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1 Introduction

Welcome to the P79 module on Cryptography and Protocol Engineering. The goal of this module is to
help you understand the nuts and bolts of the cryptographic algorithms and protocols that underpin much
of the modern world, such as https:// (more precisely, the TLS protocol) that protects your passwords
and credit card numbers from snooping as you send them over the Internet. Without cryptography, any
radio transmission (WiFi, cellular data, . . . ) could easily be intercepted by someone who wants to steal
your data!

However, cryptography also has a reputation of being some kind of magic, or at least impenetrably
complex. Many explanations of it therefore remain quite vague and high-level. In this module you will see
that it’s not magic: it’s just some mathematics that we can implement with code. And to demonstrate
that, you will write the code yourself.

Motivation

▶ The Internet (and hence,
the modern world) would
not function without
cryptography

▶ Cryptography has a
reputation of being
somehow magic

▶ Not magic! But complex
and easy to get wrong

▶ This module aims to
demystify modern
cryptography

Slide 1

1.1 About this module

About this module

▶ Running first time in 2024/25
▶ Thank you for being our guinea pigs :)
▶ Sorry for teething troubles!

▶ Practical orientation: focus on you writing code
▶ Theory (e.g. security proofs) is very important too
▶ Implementation + formalisation would be too much for

one module
▶ Plenty of engineering challenges in implementation

▶ Assessed by lab reports + code submissions
▶ Don’t just write the code, also reflect on it critically
▶ Code need not be production-quality, but you should

explain what would be required to make it so

Slide 2

This module is a practical introduction to implementing cryptographic primitives and protocols, and it
deliberately avoids a more formal, mathematical treatment of the topic. That’s not because formalisation
of cryptography is unimportant – quite the contrary: cryptography is so subtle and error-prone that you
should be very suspicious of any cryptographic algorithm that does not come with a proof of security (and
even a proof doesn’t guarantee that a system is actually secure in practice, e.g. because the proof may
make assumptions that are not guaranteed to be true in practice). However, formalising cryptography
and proving it correct is a very different skill from implementing it, and within the scope of one master’s
module it would be impossible to do justice to both. We’ve therefore chosen to focus on implementation
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and engineering in this module. Maybe we’ll write a separate module on formalizing cryptography in the
future.

A slogan you will often hear in industry is “don’t roll your own crypto!” – and, as a rule of thumb,
this is good advice. There have been far too many examples of cryptographic software written by well-
meaning developers that turned out to be utterly insecure, and you should assume that the same is true
for any code you write as part of this module. In fact, we will deliberately take some implementation
short-cuts in this module in order to make the code easier to understand and to write, even though we
know that those short-cuts probably break the security of the implementation.

However, implementing cryptographic algorithms in order to learn about them and studying other
people’s implementations is very much worthwhile, and “don’t roll your own crypto” shouldn’t discourage
you from doing that. Better advice would be “feel free to roll your own crypto, just make sure that you
(or someone else) never use your experimental code for anything where security matters, unless you get
it professionally audited”. But admittedly that’s not as snappy.

“Don’t roll your own crypto!”

▶ Cryptography implementations are very prone to subtle
flaws that completely break the intended security
properties

▶ Production software (where harm could result if it’s
broken) should use expert-audited, preferably formally
verified code
▶ And those expert audits are not cheap

▶ But if you want to become one of those experts yourself,
reading and writing crypto code is a part of the journey

▶ If you put your code on GitHub, please add a big
warning label!

Slide 3

Module objectives

By the end of this module, you should hopefully. . .

▶ appreciate real-world cryptography

▶ know the mathematical notation and concepts used in
crypto protocols

▶ be able to understand and implement research papers and
crypto standards

▶ use crypto libraries correctly

▶ have tried some attacks on crypto protocols

▶ got a glimpse into recent research

▶ got better at technical writing (through lab reports)

Slide 4

This module is assessed based on the code and lab reports that you submit for each of the three
topics we cover. The deadlines for these submissions are 10 17 Feb 2025, 3 Mar 2025, and 24 Mar 2025
respectively, all at 4pm. Submissions are through Moodle as usual. We aim to give you feedback on your
submission before the next submission is due, so that you can take the feedback on board.

Only your best two out of three marks will count towards your final grade (weighted equally), and
the worst will be ignored. It’s okay not to submit anything for one of the three deadlines (in which case
the other two submissions will be counted), but we recommend that you do submit work for all three
assignments: after all, you’re here to learn, not just to get a grade. Also note that assignments build on
each other, so skipping an earlier assignment will make later assignments harder.
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Assessment

▶ Three lab report + code submissions:

1. Elliptic curve cryptography (10 17 Feb 2025)
2. Authenticated key exchange (3 Mar 2025)
3. Private information retrieval (24 Mar 2025)

▶ The worst of the 3 marks will be discarded; the remaining
2 marks count equally

▶ Discussions with others are allowed, but code and lab
report must be your individual work

▶ We’re happy to answer your questions – please ask!

▶ We aim to get you feedback on one report before the
next is due, so you can take it on board

Slide 5

We will get you started with Python code, and we recommend that you stick with Python as the
language for your code submissions. If you feel strongly about your choice of language you may use
another one, as long as we can test your code via Docker, but keep in mind that if you have problems we
might not be able to help you if you’re working in another language.

Although you will be implementing network protocols, you don’t need to implement the parts of the
system that actually send and receive messages. In fact, your code will be easier to test if you simulate the
network within a single process. However, you should ensure that all data that is sent over the simulated
network is encoded as bytes, since the encoding and decoding of messages is an important part of the
protocol logic.

Code: what you will implement

We will focus on implementing asymmetric cryptography:

▶ For hash functions (e.g. SHA-3) and symmetric ciphers
(e.g. AES), just use a library

▶ For big integer arithmetic, use Python’s built-in integers
▶ NOTE: this is not constant-time

▶ Everything else (e.g. elliptic curves) you will implement
from scratch

▶ Write suitable tests to catch bugs

▶ Tolerate maliciously generated input from the network

▶ Simulate the network within a single process (no need for
real networking, but do encode/decode to bytes)

▶ Don’t bother building user interfaces

Slide 6

Production-quality cryptographic code needs to be written to run safely in a very hostile environment
in which adversaries are actively trying to break it. For example, any message that is received over the
network should be assumed to have been maliciously manipulated, and your code needs to be able to
handle such inputs safely.

However, to keep the scope of this module manageable, we will also take some short-cuts and ignore
some issues that production-quality code would have to deal with. In particular, we will ignore side-
channels, in which an adversary obtains secret information not through the values that are explicitly
returned from your functions, but from side-effects of its execution, such as its timing or its power
consumption. We will also ignore fault injection attacks, in which the hardware is manipulated to
intentionally compute some steps incorrectly.
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Code: how to submit

▶ We provide you with a template for Python

▶ You can use another language (e.g. Rust), but we won’t
be able to help you with it

▶ Submit as a .zip archive that includes at least:
▶ Your code
▶ A Dockerfile that runs your code and tests
▶ A run.sh that builds and starts your Dockerfile
▶ Your lab report

At the end of today’s lecture, we will set up a sample
project together.

Slide 7

Your submission will be a zipped archive that contains everything to run the project. Using Docker
containers ensures that the code not only runs on your machine but also on ours. Importantly, it enforces
that all environmental state such as required dependencies is explicitly managed.

Code: what we look for

▶ Correctness ≫ robustness ≫ performance
▶ Make it easy for us to verify this by including tests with

known input output pairs

▶ Tests

▶ Design of your API: typing, error handling, naming,
consistency

▶ Documentation: high-level picture, do not comment
every line, make meaningful comments, API language
should be self-documenting

▶ Well-motivated extensions and comparisons:
benchmarking, interesting testing approaches,
compatibility with other libraries, extra hardening,
side-channel resistance, . . .

