
Advanced topics in programming languages Michaelmas 2024

Dependent types

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk

Basics

Dependent types: basics

Basics

Pattern
matching

Recursion

Reading

What can depend on what?
(e.g. what can appear as an argument in an application?)

N → (N → N) → N
λx :: N.λf : (N → N).f x

Simple types

No dependencies involving types
(all types are global)

Terms depend on terms

∀β.(∀α.α) → β

Λβ.λx : (∀α.α).x[β]

Polymorphism

Terms depend on types

Π(n :N).Vec n → Vec n
λn :N.λv :Vec n.v

Dependent types

Types depend on terms

The Curry-Howard correspondence

Basics

Pattern
matching

Recursion

Reading

Correspondence between simply-typed language and propositional logics:

A → B ≃ A ⊃ B (functions and implications)
A × B ≃ A ∧ B (products and conjunctions)
A + B ≃ A ∧ B (sums and disjunctions)

Correspondence between dependently-typed languages and predicate logics:

(x : A) → B ≃ ∀(x : A).B (functions and universal quantification)
Σ(x : A).B ≃ ∃(x : A).B (dependent pairs and existential quantification)

How should we start to design a dependently-typed language?
Foundation for constructive mathematics (Martin-Löf Type Theory)
Lambda calculus with fancy types (Calculus of Constructions)

Equalities

Basics

Pattern
matching

Recursion

Reading

With dependent types we can form types from terms.
Parameterise B by a term of type A:

Π(x : A).B(x)

Key Q: when are two types equal? (essential for type checking!)

Is B(2 + 2) equal to B(4)?

Determining equality typically requires normalization (i.e. computation).

(Separate question: what equalities can we prove?)

Pattern matching

Pattern matching with simple types

Basics

Pattern
matching

Recursion

Reading

Simple branching reveals nothing to the type checker:

append xs ys = i f empty xs then ys
e l s e cons (head x) (append (tail xs) ys)

Either branch can access the head and tail.

Pattern matching exposes the value structure to the type checker:

append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

Only the Cons branch can access the head and tail.

Inductive families: basics

Basics

Pattern
matching

Recursion

Reading

Inductive families support indexing data types by terms:

data Vect : N → Type → Type where
Nil : Vect Z a
Cons : a → Vect n a → Vect (S n) a

an inductive family,
Vect:

vappend : Vect m a → Vect n a → Vect (m + n) a
vappend Nil ys = ys
vappend (Cons x xs) ys = Cons x (vappend xs ys)

a function vappend
over Vect:

vappend: {a : Type} → {m : N} →{n : N} →
Vect m a → Vect n a → Vect (m + n) a

the full type
of vappend:

Inductive families and pattern matching

Basics

Pattern
matching

Recursion

Reading

Dependent matching may reveal something about another value:

vappend : Vect m a → Vect n a → Vect (m + n) a
vappend Nil ys = ys
vappend (Cons x xs) ys = Cons x (vappend xs ys)

1. Matching the first vector with Nil tells us that m ≡ Z in the first branch
2. so the return type in the first branch is Vect (Z + n) a ⇝ Vect n a

3. so ys has the appropriate type in the first branch

Inductive families and pattern matching

Basics

Pattern
matching

Recursion

Reading

Dependent matching may reveal something about another value:

zip : Vect n a → Vect n b → Vect n (a,b)
zip Nil ys = ?

1. Matching the first vector with Nil tells us that n ≡ Z

2. so the type of ys is Vect Z b

3. and so Nil is the only possible constructor for ys

Recursion

Dependent types and termination

Basics

Pattern
matching

Recursion

Reading

Ideally: all functions terminate.
Non-terminating functions can introduce logical inconsistency, e.g.:

circular : ∀ (A :Type) → A
circular a = circular a

or:

data Empty : Type where
-- (no constructors)

loopy : Empty
loopy = loopy

Approximating termination

Basics

Pattern
matching

Recursion

Reading

Problem: termination is undecidable, so we must approximate syntactically
Question: what to do with functions that are not structurally decreasing?

