
Programming in C and C++

Academic Year 2024/2025 — Michaelmas Term

David J Greaves

(Using materials from Alan Mycroft, Neel Krishnaswami et al.)

Course Structure

Basics of C:

• Types, variables, expressions and statements

• Functions, compilation and the pre-processor

• Pointers and structures

C Programming Techniques:

• Pointer manipulation: linked lists, trees, and graph algorithms

• Memory management strategies: ownership and lifetimes,

reference counting, tracing, and arenas

• Cache-aware programming: array-of-struct to struct-of-array

transformations, blocking loops, intrusive data structures

• Unsafe behaviour and mitigations: eg, valgrind, asan, ubsan

1

Course Structure, continued

Course organization:

• C lecture 1 is delivered in person.

• C lectures 2-9 are recorded and posted online.

• Meet in Intel Lab during lecture 2-9 slots for 8 programming

workshops (unmarked, but useful for supervisions).

Introduction to C++:

• C++ lectures 10-12 delivered in person/

• Similarities and differences from C.

• Extensions in C++: templates, classes, memory allocation.

There is a compulsorary Assessed Exercise (tick) for this course.

2

Textbooks

Recommendations for C:

• The C Programming Language. Brian W. Kernighan and

Dennis M. Ritchie.

• C: A Reference Manual. Samuel P. Harbison and Guy L.

Steele.

The majority of the class will be on C, but here are two

recommendations for C++ as well:

• The C++ Programming Language. Bjarne Stroustrup.

• Thinking in C++: : Introduction to Standard C++. Bruce

Eckel.

3

The History of C++

• 1966: Martin Richards developed BCPL

• 1969: Ken Thompson designs B

• 1972: Dennis Ricthie designs C

• 1979: Bjarne Stroustrup designs C with Classes

• 1983: C with Classes becomes C++

• 1989: Original C90 ANSI C standard (ISO 1990)

• 1998: ISO C++ standard

• 1999: C99 standard (ISO 1999, ANSI 2000)

• 2011: C++11 ISO standard, C11 ISO standard

• 2014, 2017: C++ standard updates

• 2020: C++20 standard appeared December 2020.

4

C is a high-level language with exposed unsafe and low-level

features.

• C’s primitive types are characters, numbers and addresses

• Operators work on these types

• No primitives on composite types (eg, strings, arrays, sets)

• Only static definition and stack-based locals built in (the heap

is implemented as a library)

• I/O and threading are also implemented as libraries (using OS

primitives)

• The language is unsafe: many erroneous uses of C features are

not checked (either statically or at runtime), so errors can

silently cause memory corruption and arbitrary code execution

5

The Classic First Program

1 #include <stdio.h>

2

3 int main(void) {

4 printf("Hello, world!\n");

5 return 0;

6 }

Compile with

$ cc example1.c

Execute with:

$./a.out

Hello, world!

$

Generate assembly with

$ cc -S example1.c

6

Basic Types

• C has a small set of basic types

type description

char characters (≥ 8 bits)

int integers (≥ 16 bits, usually 1 word)

float single-precision floating point number

double double-precision floating point number

• Precise size of types is architecture-dependent

• Various type operators alter meaning, including:

unsigned, short, long, const, volatile

• This lets us make types like long int and unsigned char

• C99 added fixed-size types int16_t, uint64_t etc.

7

Constants

• Numeric literals can be written in many ways:

type style example

char none none

int number, character 12 ’a’ ’\n’

or escape code

long int num w/ suffix l or L 1234L

float num with ’.’, ’e’, or ’E’ 1.234e3F 1234.0f

and suffix ’f’ or ’F’

double num with ’.’, ’e’, or ’E’ 1.234e3 1234.0

long double num with ’.’, ’e’, or ’E’ 1.23E3l 123.0L

and suffix ’l’ or ’L’

• Numbers can be expressed in octal with ’0’ prefix and

hexadecimal with ’0x’ prefix: 52 = 064 = 0x34

8

Defining Constant Values

• An enumeration can specify a set of constants:

enum boolean {TRUE, FALSE}

• Enumeration default to allocating successive integers from 0

• It is possible to assign values to constants

enum months {JAN=1, FEB, MAR};

enum boolean {F,T,FALSE=0,TRUE, N=0, Y};

• Names in an enumeration must be distinct, but values need

not be.

9

Variables

• Variables must be declared before use

• Variables must be defined (i.e., storage allocated) exactly

once. (A definition counts as a declaration.)

• A variable name consists of letters, digits and underscores ();

a name must start with a letter or underscore

• Variables are defined with an adjacent type and name, and

can optionally be initialised: long int i = 28L;

• Multiple variables of the same basic type can be declared or

defined together: char c,d,e;

10

Operators

• All operators (including assignment) return a result

• Similar to those found in Java:
type operators

arithmetic + - * / ++ -- %

logic == != > >= < <= || && !

bitwise | & << >> ^ ~

assignment = += -= *= /= <<= >>= &= ^= %=

other sizeof

11

Type Conversion

• Automatic type conversion may occur when two operands to a

binary operator are of different type

• Generally, conversion “widens” a value (e.g., short → int)

• However, “narrowing” is possible and may not generate a

warning:

int i = 1234;

char c;

c = i+1; // i overflows c

• Type conversion can be forced via a cast, which is written as

(type) exp — for example, c = (char) 1234L;

12

Expressions and Statements

• An expression is a literal, variable, function call or formed

from expressions combined with operators: e.g. x *= y - z

• Every expression (even assignment) has a type and result

• Operator precedence gives an unambiguous parse for every

expression

• An expression (e.g., x = 0) becomes a statement when

followed by a semicolon (e.g. x = 0; or ff(42);)

• Several expression can be separated using a comma ’,’ and

expressions are then evaluated left-to-right: e.g., x=0,y=1.0

• The type and value of a comma-separated expression is the

type and value of the result of the right-most expression

13

Blocks and Compound Statements

• A block or compound statement is formed when multiple

statements are surrounded with braces (e.g. {s1; s2; s3;})

• A block of statements is then equivalent to a single statement

• In C90, variables can only be declared or defined at the start

of a block, but this restriction was lifted in C99

• Blocks are usually used in function definitions or control flow

statements, but can appear anywhere a statement can

14

Variable Definition vs Declaration

• A variable can be declared without defining it using the

extern keyword; for example extern int a;

• The declaration tells the compiler that storage has been

allocated elsewhere (usually in another source file)

• If a variable is declared and used in a program, but not

defined, this will result in a link error (more on this later)

• A static modifier prevents a declaration from being accessed

elsewhere and, for a local variables, creates exactly one,

persistent instance regardless of recursion or re-entrance by

threads.

15

Scope and Type Example (very nasty)

#include <stdio.h>

int a; /* what value does a have? */

unsigned char b = ’A’; /* safe to use this? */

extern int alpha;

int main(void) {

extern unsigned char b; /* is this needed? */

double a = 3.4;

{

extern a; /* is this sloppy? */

printf("%d %d\n",b,a+1); /* what will this print? */

}

return 0;

}
16

Arrays and Strings

• One or more items of the same type can be grouped into an

array; for example: long int i[10];

• The compiler will allocate a contiguous block of memory for

the relevant number of values

• Array items are indexed from zero, and there is no bounds

checking

• Strings in C are represented as an array of char terminated

with the special character ’\0’

• There is language support for this string representation in

string contstants with double-quotes; for example

char s[]="two strings mer" "ged and terminated"

(note the implicit concatenation of string literals)

• String functions are in the string.h library

17

Control Flow

• Control flow constructs were ported to Java (so you might

know them):

• exp ? exp : exp

• if (exp) stmt1 else stmt2

• switch(exp) {

case exp1 : stmt1

...

case expn : stmtn

default : default_stmt

}

• while (exp) stmt

• for (exp1; exp2; exp3) stmt

• do stmt while (exp);

• The jump statements break and continue also exist (and goto)

18

Control Flow and String Example

1 #include <stdio.h>

2 #include <string.h>

3

4 char s[]="University of Cambridge Computer Laboratory";

5

6 int main(void) {

7 char c;

8 int i, j;

9 for (i=0,j=strlen(s)-1;i<j;i++,j--) { // strlen(s)-1 ?

10 c=s[i], s[i]=s[j], s[j]=c;

11 }

12 printf("%s\n",s);

13 return 0;

14 }
19

Goto (often considered harmful)

• The goto statement is never required

• It often results in difficult-to-understand code

• Exception handling (where you wish to exit from two or more

loops) is one case where goto may be justified:

1 for (...) {

2 for (...) {

3 ...

4 if (big_error) goto error;

5 }

6 }

7 ...

8 error: // handle error here

20

Programming in C and C++

Lecture 2: Functions and the Preprocessor

David J Greaves and Alan Mycroft

(Materials by Neel Krishnaswami)

Functions

• C does not have objects with methods, but does have

functions

• A function definition has a return type, parameter

specification, and a body or statement; for example:

int power(int base, int n) { stmt }

• A function declaration has a return type and parameter

specification followed by a semicolon; for example:

int power(int base, int n);

1

Functions, continued

• Functions can be declared or defined extern or static.

• All arguments to a function are copied, i.e. passed-by-value;

modification of the local value does not affect the original

• Just as for variables, a function must have exactly one

definition and can have multiple declarations

• A function which is used but only has a declaration, and no

definition, results in a link error (more on this later)

• Functions cannot be nested (no closures)

2

Function Type Gotchas

• A function declaration with no values (e.g. int power();) is

not an empty parameter specification, rather it means that its

arguments should not be type-checked! (luckily, this is not the

case in C++)

• Instead, a function with no arguments is declared using void

(e.g., int power(void);)

• An ellipsis (...) can be used for optional (or varying)

parameter specification, for example:

int printf(char* fmt,...) { stmt }

• The ellipsis is useful for defining functions with variable length

arguments, but leaves a hole in the type system (stdarg.h)

3

Recursion

• Functions can call themselves recursively

• On each call, a new set of local variables is created

• Therefore, a function recursion of depth n has n sets of

variables

• Recursion can be useful when dealing with recursively defined

data structures, like trees (more on such data structures later)

• Recursion can also be used as you would in ML:

1 unsigned int fact(unsigned int n) {

2 return n ? n * fact(n-1) : 1;

3 }

4

Compilation

• A compiler transforms a C source file or execution unit into an

object file

• An object file consists of machine code, and a list of:

• defined or exported symbols representing defined function

names and global variables

• undefined or imported symbols for functions and global

variables which are declared but not defined

• A linker combines several object files into an executable by:

• combining all object code into a single file

• adjusting the absolute addresses from each object file

• resolving all undefined symbols

The Part 1b Compiler Course describes how to build a compiler

and linker in more detail

5

Handling Code in Multiple Files in C

• C separates declaration from definition for both variables and

functions

• This allows portions of code to be split across multiple files

• Code in different files can then be compiled at different times

• This allows libraries to be compiled once, but used many times

• It also allows companies to sell binary-only libraries

• In order to use code written in another file we still need a

declaration

• A header file can be used to:

• supply the declarations of function and variable definitions in

another file

• provide preprocessor macros (more on this later)

• avoid duplication (and ∴ errors) that would otherwise occur

• You might find the Unix tool nm useful for inspecting symbol

tables
6

Multiple Source File Example

example4.h

/* reverse s in place */

void reverse(char str[]);

example4a.c

#include <string.h>

#include "example4.h"

void reverse(char s[]) {

for (int i=0, j=strlen(s)-1;

i < j; i++, j--) {

char c=s[i];

s[i]=s[j], s[j]=c;

}

}

example4b.c

#include <stdio.h>

#include "example4.h"

int main(void) {

char s[] = "Reverse me";

reverse(s);

printf("%s\n", s);

return 0;

}

7

Variable and Function Scope with static

• The static keyword limits the scope of a variable or function

• In the global scope, static does not export the function or

variable symbol

• This prevents the variable or function from being called

externally

• BEWARE: extern is the default, not static This is also the

case for global variables.

• In the local scope, a static variable retains its value between

function calls

• A single static variable exists even if a function call is

recursive

• Note: auto is the default, not static

8

Address Space Layout

Typical segment structure:

C programs can run with or without virtual memory. The

memory regions used remain the same. With VM, four

principle segments are needed in user space. System calls

are used for O/S interactions.

The program code and constants, such as string literals,

can share one, read-only segment, shared over all instances

of the running program.

Statically-allocated variables are given addresses at com-

pile/link time. In C, these are globals and explicit statics.

They require a mutable segment whose size is known at

load time.

Dynamic storage consists of the shared heap and a stack

per thread. These vary unpredictably in size from run to

run. They must be positioned far apart in address space

so they don’t bump into each other. If each is a segment,

unused gaps have very little cost in a VM system. But for

embedded controllers without VM and a single thread, hav-

ing the stack grow down while the heap generally growing

upwards can help ensure that when they bump into each

other the system has truely run out of space (but the heap

with be striated).

Reference
VM segment

model

Kernel
space

Device drivers

Stack 1

Stack 0

Program
text + constants

System
call API

Static vars

Dynamic

storage

Static

storage

Free

VM space

Heap

9

C Preprocessor

• The preprocessor executes before any compilation takes place

• It manipulates the text of the source file in a single pass

• Amongst other things, the preprocessor:

• deletes each occurrence of a backslash followed by a newline;

• replaces comments by a single space;

• replaces definitions, obeys conditional preprocessing directives

and expands macros; and

• it replaces escaped sequences in character constants and string

literals and concatenates adjacent string literals

10

Controlling the Preprocessor Programmatically

• The preprocessor can be used by the programmer to rewrite

source code

• This is a powerful (and, at times, useful) feature, but can be

hard to debug (more on this later)

• The preprocessor interprets lines starting with # with a

special meaning

• Two text substitution directives: #include and #define

• Conditional directives: #if , #elif , #else and #endif

11

The #include Directive

• The #include directive performs text substitution

• It is written in one of two forms:

#include "filename"

#include <filename>

• Both forms replace the #include ... line in the source file

with the contents of filename

• The quote (”) form searches for the file in the same location

as the source file, then searches a predefined set of directories

• The angle (<) form searches a predefined set of directories

• When a #include-d file is changed, all source files which

depend on it should be recompiled (easily managed via a

‘Makefile’)

12

The #define Directive

• The #define directive has the form:

#define name replacement-text

• The directive performs a direct text substitution of all future

examples of name with the replacement-text for the remainder

of the source file

• The name has the same constraints as a standard C variable

name

• Replacement does not take place if name is found inside a

quoted string

• By convention, name tends to be written in upper case to

distinguish it from a normal variable name

13

Defining Macros

• The #define directive can be used to define macros; e.g.:

#define MAX(A,B)((A)>(B)?(A):(B))

• In the body of the macro:

• prefixing a parameter in the replacement text with ‘#’ places

the parameter value inside string quotes (”)

• placing ‘##’ between two parameters in the replacement text

removes any whitespace between the variables in generated

output

• Remember: the preprocessor only performs text substitution!

• Syntax analysis and type checking don’t occur until

compilation

• This can result in confusing compiler warnings on line numbers

where the macro is used, rather than when it is defined; e.g.