Slide 8

We expect that you write high quality code focusing on correctness and robustness foremost. Dif-
ferently to some other courses, we do not provide you with a set API—designing a good one is one of
your important tasks. Performance is not a central concern, but it will be interesting to compare your
implementation with others and to show you understand what parts of the code are slow and would
benefit from optimizing.

Submissions with high grades will have well-motivated extensions and comparisons. Extensions might
develop the basic task in a meaningful direction (e.g. making it more robust or flexible). Comparisons
might compare two implementation variants you have considered or critically compare your API against
those of existing libraries. We encourage all original ideas that are related to the topics of this course.

5



Lab reports

Remember, kids: the only difference between screwing
around and science is writing it down.
– Adam Savage

2,000 words, explaining key aspects of your code:

▶ How it works

▶ Why it’s correct

▶ Any findings from your work (e.g. limitations or trade-offs
you found)

▶ What you’d need to change to make it production-quality

▶ Other insights, e.g. how it compares with other
implementations (performance or otherwise)

Opportunity for your critical insights and creativity!

Slide 9

Although you will submit your code, an equally important part of each assignment is the lab report
that you submit. You need to write the code in order to be able to write the report, but writing the
report is how you really think through the topic. It’s how you communicate what you’ve done, document
any weaknesses of your code, and explain how they might be fixed.

Since master’s modules are expected to include a research element, grades in the upper bands are
awarded not just for correctness, but for critical thought and significant creative insights. For that reason
we don’t have a fixed structure for lab reports: we want to leave space for you to bring in your own ideas.
We also highly value the clarity of your explanations, so it’s worth investing some time to make sure the
report is well written.

Lab report requirements

Written in LaTeX

No fixed structure, but should contain:

▶ Explanation of core ideas behind your code

▶ How do you know that it is correct?
▶ Minimum acceptable: “I copied it from the RFC”
▶ Better: tests, types, derived formulas yourself
▶ Ideal (but not required for this module): formal proof

▶ References to relevant literature
(citations not included in word limit)

Assessment criteria:

▶ Correctness and clarity of explanations

▶ Critical reflection

▶ High marks require significant creative insight

Slide 10
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Recommended reading

We don’t know of a textbook that covers the material in this
module.

No required reading, but if you want a bit more background
(earlier editions are fine too; check the library):

▶ More practical: Jean-Philippe Aumasson. Serious
Cryptography, 2nd Edition. No Starch Press, 2024.

▶ More formal: Jonathan Katz and Yehuda Lindell.
Introduction to Modern Cryptography, 3rd edition. CRC
Press, 2020.

▶ On elliptic curves: Darrel Hankerson, Alfred Menezes,
and Scott Vanstone. Guide to Elliptic Curve
Cryptography. Springer, 2004.

▶ References in the lecture notes

Slide 11

1.2 Basic cryptography recap

This module assumes that you have already taken an introductory course in cryptography, and that
you are already familiar with the basic primitives such as hash functions, symmetric ciphers, public-key
encryption, Diffie-Hellman, and signatures. This section will give a brief recap of things you hopefully
already know. If not, please catch up quickly, e.g. using the books listed on Slide 11!

We will also see our first few code examples. Please install Python and the PyNaCl library, as shown
on Slide 12, so that you can play around with them.

Basic cryptography recap

Hope you already know (roughly) what SHA-256, AES-GCM,
and Diffie-Hellman are. . .

▶ Let’s quickly recap the core primitives and their security
properties.

▶ Let’s also get you writing code that uses those primitives
(provided by crypto libraries).

▶ We will use PyNaCl (Python wrapper for libsodium).

▶ PyCryptodome is also popular

Setup for the code examples:

brew install python # or equivalent on your OS

python3 -m venv .venv # creates subdirectory ".venv"

source .venv/bin/activate

pip install pynacl

Slide 12

Hash functions are perhaps the easiest-to-use cryptographic construct, since they don’t involve any
secrets. Several common cryptographic hash functions are available in the Python standard library, and
don’t even require installing any additional libraries.
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Hash functions

H(x) takes an arbitrary-length bit string x and returns a
fixed-length bit string

▶ e.g. SHA-256, SHA-3, BLAKE2/3

▶ Preimage resistance: given H(x) you can only find x
by trying all possible values of x

▶ Collision resistance: computationally infeasible to find
x ̸= y such that H(x) = H(y)

▶ Birthday paradox: need O(
√
2n) = O(2n/2)

computation to find a collision in an n-bit hash function

from hashlib import sha256 # Python standard library

in_bytes = 'Hello'.encode('utf-8')

print(sha256(in_bytes).hexdigest())

# 185f8db32271fe25f561a6fc938b2e...

Slide 13

Symmetric encryption and its security definition are summarised on Slides 14 and 15.

Symmetric encryption

▶ key ← Gen() generates a key

▶ c← Enc(key ,msg) returns ciphertext c

▶ msg ← Dec(key , c) decrypts c, returns msg or error

▶ Generally want authenticated encryption: ensures that
if c is manipulated, Dec returns error

▶ Block/stream cipher + Msg Authentication Code (MAC)

▶ AEAD: Authenticated Encryption with Associated Data
(AD is unencrypted but authenticated)

▶ e.g. AES-GCM, ChaCha20-Poly1305, XSalsa20-Poly1305

from nacl.secret import SecretBox

from nacl.utils import random

key = random(SecretBox.KEY_SIZE)

ciphertext = SecretBox(key).encrypt(b'Hello')

print(SecretBox(key).decrypt(ciphertext))

Slide 14

Security definition for encryption
We normally require authenticated encryption to provide
indistinguishability under adaptive chosen ciphertext
attack (IND-CCA2)

A game between challenger and adversary:

▶ Challenger generates secret key

▶ Adversary may ask challenger to encrypt/decrypt any
number of messages (“oracle”)

▶ Adversary chooses two plaintexts m0, m1 of equal length

▶ Challenger encrypts one of them, chosen randomly, and
returns ciphertext c to adversary

▶ Adversary may continue to request any number of
encryptions/decryptions (but not decryption of c)

▶ Adversary guesses which one of m0, m1 was encrypted

▶ Adversary can’t do better than random guess (50/50)

Slide 15
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Asymmetric (public key) cryptography

Hash functions, symmetric ciphers

▶ Lots of bit shifts, XORs, lookup tables

▶ Not much underlying mathematical structure

Asymmetric cryptography:

▶ Number theory, algebraic objects (groups, finite fields. . . )

▶ Based on computational hardness assumptions
▶ Multiplying numbers vs. factoring
▶ Computing exponentials vs. discrete logarithms
▶ Vector/matrix arithmetic vs. solving linear equations

with random noise

▶ Many protocols rely on using asymmetric crypto in
creative ways

▶ Focus of this module

Slide 16

Hash functions and symmetric encryption are well-understood, standardised building blocks, and
plenty of resources about them are available if you want to know more. Their internals usually consist of
lots of bit manipulation operations arranged in somewhat arbitrary patterns. In this module we won’t
bother looking inside them, and just take them as given.

Asymmetric (public-key) cryptography is very different: it is often based on number theory and
algebraic objects such as groups and finite fields, and its implementations are often based on analytically
derived formulae. It relies on mathematical relationships that are easy to compute in one direction but
conjectured to be infeasibly hard in the other direction: for example, multiplying numbers is easy but
factoring them is hard; computing exponentials is easy but discrete logarithms are hard; multiplying
matrices and vectors is easy but solving a system of linear equations with random noise is hard.

Many cryptographic protocols are based on using asymmetric cryptography in creative ways. Imple-
menting and using asymmetric cryptography will therefore be the primary focus of this module.

Let’s start with Diffie-Hellman (DH), the oldest public-key algorithm. The traditional formulation
of DH over a finite field is falling out of use nowadays, as it is a bit slow, but its elliptic curve variant
(which we will see in the next lecture) is fast and very widely used. DH is a protocol that allows two
parties (called Alice and Bob in Slide 17) to agree on a shared key, which can then be used in a symmetric
encryption scheme to encrypt messages.

