
Advanced Topics in Programming Languages (2024) J. Yallop

Delimited continuations

1 Readings

1.1 Set papers

The week’s set papers are as follows:

• Delimited control in OCaml, abstractly and con-
cretely (Kiselyov, 2012)

• Implementing first-class polymorphic delimited
continuations by a type-directed selective CPS-
transform (Rompf, Maier, and Odersky, 2009)

• Continuing WebAssembly with Effect Handlers
(Phipps-Costin, Rossberg, Guha, et al., 2023)

You are invited to write an essay about two of these
papers, following the guidelines on the course as-
sessment page 1.

1.2 Background

Appendix A of Foundations for Programming and Im-
plementing Effect Handlers (Hillerström, 2021) is a re-
cent overview of delimited continuations, with de-
tails on the history, on the various operators with
their semantics and types, on applications, and on
implementation approaches.

2 History

2.1 Beginnings

Continuations were used to define the semantics of
jumps in programming languages from the early
years of computer science (The Discoveries of Con-
tinuations (Reynolds, 1993) lists some examples in
the early 1960s). Undelimited continuations as a
programming construct were introduced in Defini-
tional interpreters for higher-order programming lan-
guages (Reynolds, 1972), and available in early ver-
sions of Scheme (Steele Jr and Sussman, 1975).

2.2 Developments

1987 Beyond Continuations (Felleisen, Friedman,
Duba, et al., 1987) and Abstract Continuations:
A Mathematical Semantics for Handling Full Jumps

1https://www.cl.cam.ac.uk/teaching/2425/R277/
assessment.html

(Felleisen, Wand, Friedman, et al., 1988) noted
some complications with the axioms for unde-
limited continuations, and introduced a delim-
ited form, F (control).

1989 A Functional Abstraction of Typed Contexts
(Danvy and Filinski, 1989) introduced an alter-
native operator for capturing delimited contin-
uations, shift, noting that it could be statically
typed.

1995 A Generalization of Exceptions and Control in ML-
like Languages (Gunter, Rémy, and Riecke, 1995)
introduced yet another delimited control opera-
tor, cupto, integrated into an ML-style language
and type system.

2007 Polymorphic Delimited Continuations (Asai and
Kameyama, 2007) introduced a type system
for a language with delimited continuations
that distinguishes between effectful expressions
(that use shift and reset) and pure expressions
(that do not).

2.3 Status

Delimited continuations have proved to be a very
general mechanism for implementing effects of var-
ious types. (Representing Monads (Filinski, 1994)
shows that they can be used to embed any express-
ible monad.) They have been usefully employed,
for example, to simulate exceptions, nondetermin-
ism, mutable state, concurrency, generators, and in
more specialized applications in probabilistic pro-
gramming, automatic differentiation, partial evalu-
ation, and linguistics.

However, despite these many applications and
despite the long history of study, relatively few
general-purpose languages provide built-in support
for delimited continuations. OCaml 5 is one excep-
tion, and there is a proposal under consideration
to add support for delimited continuations to We-
bAssembly (Phipps-Costin et al., 2023), where it may
be used as a uniform basis for a variety of non-local
control features including threads and async/await.

https://www.cl.cam.ac.uk/teaching/2425/R277/assessment.html
https://www.cl.cam.ac.uk/teaching/2425/R277/assessment.html

Advanced Topics in Programming Languages (2024) J. Yallop

Values Terms
V ::= x (variable)

| λx.M (abstraction)
L, M ::= V (value) | L M (application)

| ⟨M⟩ (reset) | S k.M (shift)

Reductions Contexts
E[(λx.M) V] ⇝ E[M{V/x}]

E[⟨V⟩] ⇝ E[V]
E[⟨E2[S k.M]⟩] ⇝ E[⟨M{(λy.⟨E2[y]⟩)/k}⟩]

NB: E2[−] must not enclose its body in ⟨ − ⟩

E[·] ::= [·]
| E[[·] M]
| E[V [·]]
| E[⟨[·]⟩]

Figure 1: Delimited continuations: syntax and evaluation

shift (? = S) control (? = F)

E[⟨M{(λy.⟨E2[y]⟩)/k}⟩] E[⟨M{(λy.E2[y])/k}⟩]

shift0 (? = S0) control0 (? = F0)

E[M{(λy.⟨E2[y]⟩)/k}] E[M{(λy.E2[y])/k}]

E[⟨E2[? k.M]⟩]⇝

Enclose captured context E2?