#define JOIN(A,B) (A B))

• Beware:

#define TWO 1+1

#define WHAT TWO*TWO
14

Example

1 #include <stdio.h>

2

3 #define PI 3.141592654

4 #define MAX(A,B) ((A)>(B)?(A):(B))

5 #define PERCENT(D) (100*D) /* Wrong? */

6 #define DPRINT(D) printf(#D " = %g\n",D)

7 #define JOIN(A,B) (A ## B)

8

9 int main(void) {

10 const unsigned int a1=3;

11 const unsigned int i = JOIN(a,1);

12 printf("%u %g\n",i, MAX(PI,3.14));

13 DPRINT(MAX(PERCENT(0.32+0.16),PERCENT(0.15+0.48)));

14

15 return 0;

16 }
15

Conditional Preprocessor Directives

Conditional directives: #if , #ifdef , #ifndef , #elif and

#endif

• The preprocessor can use conditional statements to include or

exclude code in later phases of compilation

• #if accepts an integer expression as an argument and retains

the code between #if and #endif (or #elif) if it evaluates

to a non-zero value; for example:

#if SOME_DEF > 8 && OTHER_DEF != THIRD_DEF

• The preprocessor built-in defined takes a name as its

argument and gives 1L if it is #define-d; 0L otherwise

• #ifdef N and #ifndef N are equivalent to #if defined(N)

and #if !defined(N) respectively

• #undef can be used to remove a #define-d name from the

preprocessor macro and variable namespace.
16

Preprocessor Example

Conditional directives have several uses, including preventing

double definitions in header files and enabling code to function on

several different architectures; for example:

1 #if SYSTEM_SYSV

2 #define HDR "sysv.h"

3 #elif SYSTEM_BSD

4 #define HDR "bsd.h"

5 #else

6 #define HDR "default.h"

7 #endif

8 #include HDR

1 #ifndef MYHEADER_H

2 #define MYHEADER_H 1

3 ...

4 /* declarations & defns */

5 ...

6 #endif /* !MYHEADER_H */

17

Error control

• To help other compilers which generate C code (rather than

machine code) as output, compiler line and filename warnings

can be overridden with:

#line constant "filename"

• The compiler then adjusts its internal value for the next line in

the source file as constant and the current name of the file

being processed as “filename” (“filename” may be omitted)

• The statement #error some-text causes the preprocessor to

write a diagnostic message containing some-text

• There are several predefined identifiers that produce special

information: __LINE__ , __FILE__ , __DATE__ , and

__TIME__

18

Programming in C and C++

Lecture 3: Pointers and Structures

David J Greaves and Alan Mycroft

(Materials by Neel Krishnaswami)

Pointers

• Computer memory is often abstracted as a sequence of bytes,

grouped into words

• Each byte has a unique address or index into this sequence

• The size of a word (and byte!) determines the size of

addressable memory in the machine

• A pointer in C is a variable which contains the memory

address of another variable (this can, itself, be a pointer)

• Pointers are declared or defined using an asterisk(*); for

example: char *pc; or int **ppi;

• The asterisk binds to the variable name, not the type

specifier; for example char *pc,c;

• A pointer does not necessarily take the same amount of

storage space as the type it points to

1

Example

...... ...

0
x
2
c

0
x
3
0

0
x
3
4

0
x
3
8

0
x
4
c

0
x
5
0

0
x
6
0

05

42

1c

52 00

00

00

62

c
h
a
r

c

c
h
a
r

*
p
c

i
n
t

i

i
n
t

*
p
i

i
n
t

*
*
p
p
i

00

00

00

38 4c

00

00

00

41

41

Little

Big

2

Manipulating pointers

• The value “pointed to” by a pointer can be “retrieved” or

dereferenced by using the unary * operator; for example:

int *p = ...

int x = *p;

• The memory address of a variable is returned with the unary

ampersand (&) operator; for example int *p = &x;

• Dereferenced pointer values can be used in normal

expressions; for example: *pi += 5; or (*pi)++

3

Example

1 #include <stdio.h>

2

3 int main(void) {

4 int x=1,y=2;

5 int *pi;

6 int **ppi;

7

8 pi = &x; ppi = π

9 printf("%p, %p, %d=%d=%d\n",ppi,pi,x,*pi,**ppi);

10 pi = &y;

11 printf("%p, %p, %d=%d=%d\n",ppi,pi,y,*pi,**ppi);

12

13 return 0;

14 }
4

Pointers and arrays

• A C array uses consecutive memory addresses without padding

to store data

• An array name (used in an expression without an index)

represents the memory address of the first element of the

array; for example:

char c[10];

char *pc = c; // This is the same

char *pc = &c[0]; // as this

• Pointers can be used to “index” into any element of an array;

for example:

int i[10];

int *pi = &i[5];

5

Pointer arithmetic

• Pointer arithmetic can be used to adjust where a pointer

points; for example, if pc points to the first element of an

array, after executing pc+=3; then pc points to the fourth

element

• A pointer can even be dereferenced using array notation; for

example pc[2] represents the value of the array element

which is two elements beyond the array element currently

pointed to by pc

• In summary, for an array c , *(c+i) == c[i] and

c+i == &c[i]

• A pointer is a variable, but an array name is not; therefore

pc = c and pc++ are valid, but c = pc and c++ are not

6

Pointer Arithmetic Example

1 #include <stdio.h>

2

3 int main(void) {

4 char str[] = "A string.";

5 char *pc = str;

6

7 printf("%c %c %c\n",str[0],*pc,pc[3]);

8 pc += 2;

9 printf("%c %c %c\n",*pc, pc[2], pc[5]);

10

11 return 0;

12 }

7

Pointers as function arguments

• Recall that all arguments to a function are copied, i.e.

passed-by-value; modification of the local value does not

affect the original

• In the second lecture we defined functions which took an array

as an argument; for example void reverse(char s[])

• Why, then, does reverse affect the values of the array after the

function returns (i.e. the array values haven’t been copied)?

• because s is re-written to char *s and the caller implicitly

passes a pointer to the start of the array

• Pointers of any type can be passed as parameters and return

types of functions

• Pointers allow a function to alter parameters passed to it

8

Example

Compare swp1(a,b) with swp2(&a,&b):

1 void swp1(int x,int y)

2 {

3 int temp = x;

4 x = y;

5 y = temp;

6 }

1 void swp2(int *px,int *py)

2 {

3 int temp = *px;

4 *px = *py;

5 *py = temp;

6 }

9

Arrays of pointers

• C allows the creation of arrays of pointers; for example

int *a[5];

• Arrays of pointers are particularly useful with strings

• An example is C support of command line arguments:

int main(int argc, char *argv[]) { ... }

• In this case argv is an array of character pointers, and argc

tells the programmer the length of the array

10

Diagram of Argument List Layout

NULL

argv:

firstarg\0

progname\0

secondarg\0

argv[0]

argv[3]

argv[2]

argv[1]
argc: 3

11

Multi-dimensional arrays

• Multi-dimensional arrays can be declared in C; for example:

int i[5][10];

• Values of the array can be accessed using square brackets; for

example: i[3][2]

• When passing a two dimensional array to a function, the first

dimension is not needed; for example, the following are

equivalent:

void f(int i[5][10]) { ... }

void f(int i[][10]) { ... }

void f(int (*i)[10]) { ... }

• In arrays with higher dimensionality, all but the first dimension

must be specified

12

Pointers to functions

• C allows the programmer to use pointers to functions

• This allows functions to be passed as arguments to functions

• For example, we may wish to parameterise a sort algorithm on

different comparison operators (e.g. lexicographically or

numerically)

• If the sort routine accepts a pointer to a function, the sort

routine can call this function when deciding how to order

values

13

Function Pointer Example

1 void sort(int a[], const int len,

2 int (*compare)(int, int)) {

3 for(int i = 0; i < len-1; i++)

4 for(int j = 0; j < len-1-i; j++)

5 if ((*compare)(a[j],a[j+1])) {

6 int tmp = a[j];

7 a[j] = a[j+1], a[j+1] = tmp;

8 }

9 }

10

11 int inc(int a, int b) { return a > b ? 1 : 0; }

Source of some confusion: either or both of the * s in *compare

may be omitted due to language (over-)generosity.

14

Using a Higher-Order Function in C

1 #include <stdio.h>

2 #include "example8.h"

3

4 int main(void) {

5 int a[] = {1,4,3,2,5};

6 unsigned int len = 5;

7 sort(a,len,inc); //or sort(a,len,&inc);

8

9 int *pa = a; //C99

10 printf("[");

11 while (len--) { printf("%d%s", *pa++, len?" ":""); }

12 printf("]\n");

13

14 return 0;

15 }
15

The void * pointer

• C has a “typeless” or “generic” pointer: void *p

• This can be a pointer to any object (but not legally to a

function)

• This can be useful when dealing with dynamic memory

• Enables “polymorphic” code; for example:

sort(void *p, const unsigned int len,

int (*comp)(void *,void *));

• However this is also a big “hole” in the type system

• Therefore void * pointers should only be used where

necessary

16

Structure declaration

• A structure is a collection of one or more members (fields)

• It provides a simple method of abstraction and grouping

• A structure may itself contain structures

• A structure can be assigned to, as well as passed to, and

returned from functions

• We declare a structure using the keyword struct

• For example, to declare a structure circle we write

struct circle {int x; int y; unsigned int r;};

• Declaring a structure creates a new type

17

Structure definition

• To define an instance of the structure circle we write

struct circle c;

• A structure can also be initialised with values:

struct circle c = {12, 23, 5};

struct circle d = {.x = 12, .y = 23, .r = 5}; // C99

• An automatic, or local, structure variable can be initialised by

function call: struct circle c = circle_init();

• A structure can be declared and several instances defined in

one go:

struct circle {int x; int y; unsigned int r;} a, b;

18

Member access

• A structure member can be accessed using ’.’ notation

structname.member; for example: vect.x

• Comparison (e.g. vect1 > vect2) is undefined

• Pointers to structures may be defined; for example:

struct circle *pc;

• When using a pointer to a struct, member access can be

achieved with the ‘.’ operator, but can look clumsy; for

example: (*pc).x

• Equivalently, the ‘->” operator can be used; for example:

pc->x

19

Self-referential structures

• A structure declaration cannot contain itself as a member, but

it can contain a member which is a pointer whose type is the

structure declaration itself

• This means we can build recursive data structures; for

example:

struct tree {

int val;

struct tree *left;

struct tree *right;

}

1 struct link {

2 int val;

3 struct link *next;

4 }

20

Unions

• A union variable is a single variable which can hold one of a

number of different types

• A union variable is declared using a notation similar to

structures; for example:

union u { int i; float f; char c;};

• The size of a union variable is the size of its largest member

• The type held can change during program execution

• The type retrieved must be the type most recently stored

• Member access to unions is the same as for structures (‘.’

and ‘->’)

• Unions can be nested inside structures, and vice versa

21

Bit fields

• Bit fields allow low-level access to individual bits of a word

• Useful when memory is limited, or to interact with hardware

• A bit field is specified inside a struct by appending a

declaration with a colon (:) and number of bits; e.g.:

struct fields { int f1 : 2; int f2 : 3;};

• Members are accessed in the same way as for structs and

unions

• A bit field member does not have an address (no & operator)

• Lots of details about bit fields are implementation specific:

• word boundary overlap & alignment, assignment direction, etc.

22

Example (adapted from K&R)

1 struct { /* a compiler symbol table */

2 char *name;

3 struct {

4 unsigned int is_keyword : 1;

5 unsigned int is_extern : 1;

6 unsigned int is_static : 1;

7 } flags;

8 int utype;

9 union {

10 int ival; /* accessed as symtab[i].u.ival */

11 float fval;

12 char *sval;

13 } u;

14 } symtab[NSYM];
23

Programming in C and C++

Lecture 4: Miscellaneous Features, Gotchas, Hints and Tips

David J Greaves and Alan Mycroft

(Materials by Neel Krishnaswami)

Uses of const and volatile

• Any declaration can be prefixed with const or volatile

• A const variable can only be assigned a value when it is

defined

• The const declaration can also be used for parameters in a

function definition

• The volatile keyword can be used to state that a variable

may be changed by hardware or the kernel.

• For example, the volatile keyword may prevent unsafe

compiler optimisations for memory-mapped input/output

The use of pointers and the const keyword is quite subtle:

• const int *p is a pointer to a const int

• int const *p is also a pointer to a const int

• int *const p is a const pointer to an int

• const int *const p is a const pointer to a const int

1

Example

1 int main(void) {

2 int i = 42, j = 28;

3

4 const int *pc = &i; // Also: "int const *pc"

5 *pc = 41; // Wrong

6 pc = &j;

7

8 int *const cp = &i;

9 *cp = 41;

10 cp = &j; // Wrong

11

12 const int *const cpc = &i;

13 *cpc = 41; // Wrong

14 cpc = &j; // Wrong

15 return 0;

16 }
2

Typedefs

• The typedef operator, creates a synonym for a data type; for

example, typedef unsigned int Radius;

• Once a new data type has been created, it can be used in

place of the usual type name in declarations and casts; for

example, Radius r = 5; ...; r = (Radius) rshort;

• A typedef declaration does not create a new type

• It just creates a synonym for an existing type

• A typedef is particularly useful with structures and unions:

1 typedef struct llist *llptr;

2 typedef struct llist {

3 int val;

4 llptr next;

5 } linklist;

3

Inline functions

• A function in C can be declared inline; for example:

inline int fact(unsigned int n) {

return n ? n*fact(n-1) : 1;

}

• The compiler will then try to “inline” the function

• A clever compiler might generate 120 for fact(5)

• A compiler might not always be able to “inline” a function

• An inline function must be defined in the same execution unit

as it is used

• The inline operator does not change function semantics

• the inline function itself still has a unique address

• static variables of an inline function still have a unique address

• Both inline and register are largely unnecessary with

modern compilers and hardware

4

That’s it!

• We have now explored most of the C language

• The language is quite subtle in places; especially beware of:

• operator precedence

• pointer assignment (particularly function pointers)

• implicit casts between ints of different sizes and chars

• There is also extensive standard library support, including:

• shell and file I/O (stdio.h)

• dynamic memory allocation (stdlib.h)

• string manipulation (string.h)

• character class tests (ctype.h)

• ...

• (Read, for example, K&R Appendix B for a quick introduction)

• (Or type “man function” at a Unix shell for details)

5

Library support: I/O

I/O is not managed directly by the compiler; support in stdio.h:

FILE *stdin, *stdout, *stderr;

int printf(const char *format, ...);

int sprintf(char *str, const char *format, ...);

int fprintf(FILE *stream, const char *format, ...);

int scanf(const char *format, ...); // sscanf,fscanf

FILE *fopen(const char *path, const char *mode);

int fclose(FILE *fp);

size_t fread(void *ptr, size_t size, size_t nmemb,

FILE *stream);

size_t fwrite(const void *ptr, size_t size, size_t nmemb,

FILE *stream);

6

1 #include <stdio.h>

2 #define BUFSIZE 1024

3

4 int main(void) {

5 FILE *fp;

6 char buffer[BUFSIZE];

7

8 if ((fp=fopen("somefile.txt","rb")) == 0) {

9 perror("fopen error:");

10 return 1;

11 }

12

13 while(!feof(fp)) {

14 int r = fread(buffer,sizeof(char),BUFSIZE,fp);

15 fwrite(buffer,sizeof(char),r,stdout);

16 }

17

18 fclose(fp);

19 return 0;

20 }
7

Library support: dynamic memory allocation

• Dynamic memory allocation is not managed directly by the C

compiler

• Support is available in stdlib.h:

• void *malloc(size_t size)

• void *calloc(size_t nobj, size_t size)

• void *realloc(void *p, size_t size)

• void free(void *p)

• The C sizeof unary operator is handy when using malloc:

p = (char *) malloc(sizeof(char)*1000)

• Any successfully allocated memory must be deallocated

manually

• Note: free() needs the pointer to the allocated memory

• Failure to deallocate will result in a memory leak

8

Gotchas: operator precedence

1 #include <stdio.h>

2

3 struct test {int i;};

4 typedef struct test test_t;

5

6 int main(void) {

7

8 test_t a,b;

9 test_t *p[] = {&a,&b};

10 p[0]->i=0;

11 p[1]->i=0;

12 test_t *q = p[0];

13

14 printf("%d\n",++q->i); //What does this do?

15

16 return 0;

17 }

9

Gotchas: Increment Expressions

1 #include <stdio.h>

2

3 int main(void) {

4

5 int i=2;

6 int j=i++ + ++i;

7 printf("%d %d\n",i,j); //What does this print?