Diffie-Hellman
Let g be a generator of a group of order p in which discrete
logarithms are hard (we’ll explain this later).

Alice Bob

private: x ∈ Zp

public: gx
private: y ∈ Zp

public: gy

compute (gy)x = gxy

c← Enc(H(gxy),msg)
compute (gx)y = gxy

msg ← Dec(H(gxy), c)

gx gy

c

Slide 17
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Diffie-Hellman

▶ sk = private (secret) key, pk = public key

▶ DH(skA, pkB) = DH(skB, pkA)

▶ Constructed as DH(sk , pk) = pk sk , pk = gsk (mod p)

▶ Use hash of DH() output as key for symmetric encryption

▶ Discrete log: given g and gsk , hard to compute sk

▶ Not authenticated: network adversary could swap your
public key for their own

from nacl.public import PrivateKey, Box

alice_sk = PrivateKey.generate()

bob_sk = PrivateKey.generate()

alice_pk = alice_sk.public_key

bob_pk = bob_sk.public_key

print(Box(bob_sk, alice_pk).shared_key().hex())

print(Box(alice_sk, bob_pk).shared_key().hex())

Slide 18

Plain Diffie-Hellman is generally insecure, since an adversary who can modify the messages exchanged
by Alice and Bob can impersonate one user to another. We will see later in this module how to authenti-
cate Diffie-Hellman so that it is secure against such attacks. Diffie-Hellman can also be used to construct
a public key encryption scheme.

Asymmetric (public key) encryption

▶ (pk , sk)← Gen() generates keypair (pk public, sk secret)

▶ c← Enc(pk ,msg) returns ciphertext c

▶ msg ← Dec(sk , c) decrypts c, returns msg or error

▶ Unauthenticated: anyone who knows pk can encrypt

▶ e.g. RSAES-OAEP, Hybrid Public Key Encryption

▶ Often use Diffie-Hellman to compute shared key, then use
authenticated encryption for the actual message

▶ IND-CCA2 like symmetric case, but adversary is given pk

from nacl.public import PrivateKey, SealedBox

private = PrivateKey.generate()

public = private.public_key

ciphertext = SealedBox(public).encrypt(b'Hello')

print(SealedBox(private).decrypt(ciphertext))

Slide 19

Public key encryption from Diffie-Hellman

Alice Bob

sample y ∈ Zp

compute gy

sample x ∈ Zp

c← Enc(H((gy)x),msg)

msg ← Dec(H((gx)y), c)

gy

(gx, c)

Slide 20

The final commonly-used asymmetric primitive is a digital signature, which allows one party to prove
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to another that a message is authentic. While a message authentication code (MAC) requires the sender
and recipient to have the same symmetric key, a signature is constructed using a private key, and then
anybody who has the public key can verify whether the signature is correct.

Digital signatures

▶ (pk , sk)← Gen() generates keypair (pk public, sk secret)

▶ sig ← Sign(sk ,msg) returns signature

▶ ok ← Verify(pk ,msg , sig) returns true or false

▶ e.g. DSA, ECDSA, EdDSA

▶ ≈ a MAC, but asymmetric

▶ Security definition: existential unforgeability against
chosen-message attack (EUF-CMA). Cannot forge a
signature on a message that the key owner didn’t sign

from nacl.signing import SigningKey, VerifyKey

private = SigningKey.generate()

public = VerifyKey(private.verify_key.encode())

message = 'Hello'.encode('utf-8')

signed_msg = private.sign(message)

print(public.verify(signed_msg)) # b'Hello'

Slide 21

Security parameter

Most cryptography is breakable, given sufficient resources!

Want brute-force to be sufficiently hard that breaking it on a
human timescale would be cost-prohibitive.

Generally we aim for 128-bit security:

▶ On the order of 2128 computational steps required

▶ Finding the key for a 128-bit symmetric cipher

▶ Finding a collision in a 256-bit hash function

▶ Factoring a 3,072-bit RSA modulus

▶ Computing discrete log on an 256-bit elliptic curve

Sufficiently large quantum computers could efficiently factorise
(break RSA) and compute discrete logs (break elliptic curves).

Can make symmetric ciphers quantum-safe by doubling key
length (256 bits); quantum-safe hash is 384 bits

Slide 22

Lab time

▶ Clone the sample code: git clone

https://github.com/lambdapioneer/p79-sample.git

▶ Install Python 3.12 and Docker

▶ Run everything: ./run.sh

▶ Fix the tests

▶ . . .

▶ Critique!

Slide 23
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2 Elliptic Curve Cryptography

In this lecture we will get you up to speed with the essentials of elliptic curve cryptography (ECC),
which we will use for the first two assignments of this module (the third assignment will use a different
cryptosystem). ECC is the most widely used public-key cryptosystem today; a large fraction of TLS
connections on the web use it. Its biggest advantage is that it can be secure with quite small keys, often
256 bits, whereas older algorithms such as RSA and DSA need keys to be thousands of bits long in order
to be secure (as shown on Slide 22). Smaller keys also mean faster computation.

As a companion to these notes, you can also read Martin’s elliptic curve tutorial [Kleppmann, 2020],
which shows how to derive a C implementation of one particular elliptic curve algorithm (X25519) from
the mathematical curve description.

Introducing Elliptic Curve Cryptography

▶ Very widely used – protects majority of Internet traffic

▶ Key agreement: Elliptic Curve Diffie Hellman (ECDH)

▶ Digital signatures: Elliptic Curve Digital Signature
Algorithm (ECDSA) or Edwards Curve Digital Signature
Algorithm (EdDSA)

▶ Lots of funky advanced stuff also possible

▶ Faster than RSA, DSA; smaller keys and signatures (at
same security level)

In this module:

▶ We will use ECC for the first two assignments

▶ You need to implement it from scratch, using only
Python’s built-in primitives

▶ Suggested reading: Martin’s Curve25519 tutorial

Slide 24

2.1 Groups and Fields

In order to understand and implement ECC you will need a few mathematical tools. We will keep the
mathematics to the minimum that you require in order to be able to implement a few key algorithms.

The first thing we need is the concept of a group, which is an abstraction of the addition or multiplica-
tion operators that you know. The idea is that rather than just adding numbers, we could add arbitrary
objects, as long as they satisfy certain properties. If they have the properties shown on Slide 25, we
can call them a group. Strictly speaking, by including commutativity we’re defining an abelian group –
however, all the groups you will encounter in this module are commutative, so we will just say “group”
even if it should strictly be “abelian group”.

(Abelian) Groups

A set E and an operation • such that:

additive multiplicative

closed:
∀a, b ∈ E. a • b ∈ E

a+ b ∈ E ab ∈ E

commutative:
∀a, b ∈ E. a • b = b • a

a+ b = b+ a ab = ba

associative: ∀a, b, c ∈ E.
(a • b) • c = a • (b • c)

(a + b) + c =
a+ (b+ c)

(ab)c = a(bc)

identity exists:
∃id ∈ E. ∀a ∈ E. a • id = a

a+ 0 = a a · 1 = a

inverse exists:
∀a ∈ E. ∃b ∈ E. a • b = id

a+ (−a) = 0 a · a−1 = 1

Slide 25
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Groups are often written using two different notations: additive notation, in which the group operation
is +, and multiplicative notation, in which the group operation is · or simply writing the multiplied values
next to each other. In the additive notation the identity (or neutral element) is 0 and the inverse of a is
written −a; in the multiplicative notation, the identity element is 1 and the inverse of a is written a−1.
But these are just two different ways of writing the same thing. You can also use different symbols, such
as • for the group operation.

Two examples of groups are shown on Slide 26, but many others also exist. The simplest to understand
is the additive group of integers modulo n, where the set is the set of integers from 0 to n − 1, and the
group operation is addition modulo n. This group has an identity element of 0, and the inverse element
of a is n− a.

