. By
executing inside an architecturally-detailed simulator, this “oracu-
lar” memory manager eliminates the effects of consulting an oracle
while measuring the costs of calling malloc and free. We eval-
uate two different oracles: a liveness-based oracle that aggressively
frees objects immediately after their last use, and a reachability-
based oracle that conservatively frees objects just after they are last
reachable. These oracles span the range of possible placement of
explicit deallocation calls.

We compare explicit memory management to both copying and
non-copying garbage collectors across a range of benchmarks us-
ing the oracular memory manager, and present real (non-simulated)
runs that lend further validity to our results. These results quantify
the time-space tradeoff of garbage collection: with five times as
much memory, an Appel-style generational collector with a non-
copying mature space matches the performance of reachability-
based explicit memory management. With only three times as much
memory, the collector runs on average 17% slower than explicit
memory management. However, with only twice as much memory,
garbage collection degrades performance by nearly 70%. When
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physical memory is scarce, paging causes garbage collection to run
an order of magnitude slower than explicit memory management.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Dynamic storage management;
D.3.4 [Processors]: Memory management (garbage collection)

General Terms
Experimentation, Measurement, Performance

Keywords
oracular memory management, garbage collection, explicit mem-
ory management, performance analysis, time-space tradeoff, through-
put, paging

1. Introduction
Garbage collection, or automatic memory management, provides
significant software engineering benefits over explicit memory man-
agement. For example, garbage collection frees programmers from
the burden of memory management, eliminates most memory leaks,
and improves modularity, while preventing accidental memory over-
writes (“dangling pointers”) [50, 59]. Because of these advantages,
garbage collection has been incorporated as a feature of a number
of mainstream programming languages.

Garbage collection can improve programmer productivity [48],
but its impact on performance is difficult to quantify. Previous re-
searchers have measured the runtime performance and space im-
pact of conservative, non-copying garbage collection in C and C++
programs [19, 62]. For these programs, comparing the performance
of explicit memory management to conservative garbage collection
is a matter of linking in a library like the Boehm-Demers-Weiser
collector [14]. Unfortunately, measuring the performance trade-off
in languages designed for garbage collection is not so straightfor-
ward. Because programs written in these languages do not explic-
itly deallocate objects, one cannot simply replace garbage collec-
tion with an explicit memory manager. Extrapolating the results of
studies with conservative collectors is impossible because precise,
relocating garbage collectors (suitable only for garbage-collected
languages) consistently outperform conservative, non-relocating gar-
bage collectors [10, 12].

It is possible to measure the costs of garbage collection activity
(e.g., tracing and copying) [10, 20, 30, 36, 56] but it is impossi-
ble to subtract garbage collection’s effect on mutator performance.
Garbage collection alters application behavior both by visiting and
reorganizing memory. It also degrades locality, especially when
physical memory is scarce [61]. Subtracting the costs of garbage
collection also ignores the improved locality that explicit memory
managers can provide by immediately recycling just-freed mem-
ory [53, 55, 57, 58]. For all these reasons, the costs of precise,

“[A] novel experimental methodology that lets us
quantify the performance of precise garbage
collection versus explicit memory management.”

“[W]ith five times as much memory, an Appel-style
generational collector with a non-copying mature
space matches the performance of
reachability-based explicit memory management.”

“When physical memory is scarce, paging causes
garbage collection to run an order of magnitude
slower than explicit memory management”
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Abstract
Garbage collectors are exact or conservative. An exact col-
lector identifies all references precisely and may move ref-
erents and update references, whereas a conservative collec-
tor treats one or more of stack, register, and heap references
as ambiguous. Ambiguous references constrain collectors in
two ways. (1) Since they may be pointers, the collectors must
retain referents. (2) Since they may be values, the collectors
cannot modify them, pinning their referents.

We explore conservative collectors for managed lan-
guages, with ambiguous stacks and registers. We show that
for Java benchmarks they retain and pin remarkably few
heap objects: <0.01% are falsely retained and 0.03% are
pinned. The larger effect is collector design. Prior conserva-
tive collectors (1) use mark-sweep and unnecessarily forgo
moving all objects, or (2) use mostly copying and pin en-
tire pages. Compared to generational collection, overheads
are substantial: 12% and 45% respectively. We introduce
high performance conservative Immix and reference count-
ing (RC). Immix is a mark-region collector with fine line-
grain pinning and opportunistic copying of unambiguous
referents. Deferred RC simply needs an object map to de-
liver the first conservative RC. We implement six exact col-
lectors and their conservative counterparts. Conservative Im-
mix and RC come within 2 to 3% of their exact counterparts.
In particular, conservative RC Immix is slightly faster than a
well-tuned exact generational collector. These findings show
that for managed languages, conservative collection is com-
patible with high performance.

Categories and Subject Descriptors Software, Virtual Machines,
Memory management, Garbage collection

Keywords Conservative, Reference Counting, Immix, Mark-Region
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1. Introduction
Language semantics and compiler implementations deter-
mine whether memory managers may implement exact or
conservative garbage collection. Exact collectors identify all
references and may move objects and redirect references
transparently to applications. Conservative collectors must
reason about ambiguous references, constraining them in
two ways. (1) Because ambiguous references may be point-
ers, the collector must conservatively retain referents. (2)
Because ambiguous references may be values, the collec-
tor must not change them and cannot move (must pin) the
referent.

Languages such as C and C++ are not memory safe: pro-
grams may store and manipulate pointers directly. Conse-
quently, their compilers cannot prove whether any value is
a pointer or not, which forces their collectors to be conser-
vative and non-moving. Managed languages, such as Java,
C#, Python, PHP, JavaScript, and safe C variants, have a
choice between exact and conservative collection. In prin-
ciple, a conservative collector for managed languages may
treat stacks, registers, heap, and other references conser-
vatively. In practice, the type system easily identifies heap
references exactly. However, many systems for JavaScript,
PHP, Objective C, and other languages treat ambiguous ref-
erences in stacks and registers conservatively.

This paper explores conservative collectors with ambigu-
ous stacks and registers. We first show that the direct con-
sequences of these ambiguous references on excess reten-
tion and pinning are surprisingly low. Using a Java Virtual
Machine and 18 Java benchmarks, conservative roots falsely
retain less than 0.01% of objects and pin less than 0.03%.
However, conservative constraints have had a large indirect
cost by how they shaped garbage collection algorithms.

Many widely used managed systems implement collec-
tors that are conservative with respect to stacks and regis-
ters. Microsoft’s Chakra JavaScript VM implements a con-
servative mark-sweep Boehm, Demers, Weiser style (BDW)
collector [15, 19]. This non-moving free-list collector was
originally proposed for C, but some managed runtimes use
it directly and many others have adapted it. Apple’s We-
bKit JavaScript VM implements a Mostly Copying Conser-
vative (MCC) collector, also called a Bartlett-style collec-
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“Garbage collectors are exact or conservative. […]
We explore conservative collectors for managed
languages, with ambiguous stacks and registers.
We show that for Java benchmarks they retain and
pin remarkably few heap objects”

“We introduce high performance conservative
Immix and reference counting (RC).”

“[F]or managed languages, conservative collection
is compatible with high performance.”