8

9 return 0;

10 }

Expressions like i++ + ++i are known as grey (or gray)

expressions in that their meaning is compiler dependent in C (even

if they are defined in Java)

10

Gotchas: local stack

1 #include <stdio.h>

2

3 char *unary(unsigned short s) {

4 char local[s+1];

5 int i;

6 for (i=0;i<s;i++) local[i]=’1’;

7 local[s]=’\0’;

8 return local;

9 }

10

11 int main(void) {

12

13 printf("%s\n",unary(6)); //What does this print?

14

15 return 0;

16 }

11

Gotchas: local stack (contd.)

1 #include <stdio.h>

2

3 char global[10];

4

5 char *unary(unsigned short s) {

6 char local[s+1];

7 char *p = s%2 ? global : local;

8 int i;

9 for (i=0;i<s;i++) p[i]=’1’;

10 p[s]=’\0’;

11 return p;

12 }

13

14 int main(void) {

15 printf("%s\n",unary(6)); //What does this print?

16 return 0;

17 }

12

Gotchas: careful with pointers

1 #include <stdio.h>

2

3 struct values { int a; int b; };

4

5 int main(void) {

6 struct values test2 = {2,3};

7 struct values test1 = {0,1};

8

9 int *pi = &(test1.a);

10 pi += 1; //Is this sensible?

11 printf("%d\n",*pi);

12 pi += 2; //What could this point at?

13 printf("%d\n",*pi);

14

15 return 0;

16 }

13

Gotchas: XKCD pointers

14

Tricks: Duff’s device

1 send(int *to, int *from,

2 int count)

3 {

4 int n = (count+7)/8;

5 switch(count%8) {

6 case 0: do{ *to = *from++;

7 case 7: *to = *from++;

8 case 6: *to = *from++;

9 case 5: *to = *from++;

10 case 4: *to = *from++;

11 case 3: *to = *from++;

12 case 2: *to = *from++;

13 case 1: *to = *from++;

14 } while(--n>0);

15 }

16 }

1 boring_send(int *to, int *from,

2 int count) {

3 do {

4 *to = *from++;

5 } while(--count > 0);

6 }

15

Programming in C and C++

Lecture 5: Tooling

David J Greaves and Alan Mycroft

(Materials by Neel Krishnaswami)

1

Undefined and Unspecified Behaviour

• We have seen that C is an unsafe language

• Programming errors can arbitrarily corrupt runtime data

structures. . .

• . . . leading to undefined behaviour

• Enormous number of possible sources of undefined behavior

(See https://blog.regehr.org/archives/1520)

• What can we do about it?

2

https://blog.regehr.org/archives/1520

Tooling and Instrumentation

Add instrumentation to detect unsafe behaviour!

We will look at 4 tools:

• ASan (Address Sanitizer)

• MSan (Memory Sanitizer)

• UBSan (Undefined Behaviour Sanitizer)

• Valgrind

3

ASan: Address Sanitizer

• One of the leading causes of errors in C is memory corruption:

• Out-of-bounds array accesses

• Use pointer after call to free()

• Use stack variable after it is out of scope

• Double-frees or other invalid frees

• Memory leaks

• AddressSanitizer instruments code to detect these errors

• Need to recompile

• Adds runtime overhead

• Use it while developing

• Built into gcc and clang!

4

ASan Example #1

1 #include <stdlib.h>

2 #include <stdio.h>

3

4 #define N 10

5

6 int main(void) {

7 char s[N] = "123456789";

8 for (int i = 0; i <= N; i++)

9 printf ("%c", s[i]);

10 printf("\n");

11 return 0;

12 }

• Loop bound goes past the

end of the array

• Undefined behaviour!

• Compile with

-fsanitize=address

5

ASan Example #2

1 #include <stdlib.h>

2

3 int main(void) {

4 int *a =

5 malloc(sizeof(int) * 100);

6 free(a);

7 return a[5]; // DOOM!

8 }

1. array is allocated

2. array is freed

3. array is dereferenced! (aka

use-after-free)

6

ASan Example #3

1 #include <stdlib.h>

2

3 int main(void) {

4 char *s =

5 malloc(sizeof(char) * 10);

6 free(s);

7 free(s);

8 printf("%s", s);

9 return 0;

10 }

1. array is allocated

2. array is freed

3. array is double-freed

7

ASan Limitations

• Must recompile code

• Adds considerable runtime overhead

• Typical slowdown 2x

• Does not catch all memory errors

• NEVER catches uninitialized memory accesses

• Still: a must-use tool during development

8

MSan: Memory Sanitizer

• Both local variable declarations and dynamic memory

allocation via malloc() do not initialize memory:

1 #include <stdio.h>

2

3 int main(void) {

4 int x[10];

5 printf("%d\n", x[0]); // uninitialized

6 return 0;

7 }

• Accesses to uninitialized variables are undefined

• This does NOT mean that you get some unspecified value

• It means that the compiler is free to do anything it likes

• ASan does not catch uninitialized memory accesses

9

MSan: Memory Sanitizer

1 #include <stdio.h>

2

3 int main(void) {

4 int x[10];

5 printf("%d\n", x[0]); // uninitialized

6 return 0;

7 }

• Memory sanitizer (MSan) does check for uninitialized memory

accesses

• Compile with -fsanitize=memory

10

MSan Example #1: Stack Allocation

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main(int argc, char** argv) {

5 int a[10];

6 a[2] = 0;

7 if (a[argc])

8 printf("print something\n");

9 return 0;

10 }

1. Stack allocate array

on line 5

2. Partially initialize it

on line 6

3. Access it on line 7

4. This might or might

not be initialized

11

MSan Example #2: Heap Allocation

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main(int argc, char** argv) {

5 int *a = malloc(sizeof(int) * 10);

6 a[2] = 0;

7 if (a[argc])

8 printf("print something\n");

9 free(a);

10 return 0;

11 }

1. Heap allocate array

on line 5

2. Partially initialize it

on line 6

3. Access it on line 7

4. This might or might

not be initialized

12

MSan Limitations

• MSan just checks for memory initialization errors

• It is very expensive

• 2-3x slowdowns, on top of anything else

• Currently only available on clang, and not gcc

13

UBSan: Undefined Behaviour Sanitizer

• There is lots of non-memory-related undefined behaviour in C:

• Signed integer overflow

• Dereferencing null pointers

• Pointer arithmetic overflow

• Dynamic arrays whose size is non-positive

• Undefined Behaviour Sanitizer (UBSan) instruments code to

detect these errors

• Need to recompile

• Adds runtime overhead

• Typical overhead of 20%

• Use it while developing, maybe even in production

• Built into gcc and clang!

14

UBSan Example #1

1 #include <limits.h>

2

3 int main(void) {

4 int n = INT_MAX;

5 int m = n + 1;

6 return 0;

7 }

1. Signed integer overflow is

undefined

2. So value of m is undefined

3. Compile with

-fsanitize=undefined

15

UBSan Example #2

1 #include <limits.h>

2

3 int main(void) {

4 int n = 65

5 int m = n / (n - n);

6 return 0;

7 }

1. Division-by-zero is undefined

2. So value of m is undefined

3. Any possible behaviour is

legal!

16

UBSan Example #3

1 #include <stdlib.h>

2

3 struct foo {

4 int a, b;

5 };

6

7 int main(void) {

8 struct foo *x = NULL;

9 int m = x->a;

10 return 0;

11 }

1. Accessing a null pointer is

undefined

2. So accessing fields of x is

undefined

3. Any possible behaviour is

legal!

17

UBSan Limitations

• Must recompile code

• Adds modest runtime overhead

• Does not catch all undefined behaviour

• Still: a must-use tool during development

• Seriously consider using it in production

18

Valgrind

• UBSan, MSan, and ASan require recompiling

• UBSan and ASan don’t catch accesses to uninitialized memory

• Enter Valgrind!

• Instruments binaries to detect numerous errors

19

Valgrind Example

1 #include <stdio.h>

2

3 int main(void) {

4 char s[10];

5 for (int i = 0; i < 10; i++)

6 printf("%c", s[i]);

7 printf("\n");

8 return 0;

9 }

1. Accessing elements of s is

undefined

2. Program prints uninitialized

memory

3. Any possible behaviour is

legal!

4. Invoke valgrind with

binary name

20

Valgrind Limitations

• Adds very substantial runtime overhead

• Not built into GCC/clang (plus or minus?)

• As usual, does not catch all undefined behaviour

• Still: a must-use tool during testing

21

Summary

Tool Slowdown Source/Binary Tool

ASan Big Source GCC/Clang

MSan Big Source Clang

UBSan Small Source GCC/Clang

Valgrind Very big Binary Standalone

22

Programming in C and C++

Lecture 6: Aliasing, Graphs, and Deallocation

David J Greaves and Alan Mycroft

(Materials by Neel Krishnaswami)

1 / 20

The C API for Dynamic Memory Allocation

• void *malloc(size_t size)

Allocate a pointer to an object of size size

• void free(void *ptr)

Deallocate the storage ptr points to

• Each allocated pointer must be deallocated exactly once along

each execution path through the program.

• Once deallocated, the pointer must not be used any more.

2 / 20

One Deallocation Per Path

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main(void) {

5 int *pi = malloc(sizeof(int));

6 scanf("%d", pi); // Read an int

7 if (*pi % 2) {

8 printf("Odd!\n");

9 free(pi); // WRONG!

10 }

11 }

3 / 20

One Deallocation Per Path

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main(void) {

5 int *pi = malloc(sizeof(int));

6 scanf("%d", pi); // Read an int

7 if (*pi % 2) {

8 printf("Odd!\n");

9 free(pi); // WRONG!

10 }

11 }

• This code fails to deallocate pi if *pi is even

3 / 20

One Deallocation Per Path

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main(void) {

5 int *pi = malloc(sizeof(int));

6 scanf("%d", pi); // Read an int

7 if (*pi % 2) {

8 printf("Odd!\n");

9 }

10 free(pi); // OK!

11 }

• This code fails to deallocate pi if *pi is even

• Moving it ensures it always runs

3 / 20

A Tree Data Type

1 struct node {

2 int value;

3 struct node *left;

4 struct node *right;

5 };

6 typedef struct node Tree;

• This is the tree type from Lab 4.

• It has a value, a left subtree, and a right subtree

• An empty tree is a NULL pointer.

4 / 20

A Tree Data Type

1 Tree *node(int value, Tree *left, Tree *right) {

2 Tree *t = malloc(sizeof(tree));

3 t->value = value;

4 t->right = right;

5 t->left = left;

6 return t;

7 }

8 void tree_free(Tree *tree) {

9 if (tree != NULL) {

10 tree_free(tree->left);

11 tree_free(tree->right);

12 free(tree);

13 }

14 }

1. Free the left subtree 5 / 20

A Directed Acyclic Graph (DAG)

1 // Initialize node2

2 Tree *node2 = node(2, NULL, NULL);

3

4 // Initialize node1

5 Tree *node1 = node(1, node2, node2); // node2 repeated!

6

7 // note node1->left == node1->right == node2!

What kind of “tree” is this?

6 / 20

The shape of the graph

node1

node2

Null Null

left right

left right

• node1 has two pointers to

node2

• This is a directed acyclic

graph, not a tree.

• tree_free(node1) will call

tree_free(node2) twice!

7 / 20

Evaluating free(node1)

node1

node2

Null Null

left right

left right

1 free(node1);

8 / 20

Evaluating free(node1)

node1

node2

Null Null

left right

left right

1 if (node1 != NULL) {

2 tree_free(node1->left);

3 tree_free(node1->right);

4 free(node1);

5 }

8 / 20

Evaluating free(node1)

node1

node2

Null Null

left right

left right

1 tree_free(node1->left);

2 tree_free(node1->right);

3 free(node1);

8 / 20

Evaluating free(node1)

node1

node2

Null Null

left right

left right

1 tree_free(node2);

2 tree_free(node2);

3 free(node1);

8 / 20

Evaluating free(node1)

node1

node2

Null Null

left right

left right

1 if (node2 != NULL) {

2 tree_free(node2->left);

3 tree_free(node2->right);

4 free(node2);

5 }

6 tree_free(node2);

7 free(node1);

8 / 20

Evaluating free(node1)

node1

node2

Null Null

left right

left right

1 tree_free(node2->left);

2 tree_free(node2->right);

3 free(node2);

4 tree_free(node2);

5 free(node1);

8 / 20

Evaluating free(node1)

node1

node2

Null Null

left right

left right

1 tree_free(NULL);

2 tree_free(NULL);

3 free(node2);

4 tree_free(node2);

5 free(node1);

8 / 20

Evaluating free(node1)

node1

node2

Null Null

left right

left right

1 if (NULL != NULL) {

2 tree_free(NULL->left);

3 tree_free(NULL->right);

4 free(node1);

5 }

6 tree_free(NULL);

7 free(node2);

8 tree_free(node2);

9 free(node1);

8 / 20

Evaluating free(node1)

node1

node2

Null Null

left right

left right

1 tree_free(NULL);

2 free(node2);

3 tree_free(node2);

4 free(node1);

8 / 20

Evaluating free(node1)

node1

node2

Null Null

left right

left right

1 free(node2);

2 tree_free(node2);

3 free(node1);

8 / 20

Evaluating free(node1)

node1

node2

Null Null

left right

left right

1 free(node2);

2 free(node2);

3 free(node1);

8 / 20

Evaluating free(node1)

node1

node2

Null Null

left right

left right

1 free(node2);

2 free(node2);

3 free(node1);

node2 is freed twice!

8 / 20

A Tree Data Type which Tracks Visits

1 struct node {

2 bool visited;

3 int value;

4 struct node *left;

5 struct node *right;

6 };

7 typedef struct node Tree;

• This tree has a value, a left subtree, and a right subtree

• An empty tree is a NULL pointer.

• it also has a visited field.

9 / 20

Creating Nodes of Tree Type

1 Tree *node(int value, Tree *left, Tree *right) {

2 Tree *t = malloc(sizeof(tree));

3 t->visited = false;

4 t->value = value;

5 t->right = right;

6 t->left = left;

7 return t;

8 }

1. Constructing a node sets the visited field to false

2. Otherwise returns the same fresh node as before

10 / 20

Freeing Nodes of Tree Type, Part 1

1 typedef struct TreeListCell TreeList;

2 struct TreeListCell {

3 Tree *head;

4 TreeList *tail;

5 }

6 TreeList *cons(Tree *head, TreeList *tail) {

7 TreeList *result = malloc(TreeListCell);

8 result->head = head;

9 result->tail = tail;

10 return result;

11 }

• This defines TreeList as a type of lists of tree nodes.

• cons dynamically allocates a new element of a list.

11 / 20

Freeing Nodes of Tree Type, Part 2

1 TreeList *getNodes(Tree *tree, TreeList *nodes) {

2 if (tree == NULL || tree->visited) {

3 return nodes;

4 } else {

5 tree->visited = true;

6 nodes = cons(tree, nodes);

7 nodes = getNodes(tree->right, nodes);

8 nodes = getNodes(tree->left, nodes);

9 return nodes;

10 }

11 }

• Add the unvisited nodes of tree to nodes.

• Finish if the node is a leaf or already visited

• Otherwise, add the current node and recurse
12 / 20

Freeing Nodes of Tree Type, Part 3

1 void tree_free(Tree *tree) {

2 NodeList *nodes = getNodes(tree, NULL);

3 while (nodes != NULL) {

4 Tree *head = nodes->head;

5 NodeList *tail = nodes->tail;

6 free(head);

7 free(nodes);

8 nodes = tail;

9 }

10 }

• To free a tree, get all the unique nodes in a list

• Iterate over the list, freeing the nodes

• Don’t forget to free the list!