A trickier example is the multiplicative group of integers modulo n, which exists for any n, but is
easiest to describe when n is prime. In that case, the identity element is 1, the operator is multiplication
modulo n, and the set is the set of integers from 1 to n− 1 (0 is not a member of the set since it doesn’t
have a multiplicative inverse, i.e. ∄a. a · 0 = 1). It can be proved that every element of this set has an
inverse, but it’s not immediately obvious. More generally, even if n is not prime, a has a multiplicative
inverse modulo n if gcd(a, n) = 1. There are several ways of computing a multiplicative inverse modulo
n. The easiest way is using Fermat’s little theorem, as shown on Slide 26.

Groups of integers modulo n
Zn: Additive group of integers modulo n

▶ Zn = {0, 1, . . . , n− 1}
▶ Operator is addition mod n. Python: (a + b) % n

▶ Inverse is −a = n− a

Z∗n: Multiplicative group of integers modulo n

▶ When n is prime, Z∗n = {1, 2, . . . , n− 1}
▶ Operator is multiplication mod n. Python: (a * b) % n

▶ Inverse of a exists when gcd(a, n) = 1

▶ For prime n, compute inverse by Fermat’s little theorem:

an−1 = a · an−2 ≡ 1 (mod n)

so an−2 (mod n) is the multiplicative inverse of a
p = 2**255 - 19; a = 42 # p is prime

a_inv = pow(a, p - 2, p)

print((a * a_inv) % p) # 1
Slide 26

The next mathematical abstraction we will need is the field. Like a group, it is based on a set, but it
has two operators, addition and multiplication. Each of the operators forms an abelian group with that
set, except that 0 (the identity element of the addition operation) does not have a multiplicative inverse,
and therefore isn’t part of the multiplication group. We can then define subtraction and division in terms
of additive and multiplicative inverses, and exponentiation in terms of repeated multiplication.

The rational numbers Q, and the real numbers R, each form a field with the usual addition and
multiplication operations. The arithmetic that you learnt in school using rational and real numbers actu-
ally works with any field: you can write polynomials, solve equations for some variable, and manipulate
expressions using addition, subtraction, multiplication, and division.
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Fields
A set E and two operations +, · such that:

▶ (E,+) is an abelian group with identity 0

▶ (E \ {0}, ·) is an abelian group with identity 1

▶ Distributive: a · (b+ c) = ab+ ac

For convenience we will write:

▶ a− b = a+ (−b) where −b is the additive inverse

▶ a
b
= a · b−1 where b−1 is the multiplicative inverse

Arithmetic works like what you learnt in secondary school.

Finite field (Galois field) uses a finite set:

▶ We’ll use Fp: integers modulo p where order p is prime

▶ Also written GF (p)

▶ Fields Fn also exist when n = pk, p prime, k > 1

Slide 27

In cryptography, real and rational numbers would be awkward to work with, since they are infinite
sets, and so the representation of a field element may require an unbounded number of bits. More useful
for our purposes are finite fields, also known as Galois fields. A finite field is based on a finite set, and
hence has fixed-size elements, but it also allows you to do algebra in the familiar way. The number of
elements in such a field is called the order. In this module we will only use fields whose order is a prime
number p. Such a field is written Fp; the elements of the set are the numbers {0, . . . , p− 1}; addition and
multiplication are performed modulo p, like in the groups shown on Slide 26.

In this module, whenever you see a number, it’s probably an element of a field Fp for some prime p.
In the first assignment you will implement the X25519 and Ed25519 algorithms, which are both based
on the finite field Fp for the prime p = 2255 − 19 (hence the 25519 in the name of those algorithms).
Elements of that field are 255 bits long, or almost 32 bytes. Most CPUs and programming languages
don’t natively support arithmetic on numbers that large, so you have to use a bignum (arbitrary-precision
arithmetic) library. However, Python will quite happily let you work with such numbers, as its int

datatype automatically switches to a bignum implementation internally when the values get big.
This means that implementing finite field arithmetic in Python is quite easy – but beware that it is

not constant-time, and hence vulnerable to side-channel attacks. In this module you may use Python’s
integer arithmetic (if using another language you may use a bignum library), but this would not be
appropriate in production code where side-channels matter. Production code therefore often contains
custom field arithmetic code that is very carefully designed to be constant-time. (Addition, subtraction,
and multiplication of big numbers is quite easy to implement; the difficult part is usually the reduction
modulo p.)

Also beware that although Python offers two different division operators (a / b for floating-point
division, and a // b for integer division that rounds downwards), neither is the correct definition of
division for the finite field of integers modulo p. To implement finite field division, you need to compute
a multiplicative inverse as shown on Slide 26.
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Implementing finite fields
For elliptic curves we will use the field Fp for a large prime p

▶ In particular, p = 2255 − 19 =
0x7fffffffffffffffffffffffffffffff

ffffffffffffffffffffffffffffffed (255 bits long)

▶ Python integers have no fixed size: 255-bit (or bigger)
ints are no problem
▶ Addition (a + b) % p is fine
▶ Subtraction (a - b) % p is fine
▶ Multiplication (a * b) % p is fine

▶ Most CPUs natively have max. 64-bit arithmetic =⇒
need to break down big ints into several smaller ones

▶ Python int arithmetic and most bignum libraries are
not constant-time (not suitable for production code)

▶ Python division operators a / b and a // b do not
work for finite fields – need to use multiplicative inverse

Slide 28

2.2 Elliptic Curve Groups

With that background material out of the way, we can now get started with elliptic curves. There are
several different families of curves with slightly different curve equations; the one we will focus on for now
is Curve25519, which belongs to the family of Montgomery curves. Its equation is shown on Slide 29.

Plotted over the field of real numbers R, the curve equation produces a characteristic shape shown
on Slide 29. You will notice that it does not have the shape of an ellipse, despite what you might
expect from the name; the reason they are called “elliptic curves” goes deeper into mathematics than
we need to care about in this module. In fact, we won’t use the curve over R, but rather over Fp where
p = 2255 − 19: that is, the x and y coordinates are both elements of the field Fp. The arithmetic works
the same: it just means that when computing the expressions y2 and x3 + ax2 + x, every addition and
every multiplication is done using integers modulo p. We don’t write “mod p” all the time because it
would get very tedious. We could plot the curve over Fp too, but it doesn’t look very interesting – it’s
just a bunch of seemingly-randomly scattered dots. The plot over R is better for getting an intuition of
what is going on.

Montgomery curves (a family of elliptic curves)

x

y

For now we will use Curve25519, the
elliptic curve

y2 = x3 + ax2 + x

over the field Fp where p = 2255 − 19
and a = 486662 (params chosen to
make the curve cryptographically useful).

A point (x, y) is on the curve if it
satisfies the curve equation.

Plot shows what it would look like over
R with a = −1.9.

Slide 29

Notice that the curve shape is symmetric with respect to the x axis; this comes from the fact that the
variable y only occurs in the term y2, and therefore if (x, y) is a point on the curve, (x,−y) must also be
a point on the curve. (If you’re wondering how we can negate y when Fp contains no negative numbers:
remember that −y ≡ p− y mod p.)

Now we can use this curve to define a group. These definitions will seem strange and arbitrary at
first, but just accept them for now. Unlike the groups we saw on Slide 26, the elements E of this group
aren’t numbers, but points on the curve (that is, pairs of (x, y) coordinates where x, y ∈ Fp), plus one
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special element∞, also written O, that we call the “point at infinity” (you can think of this being a point
that is located infinitely far up the y axis, and doesn’t have a x coordinate; all vertical lines intersect
that point). We will write the group operator as +, and use∞ as the identity element: that is, we define
P +∞ = P for all points P ∈ E.

We define the inverse −P of a point P ∈ E as the mirror image of P with respect to the x axis,
in other words the point with the same x coordinate as P and the y coordinate negated. As explained
previously, −P must also be a point on the curve. We define the inverse of the point of infinity to be
itself: −∞ =∞.

The group operation P + Q to add two points P,Q ∈ E is defined as follows. First, Slide 30 shows
the case where the x coordinates of P and Q are different (i.e. P ̸= Q and P ̸= −Q).