length : List a → Int
length [] = 0
length (x:xs) = 1 + length xs

structurally decreasing:

quicksort :: List N → List N
quicksort [] = []
quicksort (x:xs) = quicksort (filter (< x) xs) ++

x : quicksort (filter (>= x) xs)

not (obviously)
structurally decreasing:

Reading

Paper 1: termination

Basics

Pattern
matching

Recursion

Reading

The Size-Change Principle for Program Termination

Chin Soon Lee
�

Department of Computer
Science and Software

Engineering
The University of Western

Australia
Nedlands 6907

Western Australia

leecs@cs.uwa.edu.au

Neil D. Jones
Datalogisk Institut

University of Copenhagen
Universitetsparken 1

DK-2100 Copenhagen
Denmark

neil@diku.dk

Amir M. Ben-Amram
Academic College of Tel-Aviv–

Yaffo
4 Antokolsky Street

Tel-Aviv 64044
Israel

amirben@mta.ac.il

ABSTRACTThe \size-hange termination" priniple for a �rst-order fun-tional language with well-founded data is: a program termi-nates on all inputs if every in�nite all sequene (follow-ing program ontrol ow) would ause an in�nite desent insome data values.Size-hange analysis is based only on loal approximations toparameter size hanges derivable from program syntax. Theset of in�nite all sequenes that follow program ow and anbe reognized as ausing in�nite desent is an !-regular set,representable by a B�uhi automaton. Algorithms for suhautomata an be used to deide size-hange termination.We also give a diret algorithm operating on \size-hangegraphs" (without the passage to automata).Compared to other results in the literature, terminationanalysis based on the size-hange priniple is surprisinglysimple and general: lexial orders (also alled lexiographiorders), indiret funtion alls and permuted arguments (de-sent that is not in-situ) are all handled automatially andwithout speial treatment, with no need for manually sup-plied argument orders, or theorem-proving methods not er-tain to terminate at analysis time.We establish the problem's intrinsi omplexity. This turnsout to be surprisingly high, omplete for pspae, in spite ofthe simpliity of the priniple. pspae hardness is provedby a redution from Boolean program termination. An in-teresting onsequene: the same hardness result applies tomany other analyses found in the termination and quasi-termination literature.�This researh was done while visiting DIKU.

Categories and Subject DescriptorsD.2.4 [Software Engineering℄: Software/Program Veri-�ation; D.3.4 [Programming Languages℄: Proessors;F.3.1 [Logis and Meanings of Programs℄: Speifyingand Verifying and Reasoning about Programs; F.3.2 [Logisand Meanings of Programs℄: Semantis of ProgrammingLanguages
KeywordsTermination, program analysis, omega automaton, PSPACE-ompleteness, partial evaluation.
1. INTRODUCTION
1.1 MotivationThere are many reasons to study automati methods toprove program termination, inluding:� Program veri�ation: typially dedutive methods areused to show partial orretness (the input-output spe-i�ation is satis�ed provided the program terminates),followed by a separate proof of termination [11℄.� Automati program manipulation: termination has tobe ensurable when dealing with mahine-generated pro-grams, or ones imported from a possibly untrustworthyontext.� Broad interest: termination has been studied in �eldsinluding funtional programming [8℄, logi program-ming [7, 15, 17, 19, 14℄, term rewriting systems [3,20℄ and partial evaluation. Disussion of related workappears at the end of this paper.� Interesting analysis: termination is not just an \ab-strat interpretation" of program values, but rathermore subtle.� Use in partial evaluation: this is a step towards abinding-time analysis that will guarantee terminationof program speialization [12, 2, 9, 10℄ and still allowan aeptably high degree of speialization in an o�inepartial evaluator suh as Similix [5℄.We emphasize here a areful and preise formulation of asimple but powerful priniple to deide termination. It isowing to this lear statement of the termination riterion

“[A] program terminates on all inputs if every infinite
call sequence (following program control flow) would
cause an infinite descent in some data values.”