• We’re doing dynamic allocation to free some data. . .
13 / 20

Summary

• Freeing trees is relatively easy

• Freeing DAGs or general graphs is much harder

• Freeing objects at most once is harder if there are multiple

paths to them.

14 / 20

Arenas

1 struct node {

2 int value;

3 struct node *left;

4 struct node *right;

5 };

6 typedef struct node Tree;

• This is the original tree data type

• Let’s keep this type, but change the (de)allocation API

15 / 20

Arenas

1 typedef struct arena *arena_t;

2 struct arena {

3 int size;

4 int current;

5 Tree *elts;

6 };

7

8 arena_t make_arena(int size) {

9 arena_t arena = malloc(sizeof(struct arena));

10 arena->size = size;

11 arena->current = 0;

12 arena->elts = malloc(size * sizeof(Tree));

13 return arena;

14 }

• An arena is just a preallocated array of nodes 16 / 20

Arena allocation

1 Tree *node(int value, Tree *left, Tree *right,

2 arena_t arena) {

3 if (arena->current < arena->size) {

4 Tree *t = arena->elts + arena->current;

5 arena->current += 1;

6 t->value = value, t->left = left, t->right = right;

7 return t;

8 } else

9 return NULL;

10 }

To allocate a node from an arena:

1. Initialize current element

2. Increment current

3. Return the initialized node

17 / 20

Freeing an Arena

1 void free_arena(arena_t arena) {

2 free(arena->elts);

3 free(arena);

4 }

• We no longer free trees individually

• Instead, free a whole arena at a time

• All tree nodes allocated from the arena are freed at once

18 / 20

Example

1 arena_t a = make_arena(BIG_NUMBER);

2

3 Tree *node1 = node(0, NULL, NULL, a);

4 Tree *node2 = node(1, node1, node1, a); // it’s a DAG now

5 // do something with the nodes...

6 free_arena(a);

• We allocate the arena

• We can build an arbitrary graph

• And free all the elements at once

19 / 20

Conclusion

• Correct memory deallocation in C requires thinking about

control flow

• This can get tricky!

• Arenas are an idiom for (de)allocating big blocks at once

• Reduces need for thinking about control paths

• But can increase working set sizes

20 / 20

Programming in C and C++

Lecture 7: Reference Counting and Garbage Collection

David J Greaves and Alan Mycroft

(Materials by Neel Krishnaswami)

1 / 30

The C API for Dynamic Memory Allocation

• In the previous lecture, we saw how to use arenas and ad-hoc

graph traversals to manage memory when pointer graphs

contain aliasing or cycles

• These are not the only idioms for memory management in C!

• Two more common patterns are reference counting and

type-specific garbage collectors.

2 / 30

A Tree Data Type

1 struct node {

2 int value;

3 struct node *left;

4 struct node *right;

5 };

6 typedef struct node Tree;

• This is still the tree type from Lab 4.

• It has a value, a left subtree, and a right subtree

• An empty tree is a NULL pointer.

3 / 30

Construct Nodes of a Tree

1 Tree *node(int value, Tree *left, Tree *right) {

2 Tree *t = malloc(sizeof(tree));

3 t->value = value;

4 t->right = right;

5 t->left = left;

6 return t;

7 }

1. Allocate a pointer to a tree struct

2. Initialize the value field

3. Initialize the right field

4. Initialize the left field

5. Return the initialized pointer!

4 / 30

A Directed Acyclic Graph (DAG)

1 Tree *n = node(2, NULL, NULL);

2 Tree *n2 =

3 node(1, n, n); // n repeated!

1. We allocate n on line 1

2. On line 2, we create n2 whose left and right fields are n.

3. Hence n2->left and n2->right are said to alias – they are

two pointers aimed at the same block of memory.

5 / 30

The shape of the graph

n2

n

Null Null

left right

left right

• node1 has two pointers to

node2

• This is a directed acyclic

graph, not a tree.

• A recursive free of the tree

n2 will try to free n twice.

6 / 30

The Idea of Reference Counting

n2: k

n: 2

Null Null

left right

left right

1. The problem: freeing things

with two pointers to them

twice

2. Solution: stop doing that

3. Keep track of the number of

pointers to an object

4. Only free when the count

reaches zero

7 / 30

How Reference Counting Works

n2: k

n: 2

Null Null

left right

left right

1. We start with k references

to n2

8 / 30

How Reference Counting Works

n2: 0

n: 2

Null Null

left right

left right

1. We start with k references

to n2

2. Eventually k becomes 0

8 / 30

How Reference Counting Works

n2: 0

n: 2

Null Null

left right

left right

1. We start with k references

to n2

2. Eventually k becomes 0

3. It’s time to delete n2

8 / 30

How Reference Counting Works

n2: 0

n: 2

Null Null

left right

left right

1. We start with k references

to n2

2. Eventually k becomes 0

3. It’s time to delete n2

4. Decrement the reference

count of each thing n2

points to

8 / 30

How Reference Counting Works

n2: 0

n: 1

Null Null

left right

left right

1. We start with k references

to n2

2. Eventually k becomes 0

3. It’s time to delete n2

4. Decrement the reference

count of each thing n2

points to

8 / 30

How Reference Counting Works

n2: 0

n: 0

Null Null

left right

left right

1. We start with k references

to n2

2. Eventually k becomes 0

3. It’s time to delete n2

4. Decrement the reference

count of each thing n2

points to

5. Then delete n2

8 / 30

How Reference Counting Works

n2: 0

n: 0

Null Null

left right

left right

1. We start with k references

to n2

2. Eventually k becomes 0

3. It’s time to delete n2

4. Decrement the reference

count of each thing n2

points to

5. Then delete n2

8 / 30

How Reference Counting Works

n2: 0

n: 0

Null Null

left right

left right

1. We start with k references

to n2

2. Eventually k becomes 0

3. It’s time to delete n2

4. Decrement the reference

count of each thing n2

points to

5. Then delete n2

6. Recursively delete n

8 / 30

The Reference Counting API

1 struct node {

2 unsigned int rc;

3 int value;

4 struct node *left;

5 struct node *right;

6 };

7 typedef struct node Node;

8

9 const Node *empty = NULL;

10 Node *node(int value,

11 Node *left,

12 Node *right);

13 void inc_ref(Node *node);

14 void dec_ref(Node *node);

• We add a field rc to keep

track of the references.

• We keep the same node

constructor interface.

• We add a procedure

inc_ref to increment the

reference count of a node.

• We add a procedure

dec_ref to decrement the

reference count of a node.

9 / 30

Reference Counting Implementation: node()

1 Node *node(int value,

2 Node *left,

3 Node *right) {

4 Node *r = malloc(sizeof(Node));

5 r->rc = 1;

6 r->value = value;

7

8 r->left = left;

9 inc_ref(left);

10

11 r->right = right;

12 inc_ref(right);

13 return r;

14 }

• On line 4, we initialize the

rc field to 1. (Annoyingly,

this is a rather delicate

point!)

• On line 8-9, we set the left

field, and increment the

reference count of the

pointed-to node.

• On line 11-12, we do the

same to right

10 / 30

Reference Counting Implementation: inc ref()

1 void inc_ref(Node *node) {

2 if (node != NULL) {

3 node->rc += 1;

4 }

5 }

• On line 3, we increment the rc field (if nonnull)

• That’s it!

11 / 30

Reference Counting Implementation: dec ref()

1 void dec_ref(Node *node) {

2 if (node != NULL) {

3 if (node->rc > 1) {

4 node->rc -= 1;

5 } else {

6 dec_ref(node->left);

7 dec_ref(node->right);

8 free(node);

9 }

10 }

11 }

• When we decrement a

reference count, we check to

see if we are the last

reference (line 3)

• If not, we just decrement

the reference count (line 4)

• If so, then decrement the

reference counts of the

children (lines 6-7)

• Then free the current

object. (line 8)

12 / 30

Example 1

1 Node *complete(int n) {

2 if (n == 0) {

3 return empty;

4 } else {

5 Node *sub = complete(n-1);

6 Node *result =

7 node(n, sub, sub);

8 dec_ref(sub);

9 return result;

10 }

11 }

• complete(n) builds a

complete binary tree of

depth n

• Sharing makes memory

usage O(n)

• On line 5, makes a recursive

call to build subtree.

• On line 6, builds the tree

• On line 8, call

dec_ref(sub) to drop the

stack reference sub

• On line 9, don’t call

dec_ref(result)

13 / 30

Example 1 – mistake 1

1 Node *complete(int n) {

2 if (n == 0) {

3 return empty;

4 } else {

5 Node *sub = complete(n-1);

6 Node *result =

7 node(n, sub, sub);

8 // dec_ref(sub);

9 return result;

10 }

11 }

• If we forget to call

dec_ref(sub), we get a

memory leak!

• sub begins with a refcount

of 1

• node(sub, sub) bumps it

to 3

• If we call

dec_ref(complete(n)),

the outer node will get freed

• But the children will end up

with an rc field of 1

14 / 30

Example 1 – mistake 2

1 Node *complete(int n) {

2 if (n == 0) {

3 return empty;

4 } else {

5 return node(n,

6 complete(n-1),

7 complete(n-1));

8 }

9 }

• This still leaks memory!

• complete(n-1) begins with

a refcount of 1

• The expression on lines 5-7

bumps each subtree to a

refcount of 2

• If we call

free(complete(n)), the

outer node will get freed

• But the children will end up

with an rc field of 1

15 / 30

Design Issues with Reference Counting APIs

• The key problem: who is responsible for managing reference

counts?

• Two main options: sharing references vs transferring

references

• Both choices work, but must be made consistently

• To make this work, API must be documented very carefully

• Good example: Python C API

• https://docs.python.org/3/c-api/intro.html#

objects-types-and-reference-counts

16 / 30

https://docs.python.org/3/c-api/intro.html#objects-types-and-reference-counts
https://docs.python.org/3/c-api/intro.html#objects-types-and-reference-counts

Mitigations: Careful Use of Getters and Setters

1 Node *get_left(Node *node) {

2 inc_ref(node->left);

3 return(node->left);

4 }

5

6 void set_left(Node *node,

7 Node *newval) {

8 inc_ref(newval);

9 dec_ref(node->left);

10 node->left = newval;

11 }

• The get_left() function

returns the left subtree, but

also increments the

reference count

• The set_left() function

updates the left subtree,

incrementing the reference

count to the new value and

decrementing the reference

17 / 30

Cycles: A Fundamental Limitation on Reference Counting

1 Node *foo() {

2 Node *n1 = node(1, NULL, NULL);

3 Node *n2 = node(2, NULL, NULL);

4 set_left(n1, n2);

5 set_left(n2, n1);

6 dec_ref(n2);

7 return node1;

8 }

What does a call to foo() build?

18 / 30

A Cyclic Object Graph

n1: 2

n2: 1

Nullleft

right

left

right

• n1->rc is 2, since n2 points

to it

• n2->rc is 1, since n1 points

to it

• This is a cyclic graph

• Even though there is only 1

external reference to n1,

n1->rc is 2.

• Hence dec_ref(foo()) will

not free memory!

• Reference counting cannot

collect cycles

19 / 30

Garbage Collection: Dealing with Cycles

• In ML or Java, we don’t have to worry about cycles or

managing reference counts explicitly

• We rely on a garbage collector to manage memory

automatically

• In C, we can implement garbage collection to manage memory

20 / 30

GC API – Data structures

1 struct node {

2 int value;

3 struct node *left;

4 struct node *right;

5 bool mark;

6 struct node *next;

7 };

8 typedef struct node Node;

9

10 struct root {

11 Node *start;

12 struct root *next;

13 };

14 typedef struct root Root;

15

16 struct alloc {

17 Node *nodes;

18 Root *roots;

19 };

20 typedef struct alloc Alloc;

• Node * are node objects,

but augmented with a mark

bit (Lab 5) and a next link

connecting all allocated

nodes

• A Root * is a node we don’t

want to garbage collect.

Roots are also in a linked list

• An allocator Alloc * holds

the head of the lists of

nodes and roots

21 / 30

GC API – Procedures

1 Alloc *make_allocator(void);

2 Node *node(int value,

3 Node *left,

4 Node *right,

5 Alloc *a);

6 Root *root(Node *node, Alloc *a);

7 void gc(Alloc *a);

• make_allocator creates a

fresh allocator

• node(n, l, r, a) creates

a fresh node in allocator a

(as in the arena API)

• root(n) creates a new root

object rooting the node n

• gc(a) frees all nodes

unreachable from the roots

22 / 30

Creating a Fresh Allocator

1 Alloc *make_allocator(void) {

2 Alloc *a = malloc(sizeof(Alloc));

3 a->roots = NULL;

4 a->nodes = NULL;

5 return a;

6 }

• Creates a fresh allocator with empty set of roots and nodes

• Invariant: no root or node is part of two allocators!

• (Could use global variables, but thread-unfriendly)

23 / 30

Creating a Node

1 Node *node(int value,

2 Node *left,

3 Node *right,

4 Alloc *a) {

5 Node *r = malloc(sizeof(Node));

6 r->value = value;

7 r->left = left;

8 r->right = right;

9 //

10 r->mark = false;

11 r->next = a->nodes;

12 a->nodes = r;

13 return r;

14 }

• Lines 5-9 perform familiar

operations: allocate memory

(line 5) and initialize data

fields (6-8)

• Line 10 initializes mark to

false

• Lines 11-12 add new node

to a->nodes

24 / 30

Creating a Root

1 Root *root(Node *node,

2 Alloc *a) {

3 Root *g =

4 malloc(sizeof(Root));

5 g->start = node;

6 g->next = a->roots;

7 a->roots = g;

8 return g;

9 }

• On line 4, allocate a new

Root struct g

• On line 5, set the start

field to the node argument

• On lines 6-7, attach g to the

roots of the allocator a

• Now the allocator knows to

treat the root as always

reachable

25 / 30

Implementing a Mark-and-Sweep GC

• Idea: split GC into two phases, mark and sweep

• In mark phase:

• From each root, mark the nodes reachable from that root

• I.e., set the mark field to true

• So every reachable node will have a true mark bit, and every

unreachable one will be set to false

• In sweep phase:

• Iterate over every allocated node

• If the node is unmarked, free it

• If the node is marked, reset the mark bit to false

26 / 30

Marking

1 void mark_node(Node *node) {

2 if (node != NULL && !node->mark) {

3 node->mark = true;

4 mark_node(node->left);

5 mark_node(node->right);

6 }

7 }

8

9 void mark(Alloc *a) {

10 Root *g = a->roots;

11 while (g != NULL) {

12 mark_node(g->start);

13 g = g->next;

14 }

15 }

• mark_node() function

marks a node if unmarked,

and then recursively marks

subnodes

• Just like in lab 6!

• mark() procedure iterates

over the roots, marking the

nodes reachable from it.

• If a node is not reachable

from the a->roots pointer,

it will stay false

27 / 30

Sweeping

1 void sweep(Alloc *a) {

2 Node *n = a->nodes;

3 Node *live = NULL;

4 while (n != NULL) {

5 Node *tl = n->next;

6 if (!(n->mark)) {

7 free(n);

8 } else {

9 n->mark = false;

10 n->next = live;

11 live = n;

12 }

13 n = tl;

14 }

15 a->nodes = live;

16 }

• On line 2, get a pointer to all

allocated nodes via a->nodes

• On line 3, create a new empty

list of live nodes

• On lines 4-14, iterate over each

allocated node

• On line 6, check to see if the

node is unmarked

• If unmarked, free it (line 8)

• If marked, reset the mark bit

and add it to the live list

(9-11)

• On line 15, update a->nodes

to the still-live live nodes
28 / 30

The gc() routine

void gc(Alloc *a) {

mark(a);

sweep(a);

}

• gc(a) just marks and sweeps!

• To use the gc, we allocate nodes as normal

• Periodically, invoke gc(a) to clear out unused nodes

• That’s it!