✓ ✗

✓

✗

retain
enclosing

reset?

Figure 2: Alternatives to shift

3 Basics

Figure 1 defines a minimal lambda calculus with
support for delimited continuations. Values are ei-
ther variables or lambda abstractions; terms are ei-
ther values, applications, or can be built from the
two delimited control constructs, reset and shift. As
the reduction rules show, these two operators work
in concert: S k.M captures the context up to the near-
est enclosing ⟨ − ⟩ and inserts it into M in place of
the bound variable k.

Variants of these rules are given by many authors,
including Kiselyov, Shan, and Sabry (2006) and Ishio
and Asai (2023).

3.1 Operator taxonomy

There are three common alternatives to shift (Fig-
ure 2), which vary (on the right of the reduction rule)
as to whether they retain the reset in the current con-
text and whether they enclose the captured context.
Ishio and Asai (2023) and many others give details.

3.2 Examples

We start by showing how delimited continuations
can implement exceptions. The expression try b h

first evaluates b (); if that concludes without invok-
ing a control operator, its value becomes the value of
the whole expression. However, b () might also call
raise e, discarding the continuation k up to the call
to b and passing e to the handler function h:

try b h = case ⟨R (b ())⟩ of L e → h e | R v → v
raise e = S0 k.L e

We next show an example that turns an arbitrary
iterator (e.g. OCaml’s List.iter) into a generator
like Python’s yield:

generate iter l = ⟨iter (λv.S0 k.(v, k))l⟩

Here generate iter l installs a reset and calls the func-
tion iter, passing it a function that captures the con-
tinuation k up to the reset, passing both the k and
the function argument v. The caller can process the
value v and re-invoke the continuation k continua-
tion to resume the iteration.

Finally, we show an example that distinguishes
various control operators:

⟨1 + ⟨S k1.k1 100 + k1 10 + S k2.S k3.1⟩⟩

As written, this example reduces to 3; however, it
can be modified to instead reduce to 1 or 2 by re-
spectively changing S to S0 or to F throughout.

Advanced Topics in Programming Languages (2024) J. Yallop

4 Implementations and applications

4.1 Implementation considerations

4.1.1 Types

Type systems for delimited continuations have been
studied since at least Danvy and Filinski (1989), but
remain challenging due to answer-type modification,
i.e. changes to the return type of continuations aris-
ing from use of shift. Kobori, Kameyama, and Kise-
lyov (2015) give details and a type-preserving trans-
lation that eliminates answer-type modification.

4.1.2 Named prompts

Since delimited control operators like shift capture
continuations up to the nearest enclosing ⟨ − ⟩, mul-
tiple uses of shift within a program can sometimes
interact unexpectedly. To help avoid such interac-
tions, some implementations support named reset
points that allow shift to indicate explicitly how
much of the enclosing continuation to capture.

4.1.3 Multi-shot vs one-shot

Implementations of delimited continuations vary in
whether they allow captured continuations to be in-
voked multiple times (so-called multi-shot continua-
tions), or at most once (single-shot).

4.2 Implementations

There are a variety of approaches to implement-
ing delimited continuations, many of which involve
changing compilation (e.g. to transform programs
into continuation-passing style), modifying the lan-
guage runtime (e.g. to provide primitives for ma-
nipulating stacks), or both. Other implementation
strategies rely on the expressibility of delimited con-
tinuations in terms of other language constructs
such as threads or undelimited continuations.

• Threads Yield Continuations (Kumar, Brugge-
man, and Dybvig, 1998) implements one-
shot and multi-shot delimited continuations us-
ing threads. (In the other direction, delim-
ited continuations can implement cooperative
threads (Dolan et al., 2015).)

• Representing Monads (Filinski, 1994) shows how
to implement shift and reset using undelim-
ited continuations and mutable reference cells.