“The set of infinite all sequences that follow pro-
gram flow and can be recognized as causing infinite
descent is an ω-regular set, representable by a Büchi
automaton”

“There are many reasons to study automatic meth-
ods to prove program termination, including: Pro-
gram verification […] Interesting analysis: termina-
tion is not just an “abstract interpretation” […] Use
in partial evaluation”

Paper 2: Idris

Basics

Pattern
matching

Recursion

Reading

IDRIS — Systems Programming Meets Full Dependent Types

Edwin C. Brady
School of Computer Science, University of St Andrews, St Andrews, Scotland.

Email: eb@cs.st-andrews.ac.uk

Abstract
Dependent types have emerged in recent years as a promising ap-
proach to ensuring program correctness. However, existing depen-
dently typed languages such as Agda and Coq work at a very high
level of abstraction, making it difficult to map verified programs to
suitably efficient executable code. This is particularly problematic
for programs which work with bit level data, e.g. network packet
processing, binary file formats or operating system services. Such
programs, being fundamental to the operation of computers in gen-
eral, may stand to benefit significantly from program verification
techniques. This paper describes the use of a dependently typed
programming language, IDRIS, for specifying and verifying prop-
erties of low-level systems programs, taking network packet pro-
cessing as an extended example. We give an overview of the dis-
tinctive features of IDRIS which allow it to interact with external
systems code, with precise types. Furthermore, we show how to in-
tegrate tactic scripts and plugin decision procedures to reduce the
burden of proof on application developers. The ideas we present
are readily adaptable to languages with related type systems.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) Lan-
guages; C.2.2 [Computer-Communication Networks]: Network
Protocols—Protocol Verification

General Terms Languages, Verification

Keywords Dependent Types, Data Description

1. Introduction
Systems software, such as an operating system or a network stack,
underlies everything we do on a computer, whether that computer
is a desktop machine, a server, a mobile phone, or any embedded
device. It is therefore vital that such software operates correctly
in all situations. Dependent types have emerged in recent years
as a promising approach to ensuring the correctness of software,
with high level verification tools such as Coq [8] and Agda [25]
being used to model and verify a variety of programs including
domain-specific languages (DSLs) [26], parsers [9], compilers [16]
and algorithms [34]. However, since these tools operate at a high
level of abstraction, it can be difficult to map verified programs to
efficient low level code. For example, Oury and Swierstra’s data
description language [26] works with a list of bits to describe file

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLPV’11, January 29, 2011, Austin, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0487-0/11/01. . . $5.00.

formats precisely, but it does not attempt to store concrete data
compactly or efficiently.

This paper explores dependent type based program verifica-
tion techniques for systems programming, using the IDRIS pro-
gramming language. We give an overview of IDRIS, describing in
particular the key features which distinguish it from other related
languages and give an extended example of the kind of program
which stands to benefit from type-based program verification tech-
niques. Our example is a data description language influenced by
PADS [19] and PACKETTYPES [22]. This language is an embedded
domain-specific language (EDSL) [14] — that is, it is implemented
by embedding in a host language, exploiting the host’s parser, type
system and code generator. In this EDSL, we can describe data for-
mats at the bit level, as well as express constraints on the data.
We implement operations for converting data between high level
IDRIS data types and bit level data, using a foreign function inter-
face which gives IDRIS types to C functions. This language has a
serious motivation: we would like to implement verified, efficient
network protocols [1]. Therefore we show two packet formats as
examples: Internet Control Message Protocol (ICMP) packets, and
Internet Protocol (IP) headers.

1.1 Contributions
The main contribution of this paper is to demonstrate that a high
level dependently typed language is capable of implementing and
verifying code at a low level. We achieve this in the following
specific ways:

• We describe the distinctive features of IDRIS which allow in-
tegration of low level systems programming constructs with
higher level programs verified by type checking (Section 2).

• We show how an effective Foreign Function Interface can be
embedded in a dependently typed language (Section 2.6).

• We introduce a serious systems application where a program-
ming language meets program verification, and implement it
fully: a binary data description language, which we use to de-
scribe ICMP and IP headers precisely, expressing the data lay-
out and constraints on that data (Section 3).