29 / 30

Design Considerations

• This kind of custom GC is quite slow relative to ML/Java gcs

• However, simple and easy to implement (only 50 lines of

code!)

• No worries about cycles or managing reference counts

• Worth considering using the Boehm gc if gc in C/C++ is

needed:

• https://www.hboehm.info/gc/

• Drop-in replacement for malloc!

• Still useful when dealing with interop between gc’d and

manually-managed languages (eg, DOM nodes in web

browsers)

30 / 30

https://www.hboehm.info/gc/

Programming in C and C++

Lecture 8: The Memory Hierarchy and Cache Optimization

David J Greaves and Alan Mycroft

(Materials by Neel Krishnaswami)

1 / 22

Three Simple C Functions

void increment_every(int *array)

for (int i = 0; i < BIG_NUMBER; i += 1) {

array[i] = 0;

}

void increment_8th(int *array) {

for (int i = 0; i < BIG_NUMBER; i += 8)

array[i] = 0;

}

void increment_16th(int *array) {

for (int i = 0; i < BIG_NUMBER; i += 16)

array[i] = 0;

}

• Which runs faster?

• . . . and by how much?
2 / 22

The Memory Hierarchy

CPU and Registers

Level 1 Instruction Cache Level 1 Data Cache

Unified Level 2 Cache

Unified Level 3 Cache

Main Memory (RAM)

3 / 22

Latencies in the Memory Hierarchy

Access Type Cycles Time Human Scale

L1 cache reference ≈4 1.3 ns 1s

L2 cache reference ≈10 4 ns 3s

L3 cache reference, unshared ≈40 13 ns 10s

L3 cache reference, shared ≈65 20 ns 16s

Main memory reference ≈300 100 ns 80s

• Random accesses to main memory are slow

• This can dominate performance!

4 / 22

How Caches Work

When a CPU looks up an address. . . :

1. It looks up the address in the cache

2. If present, this is a cache hit (cheap!)

3. If absent, this is a cache miss

3.1 The address is then looked up in main memory (expensive!)

3.2 The address/value pair is then stored in the cache

3.3 . . . along with the next 64 bytes (typically) of memory

3.4 This is a cache line or cache block

5 / 22

Locality: Taking advantage of caching

Caching is most favorable:

• Each piece of data the program works on is near (in RAM)

the address of the last piece of data the program worked on.

• This is the principle of locality

• Performance engineering involves redesigning data structures

to take advantage of locality.

6 / 22

Pointers Are Expensive

Consider the following Java linked list implementation

class List<T> {

public T head;

public List<T> tail;

public List(T head, List<T> tail) {

this.head = head;

this.tail = tail;

}

}

7 / 22

Pointers Are Expensive in C, too

typedef struct List* list_t;

struct List {

void *head;

list_t tail;

};

list_t list_cons(void *head, list_t tail) {

list_t result = malloc(sizeof(struct list));

r->head = head;

r->tail = tail;

return r;

}

• C uses void * for genericity, but this introduces pointer

indirections.

• This can get expensive!

8 / 22

Specializing the Representation

Suppose we use a list at a Data * type:

struct data {

int i;

double d;

char c;

};

typedef struct data Data;

struct List {

Data *head;

struct List *tail;

};

9 / 22

Technique #1: Intrusive Lists

We can try changing the list representation to:

typedef struct intrusive_list ilist_t;

struct intrusive_list {

Data head;

ilist_t tail;

};

ilist_t ilist_cons(Data head, ilist_t tail) {

list_t result = malloc(sizeof(struct intrusive_list));

r->head = head;

r->tail = tail;

return r;

}

• The indirection in the head is removed

• But we had to use a specialized representation

• Can no longer use generic linked list routines
10 / 22

Technique #2: Lists of Structs to Arrays of Structs

Linked lists are expensive:

1. Following a tail pointer can lead to cache miss

2. Cons cells requiring storing a tail pointer. . .

3. This reduces the number of data elements that fit in a cache

line

4. This decreases data density, and increases cache miss rate

5. Replace ilist_t with Data[]!

11 / 22

Technique #2: Lists of Structs to Arrays of Structs

We can try changing the list representation to:

Data *iota_array(int n) {

Data *a = malloc(n * sizeof(Data));

for (int i = 0; i < n; i++) {

a[i].i = i;

a[i].d = 1.0;

a[i].c = 'x';

}

return a;

}

• No longer store tail pointers

• Every element comes after previous element in memory

• Can no longer incrementally build lists

• Have to know size up-front
12 / 22

Technique #3: Arrays of Structs to Struct of Arrays

struct data {

int i;

double d;

char c;

};

typedef struct data Data;

void traverse(int n, Data *a) {

for (int i = 0; i < n; i++)

a[i].c += 'y';

}

• Note that we are only

modifying character field c.

• We have “hop over” the

integer and double fields.

• So characters are at least 12,

and probably 16 bytes apart.

• This means only 4

characters in each cache

line. . .

• Optimally, 64 characters fit

in each cache line. . .

13 / 22

Technique #3: Arrays of Structs to Struct of Arrays

typedef struct datavec *DataVec;

struct datavec {

int *is;

double *ds;

char *cs;

};

• Instead of storing an array of

structures. . .

• We store a struct of arrays

• Now traversing just the cs is

easy

14 / 22

Technique #3: Traversing Struct of Arrays

void traverse_datavec(int n, DataVec d) {

char *a = d->cs;

for (int i = 0; i < n; i++) {

a[i] += 'y';

}

}

• To update the characters. . .

• Just iterate over the character. . .

• Higher cache efficiency!

15 / 22

Technique #4: Loop Blocking

1 #define SIZE 8192

2 #define dim(i, j) (((i) * SIZE) + (j))

3

4 double *add_transpose(double *A,

5 double *B) {

6 double *dest =

7 malloc(sizeof(double)

8 * SIZE * SIZE);

9 for (int i = 0; i < SIZE; i++) {

10 for (int j = 0; j < SIZE; j++) {

11 dest[dim(i,j)] =

12 A[dim(i,j)] + B[dim(j,i)];

13 }

14 }

15 return dest;

16 }

• The add_transpose

function takes two square

matrices A and B , and

returns a new matrix equal

to A+ BT .

• C stores arrays in row-major

order.

16 / 22

How Matrices are Laid out in Memory

A ,

0 1 4

9 16 25

36 49 64

81 100 121

Address 0 1 2 3 4 5 6 7 8 9 10 11

Value 0 1 4 9 16 25 36 49 64 81 100 121

• A is a 3× 4 array.

• A(i , j) is at address 3× i + j (0 based!)

• E.g., A(2, 1) = 49, at address 7

• E.g., A(3, 1) = 100, at address 10

17 / 22

Loop Blocking

1 # define SIZE 8192

2 # define dim(i, j) (((i) * SIZE) + (j))

3

4 double *add_transpose(double *A,

5 double *B) {

6 double *dest =

7 malloc(sizeof(double)

8 * SIZE * SIZE);

9 for (int i = 0; i < SIZE; i++) {

10 for (int j = 0; j < SIZE; j++) {

11 dest[dim(i,j)] =

12 A[dim(i,j)] + B[dim(j,i)];

13 }

14 }

15 return dest;

16 }

• The succesive accesses to

A(i , j) will go sequentially in

memory

• The successive accesses to

B(j , i) will jump SIZE

elements at a time

18 / 22

How to Block a Loop, Concept

Traversing A Traversing B

a b c d

e f g h

i j k l

m n o p

a b c d

e f g h

i j k l

m n o p

• We can see that A has a favorable traversal, and B is “jumpy”

• Let’s change the traversal order!

19 / 22

How to Block a Loop, Concept

Traversing A Traversing B

a b c d

e f g h

i j k l

m n o p

a b c d

e f g h

i j k l

m n o p

• Since each nested iteration is acting on the same n × n

submatrix, a cache miss on one lookup will bring memory into

cache for the other lookup

• This reduces the total number of cache misses

20 / 22

Loop Blocking

double *add_transpose_blocked(double *m1,

double *m2,

int bsize) {

double *dest =

malloc(sizeof(double) * SIZE * SIZE);

for (int i = 0; i < SIZE; i += bsize) {

for (int j = 0; j < SIZE; j += bsize) {

for (int ii = i; ii < i+bsize; ii++) {

for (int jj = j; jj < j+bsize; jj++) {

dest[dim(ii,jj)] =

m1[dim(ii,jj)] + m2[dim(jj, ii)];

}

}

}

}

return dest;

}

• Doubly-nested loop goes to

quadruply-nested loop

• Increment i and j by bsize at

a time

• Do a little iteration over the

submatrix with ii and jj

21 / 22

Conclusion

• Memory is hierarchical, with each level slower than

predecessors

• Caching make locality assumption

• Making this assumption true requires careful design

• Substantial code alterations can be needed

• But can lead to major performance gains

22 / 22

Programming in C and C++

Lecture 9: Debugging

David J Greaves and Alan Mycroft

(Materials by Neel Krishnaswami)

1 / 34

What is Debugging?

Debugging is a methodical process of finding and reducing

the number of bugs (or defects) in a computer program,

thus making it behave as originally expected.

There are two main types of errors that need debugging:

• Compile-time: These occur due to misuse of language

constructs, such as syntax errors. Normally fairly easy to find

by using compiler tools and warnings to fix reported problems,

e.g.: gcc -Wall -pedantic -c main.c

• Run-time: These are much harder to figure out, as they cause

the program to generate incorrect output (or “crash”) during

execution. This lecture will examine how to methodically

debug a run-time error in your C code.

2 / 34

The Runtime Debugging Process

A typical lifecycle for a C/C++ bug is:

• a program fails a unit test included with the source code, or a

bug is reported by a user, or observed by the programmer.

• given the failing input conditions, a programmer debugs the

program until the offending source code is located.

• the program is recompiled with a source code fix and a

regression test is run to confirm that the behaviour is fixed.

Unit tests are short code fragments written to test code modules in

isolation, typically written by the original developer.

Regression testing ensures that changes do not uncover new bugs,

for example by causing unit tests to fail in an unrelated component.

3 / 34

What is a Bug?

The program contains a defect in the source code, either due to a

design misunderstanding or an implementation mistake. This

defect is manifested as a runtime failure. The program could:

• crash with a memory error or “segmentation fault”

• return an incorrect result

• have unintended side-effects like corrupting persistent storage

The art of debugging arises because defects do not materialise

predictably.

• The program may require specific inputs to trigger a bug

• Undefined or implementation-defined behaviour may cause it

to only crash on a particular OS or hardware architecture

• The issue may require separate runs and many hours (or

months!) of execution time to manifest
4 / 34

Finding Defects

Defects are not necessarily located in the source code near a

particular runtime failure.

• A variable might be set incorrectly that causes a timer to fire

a few seconds too late. The defect is the assignment point,

but the failure is later in time.

• A configuration file might be parsed incorrectly, causing the

program to subsequently choose the wrong control path. The

defect is the parse logic, but the failure is observing the

program perform the wrong actions.

• A function foo() may corrupt a data structure, and then

bar() tries to use it and crashes. The defect is in foo() but

the failure is triggered at bar().

The greater the distance between the original defect and the

associated failure, the more difficult it is to debug.
5 / 34

Finding Defects (cont.)

Sometimes the defect directly causes the failure and is easy to

debug. Consider this NULL pointer error:

1 #include <netdb.h>

2 #include <stdio.h>

3

4 int main(int argc, char **argv) {

5 struct hostent *hp;

6 hp = gethostbyname("doesntexist.abc");

7 printf("%s\n", hp->h_name);

8 return 0;

9 }

Just fix the code to add a NULL pointer check before printing hp.

6 / 34

Debugging via printing values

A very common approach to debugging is via printing values as the

program executes.

1 #include <netdb.h>

2 #include <stdio.h>

3

4 int main(int argc, char **argv) {

5 struct hostent *hp;

6 printf("argc: %d\n", argc);

7 for (int i=1; i<argc; i++) {

8 hp = gethostbyname(argv[i]);

9 printf("hp: %p\n", hp);

10 if (hp)

11 printf("%s\n", hp->h_name);

12 }

13 return 0;

14 }
7 / 34

Debugging via printing values (cont.)

Executing this will always show the output as the program runs.

./lookup google.org recoil.org

argc: 3

hp: 0x7fd87ae00420

google.org

hp: 0x7fd87ae00490

recoil.org

Some tips on debug printing:

• Put in as much debugging information as you can to help

gather information in the future

• Make each entry as unique as possible so that you tie the

output back to the source code

• Flush the debug output so that it reliably appears in the

terminal
8 / 34

Debugging via printing values (cont.)

1 #include <netdb.h>

2 #include <stdio.h>

3

4 int main(int argc, char **argv) {

5 struct hostent *hp;

6 printf("%s:%2d argc: %d\n", __FILE__, __LINE__, argc);

7 for (int i=1; i<argc; i++) {

8 hp = gethostbyname(argv[i]);

9 printf("%s:%2d hp: %p\n", __FILE__, __LINE__, hp);

10 fflush(stdout);

11 printf("%s:%2d %s\n", __FILE__, __LINE__, hp->h_name);

12 fflush(stdout);

13 }

14 return 0;

15 }

9 / 34

Debugging via printing values (cont.)

The source code is now very ugly and littered with debugging

statements. The C preprocessor comes to the rescue.

• Define a DEBUG parameter to compile your program with.

• #define a debug printf that only runs if DEBUG is non-zero.

• Disabling DEBUG means debugging calls will be optimised

away at compile time.

1 #ifndef DEBUG

2 #define DEBUG 0

3 #endif

4 #define debug_printf(fmt, ...) \

5 do { if (DEBUG) { \

6 fprintf(stderr, fmt, __VA_ARGS__); \

7 fflush(stderr); } } \

8 while (0)

10 / 34

Debugging via printing values (cont.)

1 #include <netdb.h>

2 #include <stdio.h>

3 #ifndef DEBUG

4 #define DEBUG 0

5 #endif

6 #define debug_printf(fmt, ...) \

7 do { if (DEBUG) { fprintf(stderr, fmt, __VA_ARGS__); \

8 fflush(stderr); } } while (0)

9 int main(int argc, char **argv) {

10 debug_printf("argc: %d\n", argc);

11 for (int i=1; i<argc; i++) {

12 struct hostent *hp = gethostbyname(argv[i]);

13 debug_printf("hp: %p\n", hp);

14 printf("%s\n", hp->h_name);

15 }

16 return 0;

17 }

11 / 34

Debugging via Assertions

Defects can be found more quickly than printing values by using

assertions to encode invariants through the source code.

1 #include <netdb.h>

2 #include <stdio.h>

3 #include <assert.h> // new header file

4

5 int main(int argc, char **argv) {

6 struct hostent *hp;

7 hp = gethostbyname("doesntexist.abc");

8 assert(hp != NULL); // new invariant

9 printf("%s\n", hp->h_name);

10 return 0;

11 }

12 / 34

Debugging via Assertions (cont.)

The original program without assertions will crash:

cc -Wall debug-s6.c && ./lookup

Segmentation fault: 11

Running with assertions results in a much more friendly error message.

cc -Wall debug-s12.c && ./lookup

Assertion failed: (hp != NULL),

function main, file debug2.c, line 10.

13 / 34

Debugging via Assertions (cont.)

Using assert is a cheap way to ensure an invariant remains true.

• A failed assertion will immediately exit a program.

• Assertions can be disabled by defining the NDEBUG

preprocessor flag.

Never cause side-effects in assertions as they may not be active!

cc -Wall -DNDEBUG debug-s12.c && ./lookup

Segmentation fault: 11

14 / 34

Fault Isolation

Debugging is the process of fault isolation to find the cause of the

failure.

• Never try to guess the cause randomly. This is time

consuming.

• Stop making code changes incrementally to fix the bug.

• Do think like a detective and find clues to the cause.

Remember that you are trying to:

• Reproduce the problem so you can observe the failure.