Constructing a group from a curve

x

y

P

Q

R

−R = P +Q

We will now define a group whose
elements E are points on the curve
(plus one special element ∞ called
“point at infinity”).

E = {(x, y) | y2 = x3 + ax2 + x}∪ {∞}

Define identity element as ∞
Define inverse as: −(x, y) = (x,−y)
The + operator combines two points
P,Q ∈ E to produce a new point:

▶ Draw straight line through P and Q

▶ It intersects the curve at R

▶ Mirror R by x axis to get P +Q

Slide 30

To add a point P ∈ E to itself, we draw a tangent to the curve at the point P and then proceed in
the same way (intersecting the curve at a third point and mirroring that point by the x axis).

Adding a point to itself (doubling)

x

y

P
R

−R = P + P

The definition on the last slide works
when P ̸= Q and P ̸= −Q.

To add P ∈ E to itself (P + P = 2P ):

▶ Draw a tangent to the curve at P

▶ It intersects the curve at R

▶ Mirror R by x axis to get P + P

Slide 31

When the line through the two points is vertical, we define their sum to be the point at infinity ∞.
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Handling vertical lines

x

y

P

−P

The final case we need to handle is
P +Q where Q = −P (i.e. P and Q
have the same x coordinate, but
different y coordinates).

In this case the line through P and Q is
vertical, and there is no (finite) third
intersection point.

Define P +Q =∞ if P = −Q.

Fits with definition of −P as inverse of
P , and ∞ as identity element.

(By definition, ∀P ∈ E. P +∞ = P )

Slide 32

From that geometric intuition we can derive formulas for adding two points and doubling a point; these
are called the group law. The formulas look intimidatingly complicated, but the derivation is actually
quite straightforward – the ECC tutorial [Kleppmann, 2020] shows how to do it. You can also look them
up in a database: https://www.hyperelliptic.org/EFD/

Constructing a group from a curve
Amazingly, that definition results in an abelian group (E,+)

(Closed, identity exists, and inverse exists by definition; easy to
see that it’s commutative. Proving associativity is harder.)

Group law for Montgomery curves (y2 = x3 + ax2 + x):

Point addition: P +Q = (x1, y1) + (x2, y2) = (x3, y3) where

x3 =

(
y2 − y1
x2 − x1

)2

− a− x1 − x2

y3 =
(2x1 + x2 + a)(y2 − y1)

x2 − x1
−
(
y2 − y1
x2 − x1

)3

− y1

Point doubling: 2P = (x1, y1) + (x1, y1) = (x3, y3) where

x3 =

(
3x2

1 + 2ax1 + 1

2y1

)2

− a− 2x1

y3 =
(3x1 + a)(3x2

1 + 2ax1 + 1)

2y1
−

(
3x2

1 + 2ax1 + 1

2y1

)3

− y1

Slide 33

The geometric interpretation of the group law only really makes sense when the curve is defined over
the real numbers R: calculating a tangent, as on Slide 31, requires computing a derivative, which is not
defined over Fp. Slide 34 shows what the curve and the group law look like over a finite field. However,
it turns out that even if you derive the formulas on Slide 33 over R, the final equations work equally well
in a finite field. And that’s what we do for cryptographic purposes: we use formulas like those above,
and just do all the arithmetic with integers modulo p. (Remember that the fractions in the equations on
Slide 33 are shorthand for multiplicative inverses, so the result of a fraction is still an integer!)
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Elliptic curve over a finite field
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Curve over R
0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

P1

P2
0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

P1

P2

P3

P1+P 2 3

Curve over F11

Image by Markus Kuhn

Slide 34

2.3 Scalar Multiplication and X25519

Now that we have defined + as the group operator on elliptic curve points, we can define the product
between a scalar (i.e., an integer) k ∈ N and an elliptic curve group element P (a curve point or ∞) as
adding P to itself k times. Each of those additions uses the group law from Slide 33. Note the “types” of
this multiplication: you can only multiply a scalar with a group element, and the result is another group
element. You cannot multiply a point with a point, you can only add them.

You now have to be quite careful with the notation, since + sometimes means adding finite field
elements (i.e. integers modulo p), and sometimes means adding elliptic curve group elements (i.e. curve
points) using the group law. You have to look at the types of the variables involved to see which one
it is. Likewise, multiplication is sometimes between field elements, and sometimes between a scalar and
group element. Yes, this is very confusing. We considered using different notations to tell the two apart,
but then decided to stick with the notation used in most of the literature on elliptic curves, since you
will need to be able to read it. And, unfortunately, most of the literature overloads the operators in this
way. Sometimes you see a notation like [k]P to mean P added to itself k times.

Repeated addition of a point to itself

x

y

P

2P

Define scalar multiplication of a point
P ∈ E as:

kP = P + P + · · ·+ P︸ ︷︷ ︸
k times

If you look at the sequence of points
P, 2P, 3P, . . . , it “jumps around” all
over the curve.

For a suitably chosen P , this sequence
repeats only for very large k.

Given P and kP , it’s hard to determine
k (try all possible values!)

Slide 35

Say you have a group element kP that you obtained by adding the group element P to itself k times.
If you then add kP to itself another j times, the result is the same as if you had first multiplied j and k,
and then added P to itself jk times. This follows from the fact that the + operator on the elliptic curve
group is associative. This in turn makes it possible to compute kP efficiently, even when k is a very large
number.
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Multiplying a point by a number

Because the group operator + is associative we have:

j(kP ) = (P + · · ·+ P︸ ︷︷ ︸
k times

) + · · ·+ (P + · · ·+ P︸ ︷︷ ︸
k times

)

︸ ︷︷ ︸
j times

= P + · · ·+ P︸ ︷︷ ︸
j · k times

= (jk)P

Double-and-add algorithm to compute the scalar product:

kP =





P if k = 1

2(k
2
P ) if k is even

2(k−1
2
P ) + P if k is odd and k > 1

Computes kP with O(log k) point additions/doublings

Slide 36

The order of the elliptic curve group is the number of solutions to the curve equation, plus one for
the the point at infinity. (Remember that when the curve is defined over Fp, there are p2 possible (x, y)
coordinate combinations, and only some of them are solutions to the curve equation.) The order of the
group depends on the size of the underlying field and the parameters of the curve equation. There are
efficient algorithms to determine the order of a particular curve, without having to enumerate all the
possible points.

Often curve parameters are chosen such that the order of the group is a large prime number. In the
case of Montgomery curves this is not possible, so the parameters are chosen to make the group order
as cryptographically useful as possible: namely, the product of a small constant (8) and a large prime
(q = 2252 + 27742317777372353535851937790883648493). Note that the order of the EC group (8q) is
not the same as the order of the underlying field (p). Elliptic curves where the group order equals the
field order are called anomalous and are insecure, so we don’t use them. Another desirable criterion for
the choice of parameters is that they are rigid (https://safecurves.cr.yp.to/rigid.html), which means that
all parameter choices are explained, and avoiding the use of unexplained “magic constants” that could
potentially hide a weakness.

We say that the set of group elements that can be produced by adding a group element P to itself
repeatedly is the set generated by P . That set is always a subgroup of E, and the size of that set is
called the order of P . It can be proved that the order of a group element always divides the order of the
group. In the case of Curve25519, this means there are group elements whose order is q. One of these
(arbitrarily chosen, one with x coordinate x = 9) will serve as the base point for the following algorithms.

Generator of a group

|E| (the number of elements in the group) is its order.

Curve parameters determine |E|; prime if possible.

In Curve25519 (p = 2255 − 19, a = 486662), we have |E| = 8q
where q is a large (252-bit) prime.

Given P ∈ E, consider the series P , 2P , 3P , . . .

If it repeats after m steps, we say |P | = m is the order of P .