We show how to tackle some of the awkward problems which can
arise in practice when implementing a dependently typed applica-
tion. These problems include:

• Dealing with foreign functions which may have more specific
inputs and outputs than their C types might suggest — e.g. we
might know that an integer may lie within a specific range.

• Satisfying proof obligations which arise due to giving data and
functions precise types. As far as possible, we would like proof
obligations to be solved automatically, and proof requirements
should not interfere with a program’s readability.

“This paper describes the use of a dependently
typed programming language, IDRIS, for spec-
ifying and verifying properties of low-level sys-
tems programs, taking network packet process-
ing as an extended example.”

“Our motivation is the need for systems soft-
ware verification — programs such as operat-
ing systems, device drivers and network proto-
col implementations which are required for the
correct operation of a computer system. There-
fore it is important to consider not only how to
verify software, but also how to do so without
compromising on efficiency, and how to inter-
operate with concrete data as it is represented
in the machine or on a network wire”

Paper 3: Epigram

Basics

Pattern
matching

Recursion

Reading

Why Dependent Types Matter

Thorsten Altenkirch Conor McBride

The University of Nottingham

{txa,ctm}@cs.nott.ac.uk

James McKinna

The University of St Andrews

james.mckinna@st-andrews.ac.uk

Abstract

We exhibit the rationale behind the design of Epigram, a dependently typed programming language and
interactive program development system, using refinements of a well known program—merge sort—as a
running example. We discuss its relationship with other proposals to introduce aspects of dependent types into
functional programming languages and sketch some topics for further work in this area.

1. Introduction

Types matter. That’s what they’re for—to classify data with respect to criteria which matter: how they should
be stored in memory, whether they can be safely passed as inputs to a given operation, even who is allowed to
see them. Dependent types are types expressed in terms of data, explicitly relating their inhabitants to that data.
As such, they enable you to express more of what matters about data. While conventional type systems allow
us to validate our programs with respect to a fixed set of criteria, dependent types are much more flexible, they
realize a continuum of precision from the basic assertions we are used to expect from types up to a complete
specification of the program’s behaviour. It is the programmer’s choice to what degree he wants to exploit the
expressiveness of such a powerful type discipline. While the price for formally certified software may be high,
it is good to know that we can pay it in installments and that we are free to decide how far we want to go.
Dependent types reduce certification to type checking, hence they provide a means to convince others that the
assertions we make about our programs are correct. Dependently typed programs are, by their nature, proof
carrying code [NL96, HST+03].

Functional programmers have started to incorporate many aspects of dependent types into novel type systems
usinggeneralized algebraic data typesandsingleton types. Indeed, we share Sheard’s vision [She04] of closing
the semantic gapbetween programs and their properties. While Sheard’s languageΩmega approaches this
goal by an evolutionary step from current functional languages like Haskell, we are proposing a more radical
departure with Epigram, exploiting what we have learnt from proof development tools like LEGO and COQ.

Epigram is a full dependently typed programming language defined by McBride and McKinna [MM04],
drawing on experience with the LEGO system. McBride has implemented a prototype which is available
together with basic documentation [McB04, McB05] from the Epigram homepage.1 The prototype implements
most of the features discussed in this article, and we are continuing to develop it to close the remaining

1 Currentlyhttp://sneezy.cs.nott.ac.uk/epigram/.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00.

1 2005/4/14

“Dependent types […] provide a means
to convince others that the assertions we
make about our programs are correct. De-
pendently typed programs are, by their na-
ture, proof carrying code.”

“Epigram can also typecheck and evaluate
incomplete programs with unfinished sec-
tions sitting in sheds, [· · ·], where the
typechecker is forbidden to tread.”

“Exploiting the expressivity of dependent
types in a practicable way involves a wide
range of challenges in the development of
the theory, the design of language, the en-
gineering of tools and the pragmatics of
programming.”

Writing suggestions

Basics

Pattern
matching

Recursion

Reading

Termination
Is termination-checking practical for real-world programs?

Efficiency
Are dependent types an impediment or an aid to efficiency?

Re-thinking
How might dependent types change the way we think about programming?

Radicalism
Do dependent types require radically new ways of programming?

Adoption
What might impede adoption of dependently-typed languages?