• Isolate the failure to some specific inputs.

• Fix the issue and confirm that there are no regressions.

15 / 34

Reproducing the Bug

Consider this revised program that performs an Internet name

lookup from a command-line argument.

1 #include <netdb.h>

2 #include <stdio.h>

3 #include <assert.h>

4 int main(int argc, char **argv) {

5 struct hostent *hp;

6 hp = gethostbyname(argv[1]);

7 printf("%s\n", hp->h_name);

8 return 0;

9 }

This program can crash in at least two ways. How can we

reproduce both?

16 / 34

Reproducing the Bug (cont.)

This program can crash in at least two ways.

cc -Wall -o lookup debug-s16.c

First crash: if we do not provide a command-line argument:

./lookup

Segmentation fault: 11

Second crash: if we provide an invalid network hostname:

./lookup doesntexist.abc

Segmentation fault: 11

It does work if we provide a valid hostname:

./lookup www.recoil.org

bark.recoil.org

Both positive and negative results are important to give you more hints

about how many distinct bugs there are, and where their source is.
17 / 34

Isolating the Bug

We now know of two failing inputs, but need to figure out where in

the source code the defect is. From earlier, one solution is to put

assert statements everywhere that we suspect could have a failure.

1 #include <netdb.h>

2 #include <stdio.h>

3 #include <assert.h>

4 int main(int argc, char **argv) {

5 struct hostent *hp;

6 assert(argv[1] != NULL);

7 hp = gethostbyname(argv[1]);

8 assert(hp != NULL);

9 printf("%s\n", hp->h_name);

10 return 0;

11 }
18 / 34

Reproducing the Bug with Assertions

Recompile the program with the assertions enabled.

cc -Wall -o lookup debug-s18.c

First crash: if we do not provide a command-line argument:

./lookup

Assertion failed: (argv[1] != NULL),

function main, file debug-s18.c, line 7.

Second crash: if we provide an invalid network hostname:

./lookup doesntexist.abc

Assertion failed: (hp != NULL), function main,

file debug-s18.c, line 9.

19 / 34

Reproducing the Bug with Assertions (cont.)

It does work if we provide a valid hostname:

./lookup www.recoil.org

bark.recoil.org

The assertions show that there are two distinct failure points in

application, triggered by two separate inputs.

20 / 34

Using Debugging Tools

While assertions are convenient, they do not scale to larger

programs. It would be useful to:

• Observe the value of a C variable during a program execution

• Stop the execution of the program if an assertion is violated.

• Get a trace of the function calls leading up to the failure.

These features are provided by debuggers, which let a programmer

to monitor the memory state of a program during its execution.

• Interpretive debuggers work by simulating program execution

one statement at a time.

• More common for C code are direct execution debuggers that

use hardware and operating system features to inspect the

program memory and set “breakpoints” to pause execution.

21 / 34

Example: Using lldb from LLVM

Let’s use the lldb debugger from LLVM to find the runtime failure

without requiring assertions.

cc -Wall -o lookup -DNDEBUG -g debug-s18.c

Run the binary using lldb instead of executing it directly.

lldb ./lookup

(lldb) target create "./lookup"

Current executable set to ’./lookup’ (x86_64).

At the (lldb) prompt use run to start execution.

(lldb) run www.recoil.org

Process 9515 launched: ’./lookup’ (x86_64)

bark.recoil.org

Process 9515 exited with status = 0 (0x00000000)

22 / 34

Example: Using lldb from LLVM (cont.)

Now try running the program with inputs that trigger a crash:

(lldb) run doesntexist.abc

frame #0: 0x0000000100000f52 lookup

main(argc=2, argv=0x00007fff5fbff888) + 50 at debug-s18.c:12

9 assert(argv[1] != NULL);

10 hp = gethostbyname(argv[1]);

11 assert(hp != NULL);

-> 12 printf("%s\n", hp->h_name);

13

return 0;

The program has halted at line 12 and lets us inspect the value of

variables that are in scope, confirming that the hp pointer is NULL.

(lldb) print hp

(hostent *) $1 = 0x0000000000000000

23 / 34

Example: Using lldb from LLVM (cont.)

We do not have to wait for a crash to inspect variables.

Breakpoints allow us to halt execution at a function call.

(lldb) break set --name main

(lldb) run www.recoil.org

7 {

8 struct hostent *hp;

9 assert(argv[1] != NULL);

-> 10 hp = gethostbyname(argv[1]);

The program has run until the main function is encountered, and

stopped at the first statement.

24 / 34

Example: Using lldb from LLVM (cont.)

We can set a watchpoint to inspect when variables change state.

(lldb) watchpoint set variable hp

This will pause execution right after the hp variable is assigned to. We

can now resume execution and see what happens:

(lldb) continue

Process 9661 resuming

Process 9661 stopped

* thread #1: tid = 0x3c2fd3 <..> stop reason = watchpoint 1

frame #0: 0x0000000100000f4e <...> debug-s18.c:12

9 assert(argv[1] != NULL);

10 hp = gethostbyname(argv[1]);

11 assert(hp != NULL);

-> 12 printf("%s\n", hp->h_name);

13 return 0;

14 }

25 / 34

Example: Using lldb from LLVM (cont.)

When program execution is paused in lldb, we can inspect the local

variables using the print command.

(lldb) print hp

(hostent *) $0 = 0x0000000100300460

(lldb) print hp->h_name

(char *) $1 = 0x0000000100300488 "bark.recoil.org"

We can thus:

• confirm that hp is non-NULL even when the program does not

crash

• print the contents of the hp->h name value, since the

debugger can follow pointers

• see the C types that the variables had (e.g. hostent *)

26 / 34

Debugging Symbols

How did the debugger find the source code in the compiled

executable? Compile it without the -g flag to see what happens.

cc -Wall -DNDEBUG debug-s18.c

(lldb) run doesnotexist.abc

loader’main + 50:

-> 0x100000f52: movq (%rax), %rsi

0x100000f55: movb $0x0, %al

0x100000f57: callq 0x100000f72 ; symbol stub for: printf

0x100000f5c: movl $0x0, %ecx

We now only have assembly language backtrace, with some hints

in the output about printf.

27 / 34

Debugging Symbols (cont.)

The compiler emits a symbol table that records the mapping

between a program’s variables and their locations in memory.

• Machine code uses memory addresses to reference memory,

and has no notion of variable names. For example,

0x100000f72 is the address of printf earlier

• The symbol table records an association from 0x100000f72

and the printf function

• The -g compiler flag embeds additional debugging

information into the symbol tables

• This debugging information also maps the source code to the

program counter register, keeping track of the control flow

28 / 34

Debugging Symbols (cont.)

Debugging information is not included by default because:

• The additional table entries take up a significant amount of

extra disk space, which would be a problem on embedded

systems like a Raspberry Pi

• They are not essential to run most applications, unless they

specifically need to modify their own code at runtime

• Advanced users can still use debuggers with just the default

symbol table, although relying on the assembly language is

more difficult

• Modern operating systems such as Linux, MacOS X and

Windows support storing the debugging symbols in a separate

file, making disk space and compilation time the only

overhead to generating them.

29 / 34

Debugging Tools

lldb is just one of a suite of debugging tools that are useful in bug

hunting.

• The LLVM compiler suite (https://llvm.org) also has the

clang-analyzer static analysis engine that inspects your

source code for errors.

• The GCC compiler (https://gcc.gnu.org) includes the gdb

debugger, which has similar functionality to lldb but with a

different command syntax.

• Valgrind (http://valgrind.org) (seen in an earlier lecture!)

is a dynamic analysis framework that instruments binaries to

detect many classes of memory management and threading

bugs.

30 / 34

https://llvm.org
https://gcc.gnu.org
http://valgrind.org

Unit and Regression Test

We have used many techniques to find our bugs, but it is equally

important to make sure they do not return. Create a unit test:

1 #include <stdio.h>

2 #include <netdb.h>

3 #include <assert.h>

4 void lookup(char *buf) {

5 assert(buf != NULL);

6 struct hostent *hp = gethostbyname(buf);

7 printf("%s -> %s\n", buf, hp ? hp->h_name : "unknown");

8 }

9 void lookup_test(void) {

10 lookup("google.com");

11 lookup("doesntexist.abc");

12 lookup("");

13 lookup(NULL);

14 }
31 / 34

Unit and Regression Test (cont.)

We can now invoke lookup() for user code, or lookup test() to

perform the self-test.

1 #include <stdlib.h>

2

3 void lookup(char *buf);

4 void lookup_test(void);

5

6 int main(int argc, char **argv) {

7 if (getenv("SELFTEST"))

8 lookup_test ();

9 else

10 lookup(argv[1]);

11 }

32 / 34

Unit and Regression Test (cont.)

Can now run this code as a test case or for live lookups.

cc -Wall -g lookup_logic.c lookup_main.c -o lookup

./lookup google.com

for live operation

env SELFTEST=1 ./lookup # for unit tests

33 / 34

Unit and Regression Tests (cont.)

Building effective unit tests requires methodical attention to detail:

• The use of assert in the lookup logic is a poor interface, since it

terminates the entire program. How could this be improved?

• The unit tests in lookup test are manually written to enumerate the

allowable inputs. How can we improve this coverage?

• C and C++ have many open-source unit test frameworks available.

Using them gives you access to widely used conventions such as

xUnit that helps you structure your tests.

• Take the opportunity to run your unit tests after every significant

code change to spot unexpected failures (dubbed regression testing).

• Continuous integration runs unit tests against every single code

commit. If using GitHub, then Travis CI

(https://travis-ci.org) will be useful for your projects in any

language.

34 / 34

https://travis-ci.org

Programming in C and C++
Lectures 10–12: C++ for Java and C programmers

D. J. Greaves1

Computer Laboratory, University of Cambridge

Michaelmas Term 2023/24

1Notes based, with thanks, on slides due to Alan Mycroft, Alastair Beresford and

Andrew Moore.
1 / 75

Aims of C++

To quote Bjarne Stroustrup:

“C++ is a general-purpose programming language with a bias towards
systems programming that:

I is a better C

I supports data abstraction

I supports object-oriented programming

I supports generic programming.”

Alternatively: C++ is “an (almost upwards-compatible) extension of C
with support for: classes and objects (including multiple inheritance),
call-by-reference, operator overloading, exceptions and templates
(a richer form of generics)”.

Much is familiar from Java, but with many subtle differences.

2 / 75

What we’ll cover

I Differences between C and C++

I References versus pointers

I Overloaded functions and operators

I Objects in C++; Classes and structs; Destructors; Virtual functions

I Multiple inheritance; Virtual base classes; Casts

I Exceptions

I Templates and metaprogramming

I For exam purposes, focus on ‘big-picture’ novelties and differences
between features of C++ and those in C and Java.

I For coding, sorry but compilers insist you get it exactly right.

3 / 75

Reference sources

C++ is a big language with many subtleties. The current draft C++20
standard is 1841 pages (457 for the C++ language and 1152 for the C++
Standard Library; the grammar alone is 21 pages)!

https://isocpp.org/ The ISO standard. Published standards cost money
but draft standards are free online, e.g. draft C++20 on
https://isocpp.org/files/papers/N4860.pdf

https://cppreference.com Wiki-book attempt to track standard.

https://learncpp.com More-chatty tutorial-style articles.

https://www.stroustrup.com Entertaining and educational articles by the
creator of C++.

These are useful when wanting to know more about exactly how things
(e.g. lambdas, overloading resolution) work, they are not necessary for
exam purposes!

4 / 75

How to follow these three lectures

I These slides try capture the core features of C++, so that afterwards
you will be able to read C++ code, and tentatively modify it.
The Main ISO C++ versions are: C++98, C++11, C++20; we’ll
focus on core features—those in C++98.

I But C++ is a very complex language, so these slides are incomplete,
even if they uncomfortably large.

I For exam purposes the fine details don’t matter, it’s more important
to get the big picture, which I’ll try to emphasise in lectures.

5 / 75

Should I program my application in C or C++?
Or both or neither?

I One aim of these lectures is to help you decide.
I C and C++ both have very good run-time performance
I C++ has more facilities, but note Bjarne Stroustrup’s quote:

“C makes it easy to shoot yourself in the foot; C++ makes it harder,
but when you do it blows your whole leg off.”

I Even if C++ is a superset of C then mixing code is risky, e.g.
I you don’t want two conflicting IO libraries being active,
I you often program using different metaphors in C and C++
I C functions may not expect an exception to bypass their tidy-up code
I Using C-coded stand-alone libraries in C++ is fine.

I C++ vs. Java? Speed vs. safety? More vs. fewer features? Java is
trying to follow C++ (and C#) by having value types
(objects/structs as values not just references).

Decide C or C++ at the start of a project.
6 / 75

C++ Types [big picture]

C++ types are like C types, but additionally:

I character literals (e.g. ’a’) are type char (but int in C)

I new type bool (values true and false)

I reference types: new type constructor &, so can have
int x, *y, &z;

I enum types are distinct (not just synonyms for integers)

I new type constructor class (generalising struct in C)

I names for enum, class, struct and union can be used directly as
types (C needs an additional typedef)

I member functions (methods) can specify this to be const.

Many of the above changes are ‘just what you expect from programming
in Java’.

7 / 75

C++ auto and thread local

C’s storage classes are auto, extern, static, register. In C++:

I auto is reused in initialised definitions to mean ‘the type of the
initialising expression’, e.g. auto x = foo(3);

I thread_local is an additional storage class, e.g.
static int x = 4; thread_local int y = 5;

I register is removed since C++17.

8 / 75

C++ booleans

I type bool has two values: true and false

I When cast to an integer, true→1 and false→0

I When casting from an integer, non-zero values become true and zero
becomes false (NB: differs from enum, see next slide).

9 / 75

C++ enumeration

I Unlike C, C++ enumerations define a new type; for example

enum flag {is_keyword=1, is_static=2, is_extern=4, ... }

I When defining storage for an instance of an enumeration, you use its
name; for example: flag f = is_keyword;

I Implicit type conversion is not allowed:
f = 5; //wrong f = flag(5); //right(!!)

I Subtlety: Why is 5 ‘right’ (but 8 would be wrong)? Answer: C++
rules to ensure ‘bitmaps’ work:
I The maximum valid value of an enumeration is the enumeration’s

largest value rounded up to the nearest larger binary power minus one
I The minimum valid value of an enumeration with no negative values is

zero
I The minimum valid value of an enumeration with negative values is the

nearest least negative binary power

10 / 75

References

C++ references provide an alternative name (alias) for a variable

I Generally used for specifying parameters to functions and return
values as well as overloaded operators (more later)

I A reference is declared with the & operator; compare:
int i[] = {1,3}; int &refi = i[0]; int *ptri = &i[0];

I A reference must be initialised when it is declared

I The connection between a reference and what it refers to cannot be
changed after initialisation; for example:
refi++; // increments value referenced to 2

ptri++; // increments the pointer to &i[1]

Think of reference types as pointer types with implicit * at every use.
Subtlety (non-examinable): C++11 added ‘rvalue references’, e.g.
int &&lvr, useful in copy constructors (see later).

11 / 75

References in function arguments
I When used as a function parameter, a referenced value is not copied;

for example:
void inc(int& i) { i++;}

I Declare a reference as const when no modification takes place
I It can be noticeably more efficient to pass a large struct by reference
I Implicit type conversion into a temporary takes place for a const

reference but results in an error otherwise; for example:

1 float fun1(float&);

2 float fun2(const float&);

3 void test() {

4 double v=3.141592654;

5 fun1(v); // Wrong

6 fun2(v); // OK, but beware the temporary’s lifetime.

7 fun1((float)v); /* Wrong: a non-const reference should

8 not reference a temporary. */

9 }

I Cf. Fortran call-by-reference, also Pascal, Scala, etc..
12 / 75

Overloaded functions

I Just like Java we can define two functions with the same name, but
varying in argument types (for good style functions doing different
things should have different names).