• Final shift for call/cc: direct implementation of shift
and reset (Gasbichler and Sperber, 2002) gives a
direct Scheme48 implementation of shift and

reset, and shows improved efficiency over a
simulation using undelimited continuations.

• Continuations from generalized stack inspection
(Pettyjohn, Clements, Marshall, et al., 2005)
uses exceptions and code that saves and re-
stores local data to simulate delimited control

• Implementing first-class polymorphic delimited
continuations by a type-directed selective CPS-
transform (Rompf, Maier, and Odersky, 2009)
uses the type system of Asai and Kameyama
(2007) to CPS-convert only those parts of a pro-
gram that actually make use of control effects.

• Delimited control in OCaml, abstractly and con-
cretely (Kiselyov, 2012) implements delimited
continuations as an OCaml library using low-
level stack-manipulation primitives, without
modifying the language implementation.

• Effect Handlers for C via Coroutines (Alvarez-
Picallo, Freund, Ghica, et al., 2024) describes an
effect handlers library for C, implemented us-
ing coroutines

4.3 Applications

Support for interactions between programs and
their contexts has many applications.

In partial evaluation and its more explicit vari-
ant multi-stage programming, delimited continuations
can be used to rearrange program fragments so that
they specialize more effectively (Lawall and Danvy,
1994; Kameyama, Kiselyov, and Shan, 2011).

In linguistics, lambda-calculus based formalisms
such as Combinatory Categorical Grammar ex-
tended with delimited continuations can capture in-
teractions between linguistic expressions and scope-
sensitive phenomena (e.g. quantifiers) (Shan, 2004).

Reverse-mode automatic differentiation can be im-
plemented more straightforwardly using delimited
continuations than with traditional methods such as
tapes (Wang et al., 2019).

Delimited continuations have also been used to ef-
fectively embed domain-specific languages for prob-
abilistic programming in general purpose host lan-
guages (Kiselyov and Shan, 2009).

4.4 Connection to effect handlers

Effect handlers are a recent approach to supporting
user-defined effects. They are close in expressive
power to delimited continuations, but have a more
convenient programming interface that resembles
resumable exceptions. On the expressive power of user-
defined effects: effect handlers, monadic reflection, delim-
ited control (Forster, Kammar, Lindley, et al., 2017)

Advanced Topics in Programming Languages (2024) J. Yallop

gives a careful expressivity comparison; Handlers in
action (Kammar, Lindley, and Oury, 2013) shows
how delimited continuations can be used to imple-
ment effect handlers.

Advanced Topics in Programming Languages (2024) J. Yallop

References

Alvarez-Picallo, M., T. Freund, D. R. Ghica, and S. Lindley (Oct. 2024). “Effect Handlers for C via Coroutines”. In:
Proc. ACM Program. Lang. 8.OOPSLA2. DOI: 10.1145/3689798.

Asai, K. and Y. Kameyama (2007). “Polymorphic Delimited Continuations”. In: Programming Languages and Systems,
5th Asian Symposium, APLAS 2007, Singapore, November 29-December 1, 2007, Proceedings. Ed. by Z. Shao. Vol. 4807.
Lecture Notes in Computer Science. Springer, pp. 239–254. DOI: 10.1007/978-3-540-76637-7\ 16.

Danvy, O. and A. Filinski (1989). A Functional Abstraction of Typed Contexts. Tech. rep. Universitetsparken 1, 2100
Copenhagen Ø, Denmark: DIKU — Computer Science Department, University of Copenhagen.

Dolan, S., L. White, K. Sivaramakrishnan, J. Yallop, and A. Madhavapeddy (Sept. 2015). Effective Concurrency with
Algebraic Effects. OCaml Users and Developers Workshop.

Felleisen, M., D. P. Friedman, B. Duba, and J. Merrill (Feb. 1987). Beyond Continuations. Tech. rep. 216. Lindley Hall
101, Bloomington, IN 47405, USA: Computer Science Department, Indiana University.