⟨P ⟩ = {iP | i ∈ N} is the set generated by P . |⟨P ⟩| = |P |

If ⟨P ⟩ = E, then P is a generator of E with |E| = |⟨P ⟩|.
If ⟨P ⟩ ⊂ E, then ⟨P ⟩ is a subgroup of E.

We choose a base point P for which |P | is a large prime (q).

Slide 37

Now we have to point out another way in which cryptography papers use confusing notation. Recall
from Slide 25 that groups are often written with either additive notation (group operation is +) or
multiplicative notation (group operation is ·). In the literature on elliptic curves it is traditional to write
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the group operation as +, and to write kP when applying P to itself k times using +. In the literature on
cryptographic protocols it is traditional to assume a group but to write it using multiplicative notation,
so the group operation is ·, and to write gk when applying g to itself k times using ·. Despite the different
notation, these two are actually the same thing!

Additive vs. multiplicative group notation
Crypto literature has two ways of writing the same thing:

additive (used
in ECC papers)

multiplicative
(used in protocols)

generator base point B generator g

group operator P +Q a · b or ab
scalar multiplication kB gk (exponentiation)

inverse −P a−1

The problem

▶ compute k given kB and B

▶ compute k given gk and g

is called discrete logarithm, even in additive notation

Discrete log on (selected) EC groups believed to be hard
Slide 38

In cryptographic protocols it is common to just assume a group in which discrete logarithms are hard,
without caring how it is implemented (it could be done with elliptic curves, or with the finite field of
integers modulo a prime, or some other mechanism). Here, the concept of a group serves as an abstraction
that allows us to reason about a protocol without worrying about the implementation details. However,
in order to actually implement the protocol, you have to instantiate the abstract group with something
concrete. And elliptic curve groups are often used for this purpose, since they are fairly efficient, and
discrete logs on those groups are believed to be hard as long as the curve parameters are suitably chosen.

(There are a bunch of details that matter when choosing curve parameters, but we don’t need to
get into them in this module since we will just use published parameters of well-known curves. Another
side-note: many cryptographic protocols assume that the group order is prime, but that is not the case
with Curve25519, since it has |E| = 8q. Using a non-prime-order group in a context that requires a
prime-order group is a source of subtle bugs, such as small subgroup confinement attacks. However, it’s
possible to construct a prime-order group on top of Curve25519 using Ristretto [de Valence et al., 2020].)

In fact, you already saw the multiplicative group notation in action on Slide 17 when we introduced
Diffie-Hellman. Back then we said that g is a generator of a group of order p in which discrete logarithms
are hard. Now we know how to construct such a group: we can use the Curve25519 elliptic curve group for
example, and as generator we will use a curve point B ∈ E with order q from the curve E. Then we just
replace the exponentiation of g with a scalar multiplication of the base point, and voilà, we have Elliptic
Curve Diffie-Hellman (ECDH)! By the argument on Slide 36, we have x(yB) = (xy)B = (yx)B = y(xB),
so Alice and Bob end up with the same symmetric key.
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Elliptic Curve Diffie-Hellman (ECDH)

Public parameter: base point B ∈ E with order q

Alice Bob

sample y ∈ Zq

compute gy yB

sample x ∈ Zq

key = (gy)x x(yB)
c← Enc(H(key),msg)

key = (gx)y y(xB)
msg ← Dec(H(key), c)

yB

(xB, c)

Slide 39

Let’s take a look at X25519, a specification of how exactly to do Diffie-Hellman over the Curve25519
group. Please read up the details in the original paper by Bernstein [2006], as well as RFC 7748 [Langley
et al., 2016] and Martin’s ECC tutorial [Kleppmann, 2020]. It makes a number of careful design choices to
achieve both very good performance and strong security. For example, when a group element is encoded
into bytes and sent over the network (like yB is sent from Bob to Alice, and xB is sent from Alice to
Bob in Slide 39), the recipient would normally need to check that the byte string actually represents a
valid point on the curve, and reject it if not (accepting invalid points can be a source of vulnerabilities).
However, in the case of X25519, such validation is not required: the algorithm is designed to be safe
given any arbitrary 32-byte string as input. That removes a source of bugs, but also makes the algorithm
faster, since point validation has a computational cost.

X25519: Diffie-Hellman using Curve25519

One of the supported EC groups in TLS 1.3.

▶ X25519(skA, base) = pkA
▶ X25519(skA, pkB) = X25519(skB, pkA)

▶ Private keys are 32 bytes, public keys also 32 bytes

▶ Designed to have simple constant-time implementation

▶ Fast: only computes x coordinate, not y coordinate

▶ Allows use of Montgomery ladder instead of group law

▶ No need to validate whether byte string is a valid curve
point (which other protocols require)

▶ Secure even though underlying curve is not prime-order

Slide 40

You can find ugly pseudocode for X25519 in RFC 7748 (we hope your code will be nicer), and the
algorithm is outlined on Slide 41. In case you’re wondering how to compute a square root in a finite field:
we will get to that on Slide 46. For now you can look up the y coordinate of the base point in Section
4.1 of RFC 7748, where it is called V(P).
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X25519 algorithm
▶ Private key: start with 32 random bytes

▶ interpret bytes as little-endian integer, then do clamping:
▶ set 3 least-significant bits to 0 (make it a multiple of 8)
▶ set most significant bit to 0 (make it < 2255)
▶ set second-most significant bit to 1 (make it ≥ 2254)

▶ Public key: 32 bytes received from the network
▶ interpret bytes as little-endian integer
▶ set most significant bit to 0, then reduce mod p
▶ result is the coordinate x ∈ Fp of a curve point

▶ Base point: x = 9, y =
√
x3 + 486662x2 + x

▶ X25519 function:
▶ Input private and public key (or private key and base)
▶ Compute scalar product of private key (scalar) and the

public key (group element)
▶ Output x coordinate of the resulting group element

▶ Hash the result before using it as symmetric key
Slide 41

And that brings us to the first task of your first assignment.

Assignment 1, Task 1

Implement X25519 from scratch, relying only on bignums
for field arithmetic.

Do it two ways and check they agree:

▶ Using the Montgomery curve group law and a
double-and-add algorithm for scalar multiplication

▶ Using the Montgomery ladder. See Bernstein’s paper;
RFC 7748 (Python code); Martin’s ECC tutorial (C code)

You can find test vectors in RFC 7748.

Hope you have fun!

Slide 42

For the variant that uses the group law, you will need the y coordinate of the curve points you deal
with; for the sake of this task you can assume that the y coordinate is sent along with the x coordinate
when sending a public key over the network (even though that doubles their size). The Montgomery
ladder implementation shouldn’t ever need y coordinates.

2.4 Digital signatures and Ed25519

For the second part of assignment 1, you will implement a digital signature scheme called Ed25519. As
you can guess from the number in the name, it is somewhat related to Curve25519. In fact, it uses the
same field of integers modulo p, with p = 2255− 19, but it uses a different curve equation called a twisted
Edwards curve (which was discovered as recently as 2008). The concepts are very similar though, and
the Edwards curve is equivalent to an elliptic curve. The twisted Edwards curve is used mainly because,
compared to operations on Montgomery curves (Slide 29), it’s faster and easier to make constant-time.
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Twisted Edwards Curves

x

y

x2 + y2 = 1− 300x2y2

plotted over R

Edwards25519 is the twisted Edwards
curve

−x2 + y2 = 1 + dx2y2

with x, y ∈ Fp, p = 2255 − 19, and
d = −121665

121666
.

There is a 1:1 mapping (“birational
equivalence”) between points on this
curve and Curve25519.

Advantage over elliptic curve: the group
law is simpler ⇒ faster to compute
(with same security properties).

Slide 43

The group law is shown on Slide 44: you see that it’s much simpler than what we saw on Slide 33.
Another good thing about it is that we can prove that the denominators of the fractions are never zero –
unlike the addition law on Slide 33, where the denominators go to zero when the points being added have
the same x coordinate, necessitating separate formulas for point doubling to handle this case. Having
separate addition and doubling formulas is problematic if you want to make the computation constant-
time: if the time it takes to compute the addition formula is different from the time it takes to compute
the doubling formula, then the timing leaks information on the x coordinates of the points. Having a
single, complete addition formula makes this particular side-channel go away.