I Type conversion is used to find the “best” match

I A best match may not always be possible:

1 void f(double);

2 void f(long);

3 void test() {

4 f(1L); // f(long)

5 f(1.0); // f(double)

6 f(1); // Wrong: f(long(1)) or f(double(1)) ?

I Can also overload built-in operators, such as assignment and equality.

Applies both to top-level functions and member functions (methods).

13 / 75

Scoping and overloading

I Overloading does not apply to functions declared in different scopes;
for example:

1 void f(int);

2

3 void example() {

4 void f(double);

5 f(1); //calls f(double);

6 }

14 / 75

Default function arguments

I A function can have default arguments; for example:
double log(double v, double base=10.0);

I A non-default argument cannot come after a default; for example:
double log(double base=10.0, double v); //wrong

I A declaration does not need to name the variable; for example:
double log(double v, double=10.0);

I Be careful of the lexical interaction between * and =; for example:
void f(char*=0); // Wrong: ’*=’ is assignment

15 / 75

Namespaces

Related data can be grouped together in a namespace. Can use :: and
using to access components. Think Java packages.

namespace Stack { //header file

void push(char);

char pop();

}

void f() { //usage

...

Stack::push(’c’);

...

}

namespace Stack { //implementation

const int max_size = 100;

char s[max_size];

int top = 0;

void push(char c) { ... }

char pop() { ... }

}

16 / 75

Example
1 namespace Module1 {int x;}

2

3 namespace Module2 {

4 inline int sqr(const int& i) {return i*i;}

5 inline int halve(const int& i) {return i/2;}

6 }

7

8 using namespace Module1; //"import" everything

9

10 int main() {

11 using Module2::halve; //"import" the halve function

12 x = halve(x);

13 sqr(x); //Wrong

14 }

(Non-examinable: C++20 adds module constructs giving more control
over name visibility. Think Java 9 ‘modules’, while namespaces are more
like Java ‘packages’.)

17 / 75

Using namespaces

I A namespace is a scope and expresses logical program structure

I It provides a way of collecting together related pieces of code

I A namespace without a name limits the scope of variables, functions
and classes within it to the local execution unit

I The same namespace can be declared in several source files

I A namespace can be defined more than once
I Allows, for example, internal and external library definitions

I The use of a variable or function name from a different namespace
must be qualified with the appropriate namespace(s)
I The keyword using allows this qualification to be stated once, thereby

shortening names
I Can also be used to generate a hybrid namespace
I typedef can be used: typedef Some::Thing thing;

I The global function main() cannot be inside a namespace

18 / 75

Linking C and C++ code
I The directive extern "C" specifies that the following declaration or

definition should be linked as C, not C++, code:
extern "C" int f();

I Multiple declarations and definitions can be grouped in curly brackets:

1 extern "C" {

2 int globalvar; //definition

3 int f();

4 void g(int);

5 }

Why do we need this?

I ‘Name mangling’ for overloaded functions. A C compiler typically
generates linker symbol ‘_f’ for f above, but (in the absence of
extern "C") a C++ compiler typically generates ‘__Z1fv’.

I Function calling sequences may also differ (e.g. for exceptions).

19 / 75

Linking C and C++ code

I What if I want to write a library in C, and specify it via mylib.h

which is importable into both C and C++?

I Use conditional compilation (#ifdef) in mylib.h, e.g.

1 #ifdef __cplusplus

2 extern "C" void myfn(int, bool);

3 #else

4 # include <stdbool.h> // Ensure type bool defined in C

5 extern void myfn(int, bool);

6 #endif

20 / 75

Linking C and C++ code

I Care must be taken with pointers to functions and linkage:

1 extern "C" void qsort(void* p, \

2 size_t nmemb, size_t size, \

3 int (*compar)(const void*, const void*));

4

5 int compare(const void*,const void*);

6

7 char s[] = "some chars";

8 qsort(s,9,1,compare); //Wrong

21 / 75

Big Picture

So far we’ve only done minor things.

I We’ve seen C++ extensions to C. But, apart from reference types,
nothing really new has appeared that’s beyond Java concepts.

I Now for classes and objects, which look the same, but aren’t . . .

22 / 75

Classes and objects in C++
C++ classes are somewhat like Java:

I Classes contain both data members and member functions (methods)
which act on the data; they can extend (syntax ‘:’) other classes.

I Members can be static (i.e. per-class)

I Members have access control: private, protected and public

I Classes are created with class or struct keywords
I struct members default to public access; class to private

I A member function with the same name as a class is called a
constructor

I Can use overloading on constructors and member functions.

But also:

I A member function with the same name as the class, prefixed with a
tilde (~), is called a destructor

23 / 75

Classes and objects: big differences from Java

I Values of class types are not references to objects, but the objects
themselves. So we access members with C-style ‘.’ (but using ‘->’ is
more convenient when we have pointers to objects).

I We can create an object of class C, either by:
I on the stack (or globally) by declaring a variable: C x;
I on the heap: new C() (returns a pointer to C)

I Member functions (methods) by default are statically resolved. For
Java-like code declare them virtual

I Member functions can be declared inside a class but defined outside it
using ‘::’ (the scope-resolution operator)

I C++ uses new to allocate and delete to de-allocate. There is no
garbage collector—users must de-allocate heap objects themselves.

24 / 75

Example (emphasising differences from Java)
1 class Complex {

2 double re, im; // private by default

3 public:

4 Complex(double r=0.0, double i=0.0);

5 };

6

7 Complex::Complex(double r,double i) : re(r), im(i) {

8 // preferred form, necessary for const fields

9 }

10

11 Complex::Complex(double r,double i) {

12 re=r, im=i; // deprecated initialisation-by-assignment

13 }

14

15 int main() {

16 Complex c(2.0), d(), e(1,5.0);

17 return 0;

18 } // local objects c,d,e are deallocated on scope exit

25 / 75

New behaviours w.r.t. Java

In Java constructors are only used to initialise heap storage, and the only
way we can update a field of an object is by x.f = e;.

In C++ having object values as first-class citizens gives more behaviours.
Consider the following, given class C

C x; // how is x initialised? (default constructor)

C y = x; // how is y initialised? (copy constructor)

x = y; // what does the assignment do? (assignment operator)

// what happens to x,y on scope exit? (destructor)

For C structs, these either perform bit copies or leave x uninitialised.

C++ class definitions may need to control the above behaviours to
preserve class invariants and object encapsulation.

26 / 75

Constructors and destructors
I A default constructor is a function with no arguments (or only default

arguments)

I The programmer can specify one or more constructors, but as in Java,
only one is called when an object is created.

I If no constructors are specified, the compiler generates a default
constructor (which does does as little initialisation as possible).

I To forbid users of a class from using a default constructor then define
it explicitly and declare it private.

I There can only be one destructor
I This is called when a stack-allocated object goes out of scope

(including when an exception causes this to happen—see later) or
when a heap-allocated object is deallocated with delete;

I Stack-allocated objects with destructors are a useful way to release
resources on scope exit (similar effect as Java try-finally) – “RAII:
Resource Acquisition is Initialisation”.

I Make destructors virtual if class has subtypes or supertypes.

27 / 75

Copy constructor

I A new class instance can be defined by initialisation; for example:

1 Complex c(1,2); // note this C++ initialiser syntax;

2 // it calls the two-argument constructor

3 Complex d = c; // copy constructor called

I In the second case, by default object d is initialised with copies of all
of the non-static member variables of c; no constructor is called

I If this behaviour is undesirable (e.g. consider a class with a pointer as
a member variable) define your own copy constructor:
I Complex::Complex(const Complex&) { ... }

I To forbid users of a class from copying objects, make the copy
constructor a private member function, or in C++11 use delete.

I Note that assignment, e.g. d = c; differs differs from initialisation
and does not use the copy constructor—see next slide.

28 / 75

Assignment operator

I By default a class is copied on assignment by over-writing all
non-static member variables; for example:

1 Complex c(), d(1.0,2.3);

2 c = d; //assignment

I This behaviour may also not be desirable (e.g. you might want to tidy
up the object being over-written).

I The assignment operator (operator=) can be defined explicitly:

1 Complex& Complex::operator=(const Complex& c) {

2 ...

3 }

I Note the result type of assignment, and the reference-type parameter
(passing the argument by value would cause a copy constructor to be
used before doing the assignment, and also be slower).

29 / 75

Constant member functions

I Member functions can be declared const

I Prevents object members being modified by the function:

1 double Complex::real() const {

2 // forbidden to modify ’re’ or ‘this->re’ here

3 return re;

4 }

I The syntax might appear odd at first, but note that const above
merely qualifies the (implicit/hidden) parameter ‘this’. So here this

is effectively declared as const Complex *this instead of the usual
Complex *this.

I Helpful to both programmer (maintenance) and compiler (efficiency).

30 / 75

Arrays and heap allocation
I An array of class objects can be defined if a class has a default

constructor

I C++ has a new operator to place items on the heap:
Complex* c = new Complex(3.4);

I Items on the heap exist until they are explicitly deleted:
delete c;

I Since C++ (like C) doesn’t distinguish between a pointer to a single
object and a pointer to an the first element of an array of objects,
array deletion needs different syntax:

1 Complex* c = new Complex[5];

2 ...

3 delete[] c; //Using "delete" is wrong here

I When an object is deleted, the object destructor is invoked

I When an array is deleted, the object destructor is invoked on each
element

31 / 75

Exercises
1. Write an implementation of a class LinkList which stores zero or

more positive integers internally as a linked list on the heap. The
class should provide appropriate constructors and destructors and a
method pop() to remove items from the head of the list. The method
pop() should return -1 if there are no remaining items. Your
implementation should override the copy constructor and assignment
operator to copy the linked-list structure between class instances. You
might like to test your implementation with the following:

1 int main() {

2 int test[] = {1,2,3,4,5};

3 LinkList l1(test+1,4), l2(test,5);

4 LinkList l3=l2, l4;

5 l4=l1;

6 printf("%d %d %d\n",l1.pop(),l3.pop(),l4.pop());

7 return 0;

8 }

Hint: heap allocation & deallocation should occur exactly once!
32 / 75

Operators
I C++ allows the programmer to overload the built-in operators

I For example, a new test for equality:

1 bool operator==(Complex a, Complex b) {

2 return a.real()==b.real() && a.imag()==b.imag();

3 // presume real() is an accessor for field ’re’, etc.

4 }

I An operator can be defined or declared within the body of a class,
and in this case one fewer argument is required; for example:

1 bool Complex::operator==(Complex b) {

2 return re==b.real() && im==b.imag();

3 }

I Almost all operators can be overloaded, including address-taking,
assignment, array indexing and function application.
It’s probably bad practice to define ++x and x+=1 to have different
meanings!

33 / 75

Streams
I Overloaded operators also work with built-in types
I Overloading is used to define << (C++’s “printf”); for example:

1 #include <iostream>

2

3 int main() {

4 const char* s = "char array";

5

6 std::cout << s << std::endl;

7

8 //Unexpected output; prints &s[0]

9 std::cout.operator<<(s).operator<<(std::endl);

10

11 //Expected output; prints s

12 std::operator<<(std::cout,s);

13 std::cout.operator<<(std::endl);

14 return 0;

15 }

I Note std::cin, std::cout, std::cerr
34 / 75

The ‘this’ pointer

I If an operator is defined in the body of a class, it may need to return
a reference to the current object
I The keyword this can be used

I For example:

1 Complex& Complex::operator+=(Complex b) {

2 re += b.real();

3 this->im += b.imag();

4 return *this;

5 }

I In C (or assembler) terms this is an implicit argument to a method
when seen as a function.

35 / 75

Class instances as member variables

I A class can have an instance of another class as a member variable

I How can we pass arguments to the class constructor?

I New C++ syntax for constructors:

1 class Z {

2 Complex c;

3 Complex d;

4 Z(double x, double y): c(x,y), d(y) {

5 ...

6 }

7 };

I This notation must be used to initialise const and reference members

I It can also be more efficient

36 / 75

Temporary objects — Not examinable
I Temporary objects are often created during execution

I A temporary which is not bound to a reference or named object exists
only during evaluation of a full expression (BUGS BUGS BUGS!)

I Example: the C++ string class has a function c_str() which
returns a pointer to a C representation of a string:

1 string a("A "), b("string");

2 const char *s1 = a.c_str(); //OK

3 const char *s2 = (a+b).c_str(); //Wrong

4 ...

5 //s2 still in scope here, but the temporary holding

6 //"a+b" has been deallocated

7 ...

8 string tmp = a+b;

9 const char *s3 = tmp.c_str(); //OK

C++11 added rvalue references && to help address this issue.
37 / 75

Friend Classes and Functions

I If, within a class C, the declaration friend class D; appears, then D

is allowed to access the private and protected members of C.

I A top-level function can be declared friend to allow it to access the
private and protected members of the enclosing class, e.g.

1 class Matrix {

2 ...

3 friend Vector multiply(const Matrix&, const Vector&);

4 ...

5 };

6 }

This code allows multiply to access the private fields of Matrix, even
though it is defined elsewhere.

I Mental model: granting your lawyer rights to access your private
papers. Note that friendship isn’t symmetric.

38 / 75

Inheritance

I C++ allows a class to inherit features of another:

1 class vehicle {

2 int wheels;

3 public:

4 vehicle(int w=4):wheels(w) {}

5 };

6

7 class bicycle : public vehicle {

8 bool panniers;

9 public:

10 bicycle(bool p):vehicle(2),panniers(p) {}

11 };

12

13 int main() {

14 bicycle(false);

15 }

39 / 75

Derived member function call
ie. when we call a function overridden in a subclass.

I Default derived member function call semantics differ from Java:

1 // example13.hh

2

3 class vehicle {

4 int wheels;

5 public:

6 vehicle(int w=4):wheels(w) {}

7 int maxSpeed() {return 60;}

8 };

9

10 class bicycle : public vehicle {

11 bool panniers;

12 public:

13 bicycle(bool p=true):vehicle(2),panniers(p) {}

14 int maxSpeed() {return panniers ? 12 : 15;}

15 };

40 / 75

Example

1 #include <iostream>

2 #include "example13.hh"

3

4 void print_speed(vehicle &v, bicycle &b) {

5 std::cout << v.maxSpeed() << " ";

6 std::cout << b.maxSpeed() << std::endl;

7 }

8

9 int main() {

10 bicycle b = bicycle(true);

11 print_speed(b,b); //prints "60 12"

12 }

41 / 75

Virtual functions

I Non-virtual member functions are called depending on the static type
of the variable, pointer or reference

I Since a pointer to a derived class can be cast to a pointer to a base
class, calls at base class do not see the overridden function.

I To get polymorphic behaviour, declare the function virtual in the
superclass:

1 class vehicle {

2 int wheels;

3 public:

4 vehicle(int w=4):wheels(w) {}

5 virtual int maxSpeed() {return 60;}

6 };

42 / 75

Virtual functions

I In general, for a virtual function, selecting the right function has to be
run-time decision; for example:

1 bicycle b(true);

2 vehicle v;

3 vehicle* pv;

4

5 user_input() ? pv = &b : pv = &v;

6

7 std::cout << pv->maxSpeed() << std::endl;

8 }

43 / 75

Enabling virtual functions

I To enable virtual functions, the compiler generates a virtual function
table or vtable

I A vtable contains a pointer to the correct function for each object
instance

I Indirect (virtual) function calls are slower than direct function calls.

I Question: virtual function calls are compulsory in Java; is C++’s
additional choice of virtual/non-virtual calls good for efficiency or bad
for being an additional source of bugs?

I C++ vtables also contain an encoding of the class type: ‘run-time
type information’ (RTTI). Syntax typeid(e) gives the type of e
encoded as an object of type_info which is defined in standard
header <typeinfo>.