Felleisen, M., M. Wand, D. P. Friedman, and B. F. Duba (1988). “Abstract Continuations: A Mathematical Semantics
for Handling Full Jumps”. In: Proceedings of the 1988 ACM Conference on LISP and Functional Programming, LFP 1988,
Snowbird, Utah, USA, July 25-27, 1988. Ed. by J. Chailloux. ACM, pp. 52–62. DOI: 10.1145/62678.62684.

Filinski, A. (1994). “Representing Monads”. In: Conference Record of POPL’94: 21st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Portland, Oregon, USA, January 17-21, 1994. Ed. by H. Boehm, B. Lang, and
D. M. Yellin. ACM Press, pp. 446–457. DOI: 10.1145/174675.178047.

Forster, Y., O. Kammar, S. Lindley, and M. Pretnar (2017). “On the expressive power of user-defined effects: effect
handlers, monadic reflection, delimited control”. In: Proc. ACM Program. Lang. 1.ICFP, 13:1–13:29. DOI: 10.1145/
3110257.

Gasbichler, M. and M. Sperber (2002). “Final shift for call/cc: direct implementation of shift and reset”. In: Proceedings
of the Seventh ACM SIGPLAN International Conference on Functional Programming (ICFP ’02), Pittsburgh, Pennsylvania,
USA, October 4-6, 2002. Ed. by M. Wand and S. L. P. Jones. ACM, pp. 271–282. DOI: 10.1145/581478.581504.

Gunter, C. A., D. Rémy, and J. G. Riecke (1995). “A Generalization of Exceptions and Control in ML-like Languages”.
In: Proceedings of the seventh international conference on Functional programming languages and computer architecture,
FPCA 1995, La Jolla, California, USA, June 25-28, 1995. Ed. by J. Williams. ACM, pp. 12–23. DOI: 10.1145/224164.
224173.

Hillerström, D. (2021). “Foundations for Programming and Implementing Effect Handlers”. PhD thesis. The Univer-
sity of Edinburgh.

Ishio, C. and K. Asai (2023). “Type System for Four Delimited Control Operators”. In: CoRR abs/2305.02852. DOI:
10.48550/arXiv.2305.02852. arXiv: 2305.02852.

Kameyama, Y., O. Kiselyov, and C. Shan (2011). “Shifting the stage - Staging with delimited control”. In: J. Funct.
Program. 21.6, pp. 617–662. DOI: 10.1017/S0956796811000256.

Kammar, O., S. Lindley, and N. Oury (2013). “Handlers in action”. In: ACM SIGPLAN International Conference on
Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013. Ed. by G. Morrisett and T. Uustalu.
ACM, pp. 145–158. DOI: 10.1145/2500365.2500590.

Kiselyov, O. (2012). “Delimited control in OCaml, abstractly and concretely”. In: Theor. Comput. Sci. 435, pp. 56–76.
DOI: 10.1016/j.tcs.2012.02.025.

Kiselyov, O. and C. Shan (2009). “Embedded Probabilistic Programming”. In: Domain-Specific Languages, IFIP TC 2
Working Conference, DSL 2009, Oxford, UK, July 15-17, 2009, Proceedings. Ed. by W. M. Taha. Vol. 5658. Lecture Notes
in Computer Science. Springer, pp. 360–384. DOI: 10.1007/978-3-642-03034-5\ 17.

Kiselyov, O., C. Shan, and A. Sabry (2006). “Delimited dynamic binding”. In: Proceedings of the 11th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2006, Portland, Oregon, USA, September 16-21, 2006. Ed. by
J. H. Reppy and J. Lawall. ACM, pp. 26–37. DOI: 10.1145/1159803.1159808.

Kobori, I., Y. Kameyama, and O. Kiselyov (2015). “Answer-Type Modification without Tears: Prompt-Passing Style
Translation for Typed Delimited-Control Operators”. In: Proceedings of the Workshop on Continuations, WoC 2016,
London, UK, April 12th 2015. Ed. by O. Danvy and U. de’Liguoro. Vol. 212. EPTCS, pp. 36–52. DOI: 10.4204/EPTCS.
212.3.

Kumar, S., C. Bruggeman, and R. K. Dybvig (1998). “Threads Yield Continuations”. In: LISP Symb. Comput. 10.3,
pp. 223–236.