Given the group law, we can then implement scalar multiplication using the same double-and-add
approach as we saw on Slide 36. As a further optimisation, instead of computing a fraction every time you
apply the group law (which requires computing the multiplicative inverse of the denominator, which is
by far the slowest part of the group law), you can use projective coordinates (also known as homogeneous
coordinates), which essentially store the numerator and denominator in two separate variables across all
steps of the double-and-add algorithm. Once the double-and-add algorithm is finished, you can convert
the projective coordinates back into regular (affine) coordinates by computing the multiplicative inverse of
the final denominator value. You can find formulas for the twisted Edwards curve group law in projective
coordinates in RFC 8032 [Josefsson and Liusvaara, 2017], and in the Explicit Formulas Database at
http://www.hyperelliptic.org/EFD/g1p/auto-twisted.html.

Group law on twisted Edwards curve

Point addition for curve −x2 + y2 = 1 + dx2y2:

(x1, y1) + (x2, y2) =

(
x1y2 + x2y1
1 + dx1x2y1y2

,
x1x2 + y1y2

1− dx1x2y1y2

)

Complete: no need for seperate doubling formulas since the
denominators are always non-zero. (Helps with constant-time)

Define scalar multiplication like on elliptic curve, using
double-and-add.

Faster scalar product by working in extended homogeneous
(projective) coordinates: instead of (x, y) use (X,Y, Z, T )
where x = X/Z, y = Y/Z, xy = T/Z. See RFC 8032.

Compute the inverse of Z only at the end of scalar product,
not for every point addition.
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Another thing we need for Ed25519 signatures is the concept of point compression, as shown on
Slide 45. This applies to both elliptic curves and Edwards curves. For elliptic curves we usually encode
the x coordinate along with the sign bit of the y coordinate. Ed25519 does it the other way round,
encoding the y coordinate along with the sign bit of the x coordinate, but the idea is the same.
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Point compression
For X25519, we could get away with only using x coordinates.

For signatures, we need the y coordinate as well. But: sending
both x and y coordinates doubles data size (32→ 64 bytes).

For a given x coordinate there are at most two possible values
±y such that (x, y) lies on the curve.

Point compression: encode the x coordinate along with one
bit to say which y value is used (“sign bit”).

When x ∈ Fp for p = 2255 − 19, x fits in 255 bits ⇒ use the
256th bit for the sign of y, still fits in 32 bytes.

(Actually Ed25519 encodes y coordinate and the sign of x.)

Define y to be positive if even, negative if odd.
Note −y ≡ p− y (mod p), so y is even iff −y is odd.

Then the “sign bit” is simply the least significant bit of y.
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To decompress a compressed point, we need to recover the y coordinate. We can to that by solving
the curve equation on Slide 43 for y, resulting in the equation shown on Slide 46. (Note that to implement
Ed25519 you need to instead solve the curve equation for x, but the result looks similar.)

Computing the y coordinate requires a square root. Yes, square roots are also defined on finite fields!
The result of the square root is still an element of the field Fp (not a real number). We define

√
a = b

as a value such that b2 = a (mod p), and it can be computed as shown on Slide 46. The square root
√
a

is only defined if a is a square in Fp; if not, the square root computation fails. In the context of point
decompression, this would happen if an adversary sends you an x coordinate that does not correspond
to any point on the curve. A correct implementation of point decompression must handle that error case
(in the case of a signature, by returning that the signature is invalid).

Point decompression

Point decompression: take the low 255 bits (little-endian)
as x, error if it’s ≥ p. Then

y = ±
√

1 + x2

1− dx2
using + or − according to sign bit.

How to compute square root modulo p = 2255 − 19:

√
a =





a(p+3)/8 if (a(p+3)/8)2 = a

a(p+3)/8
√
−1 if (a(p+3)/8)2 = −a where

√
−1 = 2(p−1)/4

error otherwise

See RFC 8032, Tonelli–Shanks algorithm.

This also ensures that (x, y) is a valid point on the curve.
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With that background, we can now move on to the definition of the Ed25519 signature scheme. You
can read more about Ed25519 in the original paper [Bernstein et al., 2012] and RFC 8032 [Josefsson and
Liusvaara, 2017]. EdDSA/Ed25519 is designed to avoid some of the pitfalls with earlier signature schemes
such as ECDSA, which are prone to implementation bugs [Madden, 2022]. In particular, ECDSA requires
a unique nonce for every signature; if you ever sign two different messages with the same key and the same
nonce, anybody can easily calculate the private key from those two signatures. This happened in the
PlayStation 3, for example, inadvertently revealing Sony’s signing key for software updates [fail0verflow,
2010]. Even a small amount of bias in an ECDSA nonce can allow private key recovery, and this has
occurred recently in widely-used software [Tatham, 2024]. To avoid such risks, EdDSA does not require
any random numbers for signing, and instead generates a pseudorandom value deterministically from a
hash of the private key and the message.
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The Ed25519 signature scheme

▶ EdDSA: general algorithm;
Ed25519: EdDSA over Edwards25519 curve

▶ Very widely used, e.g. TLS 1.3, SSH, Signal

▶ sk 32 bytes, pk 32 bytes, signature 64 bytes

▶ Deterministic: signing requires no randomness, no nonce
▶ Whereas ECDSA requires nonce per signature
▶ Nonce reuse in ECDSA is catastrophic
▶ Ed25519 computes r from hash of private key and

message ⇒ safer to use

▶ Variant of Schnorr signatures

▶ B is base point with order q, where |E| = 8q is group
order (different from field order p)
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The process for generating a signature is outlined on Slide 48. Inputs are shaded red, outputs blue. In
this module we don’t have time to go into why these operations yield a secure digital signature scheme. If
you want to understand this better, we suggest you read the section on Schnorr signatures in the textbook
[Katz and Lindell, 2020], much of which applies to EdDSA as well.

On this slide, clamping refers to the practice of setting some bits to fixed values as explained on
Slide 41 (RFC 8032 calls it “pruning the buffer”). The two occurrences of scalar multiplication are done
on the Edwards25519 curve, followed by point compression. There is also some arithmetic in the field Fq

of integers modulo q; note that this is different from the field Fp that is used for point coordinates! What
we call q is called L in RFC 8032, and l in the original paper [Bernstein et al., 2012]. In some cases the
output of the hash function needs to be interpreted as an integer ∈ Fq; this is done by first interpreting
the byte string as a number in little-endian encoding, and then reducing modulo q. Likewise, when t is
included in the signature, it is encoded as a little-endian 32-byte string. (The value we call t is called
S in the paper and RFC; we use a lowercase letter since by convention lowercase letters usually refer
to field elements, and uppercase letters to curve points, and the variable s is already taken.) ∥ denotes
concatenation of byte strings.

Ed25519 signing

msgsk (sbits ∥ prefix )← SHA512(sk)

sbits ← first 256 bits prefix ← last 256 bits

s← clamping(sbits)

pk ← compress(sB)

r ← SHA512(prefix ∥ msg) (mod q)

R← compress(rB)

k ← SHA512(R ∥ pk ∥ msg) (mod q)

t← r + ks (mod q) sig ← R ∥ t

Slide 48

The corresponding signature verification logic is shown on Slide 49. Verification should fail if the final
equation is not satisfied, of any of the point decompressions fail, or if any value is outside of the allowed
range (e.g., if the last 256 bits of the signature are the little-endian encoding of an integer ≥ q).
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Ed25519 signature verification

sig = Rbits ∥ tbits

msg

pk

t← tbits (mod q)

R← uncompress(Rbits)

k ← SHA512(Rbits ∥ pk ∥ msg) (mod q)

A← uncompress(pk) valid: tB
?
= R+ kA

tbits ← last 256 bits

Rbits ← first 256 bits
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You now know enough about Ed25519 to go and implement it yourself. You can use RFC 8032 as a
reference (including the Python code in Section 6); however, assignment submissions that are obviously
just copied and pasted from the RFC are unlikely to score well. As a reminder of Slide 8, we want to see
code that not only produces the right output, but which has a well-designed API, which is appropriately
documented and tested, and extensions are also welcome. For example, you could look into the ambiguities
in the RFC 8032 specification [de Valence, 2020]. You can ignore the Ed25519ph and Ed25519ctx variants
that are specified in RFC 8032.