44 / 75

Abstract classes

I Just like Java except for syntax.

I Sometimes a base class is an un-implementable concept

I In this case we can create an abstract class:

1 class shape {

2 public:

3 virtual void draw() = 0;

4 }

I It is forbidden to instantiate an abstract class:
shape s; //Wrong

I A derived class can provide an implementation for some (or all) the
abstract functions

I A derived class with no abstract functions can be instantiated

I C++ has no equivalent to Java ‘implements interface’.

45 / 75

Example

1 class shape {

2 public:

3 virtual void draw() = 0;

4 };

5

6 class circle : public shape {

7 public:

8 //...

9 void draw() { /* impl */ }

10 };

46 / 75

Multiple inheritance

I It is possible to inherit from multiple base classes; for example:

1 class ShapelyVehicle: public vehicle, public shape {

2 ...

3 }

I Members from both base classes exist in the derived class

I If there is a name clash, explicit naming is required

I This is done by specifying the class name; for example:
ShapelyVehicle sv;

sv.vehicle::maxSpeed();

47 / 75

Multiple instances of a base class

I With multiple inheritance, we can build:

1 class A { int var; };

2 class B : public A {};

3 class C : public A {};

4 class D : public B, public C {};

I This means we have two instances of A even though we only have a
single instance of D

I This is legal C++, but means all accesses to members of A within a D

must be stated explicitly:

1 D d;

2 d.B::var=3;

3 d.C::var=4;

48 / 75

Virtual base classes

I Alternatively, we can have a single instance of the base class

I Such a “virtual” base class is shared amongst all those deriving from it

1 class Vehicle {int VIN;};

2 class Boat : public virtual Vehicle { ... };

3 class Car : public virtual Vehicle { ... };

4 class JamesBondCar : public Boat, public Car { ... };

I Multiple inheritance is often regarded as problematic, and one of the
reasons for Java creating interface.

49 / 75

Casts in C++
I In C, casts play multiple roles, e.g. given double *p

1 int i = (int)*p; // well-defined, safe

2 int j = *(int *)p; // undefined behaviour

I In C++ the role of constructors and casts overlap. Given double x

consider (slide 25 defines Complex):

1 Complex c1(x,0); // C++ initialisation syntax

2 Complex c2 = Complex(x); // beware (two constructors?)

3 Complex c3 = x; // OK, but ’explicit’ would forbid

4 int i0 = (int)x; // classic C syntax

5 int i1(x); // C++ initialisation syntax

6 int i2 = int(x); // C++ constructor syntax for cast

7 int i3 = x; // implicit cast

I c3 is OK—the Complex constructor can take one argument. Declare
the constructor explicit if you want to disallow c3 (but not c2).
Compare i3, some languages might forbid this.

50 / 75

Casts from a class type

What if I want to write either of the following:

1 Complex c;

2 double d1 = (double)c; // explicit cast

3 double d2 = c; // implicit cast

These are faulted by the type checker.

Answer: overload operator double() for class Complex:

1 Class Complex {

2 ...

3 operator double() const { return re; }

4 }

Adding qualifier explicit requires casts to be explicit, allowing d1 but
forbidding d2.

51 / 75

Casts in C++ (new forms)

Downsides of C-style casts:

I hard to find (and classify) using a text editor in C or Java.

I they do no checking (cf. Java downcasts)

C++ encourages the more-descriptive forms:

I dynamic_cast<T>(e): like Java reference casts: run-time checks when
casting pointers within an inheritance hierarchy. This uses RTTI.

I static_cast<T>(e): nearest to C—best efforts at compile time, e.g.
static_cast<int>(3.14).

I reinterpret_cast<T>(e): to explicitly flag re-use of bit patterns.

I const_cast<T>(e): remove const (or volatile) from a type, to
modify something the type says you can’t!

52 / 75

Pointer casts and multiple inheritance

C-style casts (C1 *)p (and indeed static_cast<C1 *>(p)) are risky in an
inheritance hierarchy when multiple inheritance or virtual bases are used;
the compiler must be able to see the inheritance tree otherwise it might
not compile the right operation (casting to a superclass might require an
addition or indirection).

Java single inheritance means that storage for a base class is always at
offset zero in any subclass, making casting between references a no-op
(albeit with a run-time check for a downcast).

53 / 75

Exercises

1. If a function f has a static instance of a class as a local variable,
when might the class constructor be called?

2. Write a class Matrix which allows a programmer to define 2× 2
matrices. Overload the common operators (e.g. +, -, *, and /)

3. Write a class Vector which allows a programmer to define a vector of
length two. Modify your Matrix and Vector classes so that they
inter-operate correctly (e.g. v2 = m*v1 should work as expected)

4. Why should destructors in an abstract class almost always be declared
virtual?

54 / 75

Exceptions

Just like Java, but you normally throw an object value rather than an
object reference:

I Some code (e.g. a library module) may detect an error but not know
what to do about it; other code (e.g. a user module) may know how
to handle it

I C++ provides exceptions to allow an error to be communicated

I In C++ terminology, one portion of code throws an exception;
another portion catches it.

I If an exception is thrown, the call stack is unwound until a function is
found which catches the exception

I If an exception is not caught, the program terminates

C++ has no try-finally (use local variables having destructors – RAII).

55 / 75

Throwing exceptions

I Exceptions in C++ are just normal values, matched by type

I A class is often used to define a particular error type:
class MyError {};

I An instance of this can then be thrown, caught and possibly
re-thrown:

1 void f() { ... throw MyError(); ... }

2 ...

3 try {

4 f();

5 }

6 catch (MyError) {

7 //handle error

8 throw; //re-throw error

9 }

56 / 75

Conveying information

I The “thrown” type can carry information:

1 struct MyError {

2 int errorcode;

3 MyError(i):errorcode(i) {}

4 };

5

6 void f() { ... throw MyError(5); ... }

7

8 try {

9 f();

10 }

11 catch (MyError x) {

12 //handle error (x.errorcode has the value 5)

13 ...

14 }

57 / 75

Handling multiple errors

I Multiple catch blocks can be used to catch different errors:

1 try {

2 ...

3 }

4 catch (MyError x) {

5 //handle MyError

6 }

7 catch (YourError x) {

8 //handle YourError

9 }

I The wildcard syntax catch(...) catches all exceptions but
discouraged in practice (what have you caught?)

I Class hierarchies can be used to express exceptions. BUT, they need
RTTI for the following code to work (the virtual function in
SomeError causes it to have a vtable—and hence RTTI):

58 / 75

1 #include <iostream>

2

3 struct SomeError {virtual void print() = 0;};

4 struct ThisError : public SomeError {

5 virtual void print() {

6 std::cout << "This Error" << std::endl;

7 }

8 };

9 struct ThatError : public SomeError {

10 virtual void print() {

11 std::cout << "That Error" << std::endl;

12 }

13 };

14 int main() {

15 try { throw ThisError(); }

16 catch (SomeError& e) { //reference, not value

17 e.print();

18 }

19 return 0;

20 }

59 / 75

Exceptions and local variables [important]

I When an exception is thrown, the stack is unwound

I The destructors of any local variables are called as this process
continues

I Therefore it is good C++ design practice to wrap any locks, open file
handles, heap memory etc., inside stack-allocated object(s), with
constructors doing allocation and destructors doing deallocation. This
design pattern is analogous to Java’s try-finally, and is often referred
to as “RAII: Resource Acquisition is Initialisation”.

60 / 75

Templates

I Templates support metaprogramming, where code can be evaluated
at compile time rather than run time

I Templates support generic programming by allowing types to be
parameters in a program

I Generic programming means we can write one set of algorithms and
one set of data structures to work with objects of any type

I We can achieve some of this flexibility in C, by casting everything to
void * (e.g. sort routine presented earlier), but at the cost of losing
static checking.

I The C++ Standard Library makes extensive use of templates

I C++ templates are similar to, but richer than, Java generics.

61 / 75

Templates – big-picture view (TL;DR)

I Templates are like Java generics, but can have both type and value
parameters:
template <typename T, int max>class Buffer { T[max] v; int n;};

I You can also specify ‘template specialisations’, special cases for
certain types (think compile-time pattern matching).

I This gives lots of power (Turing-powerful) at compile time:
‘metaprogramming’.

I Top-level functions can also be templated, with ML-style inference
allowing template parameters to be omitted, given

1 template<typename T> void sort(T a[], const unsigned& len);

2 int a[] = {2,1,3};

then sort(a,3) ≡ sort<int>(a,3)

I The rest of the slides explore the details.

62 / 75

An example: a generic stack [revision]

I The stack data structure is a useful data abstraction concept for
objects of many different types

I In one program, we might like to store a stack of ints

I In another, a stack of NetworkHeader objects

I Templates allow us to write a single generic stack implementation for
an unspecified type T

I What functionality would we like a stack to have?
I bool isEmpty();
I void push(T item);
I T pop();
I . . .

I Many of these operations depend on the type T

[Just like Java so far.]

63 / 75

Template for Stack

I A class template is defined in the following manner:

template<typename T> class Stack { ... }

or equivalently (using historical pre-ISO syntax)

template<class T> class Stack { ... }

I Instantiating such a Stack is syntactically like Java, so (e.g.) we can
declare a variable by Stack<int> intstack;.

I Note that template parameter T can in principle be instantiated to
any C++ type (here int). Java programmers: note Java forbids
List<int> (generics cannot use primitive types); this is a good reason
to prefer syntax template <typename T> over template <class T>.

I We can then use the object as normal: intstack.push(3);

I So, how do we implement Stack?
I Write T whenever you would normally use a concrete type

64 / 75

1 // example16.hh

2

3 template<typename T> class Stack {

4

5 struct Item { //class with all public members

6 T val;

7 Item* next;

8 Item(T v) : val(v), next(0) {}

9 };

10 Item* head;

11 // forbid users being able to copy stacks:

12 Stack(const Stack& s) {} //private

13 Stack& operator=(const Stack& s) {} //private

14 public:

15 Stack() : head(0) {}

16 ~Stack(); // should generally be virtual

17 T pop();

18 void push(T val);

19 void append(T val);

20 };

65 / 75

1 // sample implementation and use of template Stack:

2

3 #include "example16.hh"

4

5 template<typename T> void Stack<T>::append(T val) {

6 Item **pp = &head;

7 while(*pp) {pp = &((*pp)->next);}

8 *pp = new Item(val);

9 }

10

11 //Complete these as an exercise

12 template<typename T> void Stack<T>::push(T) {/* ... */}

13 template<typename T> T Stack<T>::pop() {/* ... */}

14 template<typename T> Stack<T>::~Stack() {/* ... */}

15

16 int main() {

17 Stack<char> s;

18 s.push(’a’), s.append(’b’), s.pop();

19 }

66 / 75

Template richer details

I A template parameter can take an integer value instead of a type:
template<int i> class Buf { int b[i]; ... };

I A template can take several parameters:
template<typename T,int i> class Buf { T b[i]; ... };

I A template parameter can be used to declare a subsequent parameter:
template<typename T, T val> class A { ... };

I Template parameters may be given default values

1 template <typename T,int i=128> struct Buffer{

2 T buf[i];

3 };

4

5 int main() {

6 Buffer<int> B; //i=128

7 Buffer<int,256> C;

8 }

67 / 75

Templates behave like macros

I A templated class is not type checked until the template is
instantiated:
template<typename T> class B {const static T a=3;};
I B<int> b; is fine, but what about B<B<int> > bi;?

Historically, template expansion behaved like macro expansion and
could give rise to mysterious diagnostics for small errors; C++20 adds
syntax for concept to help address this.

I Template definitions often need to go in a header file, since the
compiler needs the source to instantiate an object

Java programmers: in Java generics are implemented by “type erasure”.
Every generic type parameter is replaced by Object so a generic class
compiles to a single class definition. Each call to a generic method has
casts to/from Object inserted—these can never fail at run-time.

68 / 75

Template specialisation
I The typename T template parameter will accept any type T

I We can define a specialisation for a particular type as well (effectively
type comparison by pattern-matching at compile time)

1 #include <iostream>

2 class A {};

3

4 template<typename T> struct B {

5 void print() { std::cout << "General" << std::endl;}

6 };

7 template<> struct B<A> {

8 void print() { std::cout << "Special" << std::endl;}

9 };

10 int main() {

11 B<A> b1;

12 B<int> b2;

13 b1.print(); //Special

14 b2.print(); //General

15 }
69 / 75

Templated functions

I A top-level function definition can also be specified as a template; for
example (think ML):

1 template<typename T> void sort(T a[],

2 const unsigned int& len);

I The type of the template is inferred from the argument types:
int a[] = {2,1,3}; sort(a,3); =⇒ T is an int

I The type can also be expressed explicitly:
sort<int>(a,3)

I There is no such type inference for templated classes

I Using templates in this way enables:
I better type checking than using void *
I potentially faster code (no function pointers in vtables)
I larger binaries if sort() is used with data of many different types

70 / 75

1 #include <iostream>

2

3 template<typename T> void sort(T a[], const unsigned int& len) {

4 T tmp;

5 for(unsigned int i=0;i<len-1;i++)

6 for(unsigned int j=0;j<len-1-i;j++)

7 if (a[j] > a[j+1]) //type T must support "operator>"

8 tmp = a[j], a[j] = a[j+1], a[j+1] = tmp;

9 }

10

11 int main() {

12 const unsigned int len = 5;

13 int a[len] = {1,4,3,2,5};

14 float f[len] = {3.14,2.72,2.54,1.62,1.41};

15

16 sort(a,len), sort(f,len);

17 for(unsigned int i=0; i<len; i++)

18 std::cout << a[i] << "\t" << f[i] << std::endl;

19 }

71 / 75

Overloading templated functions

I Templated functions can be overloaded with templated and
non-templated functions

I Resolving an overloaded function call uses the “most specialised”
function call

I If this is ambiguous, then an error is given, and the programmer must
fix by:
I being explicit with template parameters (e.g. sort<int>(...))
I re-writing definitions of overloaded functions

72 / 75

Template specialisation enables metaprogramming
Template metaprogramming means separating compile-time and run-time
evaluation (we use enum to ensure compile-time evaluation of fact<7>).

1 #include <iostream>

2

3 template<unsigned int n> struct fact {

4 enum { value = n * fact<n-1>::value };

5 };

6

7 template <> struct fact<0> {

8 enum { value = 1 };

9 };

10

11 int main() {

12 std::cout << "fact<7>::value = "

13 << (unsigned int)fact<7>::value << std::endl;

14 }

Templates are a Turing-complete compile-time programming language!
73 / 75

Exercises

1. Provide an implementation for:
template<typename T> T Stack<T>::pop(); and
template<typename T> Stack<T>::~Stack();

2. Provide an implementation for:
Stack(const Stack& s); and
Stack& operator=(const Stack& s);

3. Using metaprogramming, write a templated class prime, which
evaluates whether a literal integer constant (e.g. 7) is prime or not at
compile time.

4. How can you be sure that your implementation of class prime has
been evaluated at compile time?

74 / 75

Miscellaneous things [non-examinable]

I C++ annotations [[thing]] – like Java @thing

I C++ lambdas: like Java, but lambda is spelt ‘[]’. E.g.

1 auto addone = [](int x){ return x+1; }

2 std::cout << addone(5);

Lambdas have class type (like Java), and the combination of auto
and overloading the ‘operator()’ makes everything just work.
Placing variables between the ‘[]’ enables access to free variables:
default by rvalue, prefix with ‘&’ for lvalue, e.g. ‘[i,&j]’

I C++20 lets programmers define operator ‘<=>’ (3-way compare) on a
class, and get 6 binary comparisons (‘==, ‘<‘, ‘<=‘ etc.) for free.

I use keyword constexpr to require an expression to be compile-time
evaluable—helps with template metaprogramming.

I use nullptr for new C++ code—instead of NULL or 0, which still
largely work.

75 / 75