Lawall, J. L. and O. Danvy (1994). “Continuation-Based Partial Evaluation”. In: Proceedings of the 1994 ACM Conference
on LISP and Functional Programming, Orlando, Florida, USA, 27-29 June 1994. Ed. by R. R. Kessler. ACM, pp. 227–238.
DOI: 10.1145/182409.182483.

Pettyjohn, G., J. Clements, J. Marshall, S. Krishnamurthi, and M. Felleisen (2005). “Continuations from generalized
stack inspection”. In: Proceedings of the 10th ACM SIGPLAN International Conference on Functional Programming, ICFP
2005, Tallinn, Estonia, September 26-28, 2005. Ed. by O. Danvy and B. C. Pierce. ACM, pp. 216–227. DOI: 10.1145/
1086365.1086393.

Phipps-Costin, L., A. Rossberg, A. Guha, D. Leijen, D. Hillerström, K. Sivaramakrishnan, M. Pretnar, and S. Lindley
(2023). “Continuing WebAssembly with Effect Handlers”. In: Proc. ACM Program. Lang. 7.OOPSLA.

https://doi.org/10.1145/3689798
https://doi.org/10.1007/978-3-540-76637-7_16
https://doi.org/10.1145/62678.62684
https://doi.org/10.1145/174675.178047
https://doi.org/10.1145/3110257
https://doi.org/10.1145/3110257
https://doi.org/10.1145/581478.581504
https://doi.org/10.1145/224164.224173
https://doi.org/10.1145/224164.224173
https://doi.org/10.48550/arXiv.2305.02852
https://arxiv.org/abs/2305.02852
https://doi.org/10.1017/S0956796811000256
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1016/j.tcs.2012.02.025
https://doi.org/10.1007/978-3-642-03034-5_17
https://doi.org/10.1145/1159803.1159808
https://doi.org/10.4204/EPTCS.212.3
https://doi.org/10.4204/EPTCS.212.3
https://doi.org/10.1145/182409.182483
https://doi.org/10.1145/1086365.1086393
https://doi.org/10.1145/1086365.1086393

Advanced Topics in Programming Languages (2024) J. Yallop

Reynolds, J. C. (1972). “Definitional interpreters for higher-order programming languages”. In: Proceedings of the
ACM annual conference, ACM 1972, 1972, Volume 2. Ed. by J. J. Donovan and R. Shields. ACM, pp. 717–740. DOI:
10.1145/800194.805852.

Reynolds, J. C. (1993). “The Discoveries of Continuations”. In: LISP Symb. Comput. 6.3-4, pp. 233–248.
Rompf, T., I. Maier, and M. Odersky (2009). “Implementing first-class polymorphic delimited continuations by a type-

directed selective CPS-transform”. In: Proceeding of the 14th ACM SIGPLAN international conference on Functional
programming, ICFP 2009, Edinburgh, Scotland, UK, August 31 - September 2, 2009. Ed. by G. Hutton and A. P. Tolmach.
ACM, pp. 317–328. DOI: 10.1145/1596550.1596596.

Shan, C. (2004). “Delimited continuations in natural language: quantification and polarity sensitivity”. In: CoRR
cs.CL/0404006.

Steele Jr, G. L. and G. J. Sussman (1975). Scheme, an interpreter for extended lambda calculus. Tech. rep. 349. Artificial
Intelligence Laboratory, Massachusetts Institute of Technology.

Wang, F., D. Zheng, J. M. Decker, X. Wu, G. M. Essertel, and T. Rompf (2019). “Demystifying differentiable pro-
gramming: shift/reset the penultimate backpropagator”. In: Proc. ACM Program. Lang. 3.ICFP, 96:1–96:31. DOI:
10.1145/3341700.

https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/1596550.1596596
https://doi.org/10.1145/3341700

	Readings
	Set papers
	Background

	History
	Beginnings
	Developments
	Status

	Basics
	Operator taxonomy
	Examples

	Implementations and applications
	Implementation considerations
	Types
	Named prompts
	Multi-shot vs one-shot

	Implementations
	Applications
	Connection to effect handlers