Assignment 1, Task 2

Implement Ed25519 from scratch, relying only on bignums
for field arithmetic.

You can find example code and test vectors in RFC 8032.

Due date for code and lab report: 10 17 Feb 2025
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3 Software Engineering

Implementations of cryptographic algorithms and protocols do not just rely on their mathematical design,
but also require careful engineering to ensure security and practical performance. The translation into
the real world often requires us to make choices that are not captured by the mathematical model. For
instance, we need to choose the right parameter sizes, or how to handle errors. In this section we visit
important aspects of software engineering that will become relevant not just for your lab reports, but
also when you implement cryptographic protocols and other critical software in the future.

3.1 Cryptography standards

Standards are the important binding between the mathematical model and the real world. They provide
a precise specification of the algorithm, including all parameters and execution steps, in the real world.
That is, they are concerned with the actual implementation down to the individual instructions and
byte-level details of the data structures.
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Why Do We Have Standards?

▶ Standards are important for interoperability
▶ Different implementations need to work together
▶ Writing it in text requires that everything is specified

▶ Standards are important for security
▶ Well-reviewed specifications
▶ Clear security requirements and properties
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Major Standardization Bodies

IETF typically protocols

▶ TLS 1.3 (RFC 8446)
▶ COSE (RFC 8152)

NIST typically algorithms

▶ AES (FIPS 197)
▶ SHA-3 (FIPS 202)

IEEE typically hardware/protocols

▶ IEEE 802.11i (WPA2/WPA3)
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Most standards relevant for this course are published by the Internet Engineering Task Force (IETF)
and the National Institute of Standards and Technology (NIST). In practice, you will encounter standards
from other bodies as well, e.g. the Institute of Electrical and Electronics Engineers (IEEE) and the
International Organization for Standardization (ISO).

Reading RFCs

▶ Example: RFC 5869 - HMAC-based Extract-and-Expand
Key Derivation Function (HKDF)

▶ Let’s walk through how to read and understand an RFC

▶ They are available at
https://datatracker.ietf.org/doc/html/rfc5869

Slide 53
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RFC Formats - Text

Slide 54

RFC Formats - PDF

Slide 55

RFC Formats - HTML

Slide 56

The HTML format proves particularly valuable when writing your lab report, offering convenient
BibTeX integration and efficient navigation features.

28



RFC Header (RFC 5869)

Slide 57

The abstract and introduction provide context and motivation that can be very helpful for under-
standing the document. In addition, the header contains other key information about the document,
such as the category, the status, and the date of publication.

RFC Categories

▶ Standards Track
▶ Proposed Standard: Initial standardization
▶ Internet Standard: Proven, stable standard

▶ Informational: Background information, guidelines

▶ Experimental: Experimental protocols
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Introduction (RFC 5869)

Slide 59
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Notation (RFC 5869)

Slide 60

Notation

Key words (defined in RFC 2119):

▶ MUST=SHALL (= is required to)

▶ SHOULD (= strongly recommended)

▶ MAY (= optional)

▶ SHOULD NOT (= not recommended)

▶ MUST NOT=SHALL NOT (= prohibited)

“MUST This word, or the terms REQUIRED or
SHALL, mean that the definition is an absolute re-
quirement of the specification.”
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Notation

Key words (defined in RFC 2119):

▶ MUST=SHALL (= is required to)

▶ SHOULD (= strongly recommended)

▶ MAY (= optional)

▶ SHOULD NOT (= not recommended)

▶ MUST NOT=SHALL NOT (= prohibited)

“SHOULD This word, or the adjective RECOM-
MENDED, mean that there may exist valid reasons in
particular circumstances to ignore a particular item,
but the full implications must be understood and care-
fully weighed before choosing a different course.”
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Understanding these keywords is fundamental for making sound implementation decisions. When
writing your lab report, you’ll need to carefully justify any deviations from SHOULD requirements or
explain your choices between MAY options.
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Algorithm (RFC 5869)

Slide 63

Algorithm Section (RFC 5869)

▶ Contains detailed technical specification

▶ Describes the protocol/algorithm step by step

▶ Often includes:
▶ Input/output parameters
▶ Processing steps
▶ Implementation requirements
▶ Pay attention to the allowed parameter ranges

▶ Typically does not include error handling

▶ May contain pseudocode or formal specifications
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Test Vectors

Slide 65

Test vectors are crucial for verifying your implementation. We discuss them later in Section 5.2 in
more detail.
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References

Slide 66

When implementing a standard, pay special attention to normative references as they contain essential
requirements, while informative references provide helpful context and background information.

Errata
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Always check the errata before implementation as they might contain critical corrections that were
not part of the original document.

How NIST Competitions Work

▶ Open call for submissions from the cryptographic
community

▶ Multiple rounds of evaluation:
▶ Security analysis by cryptographers worldwide
▶ Performance benchmarking across platforms
▶ Implementation characteristics and complexity
▶ Public feedback and discussion

▶ Candidates may be eliminated due to:
▶ Security vulnerabilities discovered
▶ Poor performance characteristics
▶ Implementation difficulties

▶ Final selection based on balance of security, performance,
and practicality
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The NIST competition process exemplifies the careful balance between security, performance, and
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practicality in cryptographic standards. Let’s look at a recent example.

NIST Post-Quantum Cryptography Standardization

▶ Started in 2016 to standardize quantum-resistant
cryptographic algorithms

▶ Goal: Protect against both classical and quantum
computer attacks

▶ Focus on:
▶ Key-establishment mechanisms
▶ Digital signatures
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Selection Process Timeline

▶ Round 1 (2017): 69 candidates accepted
▶ 14 published attacks
▶ 9 submissions withdrawn

▶ Round 2 (2019): 26 candidates selected

▶ Round 3 (2020): 7 finalists + 8 alternates

▶ Round 4 (2022-2023):
▶ Selected CRYSTALS-Kyber for key encapsulation
▶ Selected CRYSTALS-Dilithium, FALCON, and

SPHINCS+ for digital signatures
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Case Study: Dual EC DRBG

▶ NIST SP 800-90A standardized Dual EC DRBG in 2006

▶ Concerns raised about potential backdoor:
▶ Outputs “too many” bits
▶ Unclear choice of parameters P and Q
▶ Observer might learn internal state of RNG

▶ Snowden leaks in 2013 suggested NSA involvement

▶ NIST withdrew the standard in 2014

Slide 71

The Dual Elliptic Curve Deterministic Random Bit Generator (Dual EC DRBG) case highlights the
importance of transparency and public scrutiny in standardization. Even after concerns were raised
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about its design, it took years and external events to trigger its removal. This experience led to increased
emphasis on explaining design choices and parameter selection in newer standards, e.g. for X25519. The
principle of nothing-up-my-sleeve is now widely accepted in cryptographic standards. For example, the
choice of the prime field 2255−19 and curve parameter A = 486662 for X25519 are carefully justified and
documented [Bernstein, 2006]. The quotes below are taken from Bernstein’s Curve25519 paper.

Case Study: Choice of A in X25519

“To protect against various attacks discussed in
Section 3, I rejected choices of A whose curve and
twist orders were not {4 · prime, 8 · prime}; here 4,
8 are minimal since p ∈ 1 + 4Z. The smallest pos-
itive choices for A are 358990, 464586, and 486662.
I rejected A = 358990 because one of its primes is
slightly smaller than 2252, raising the question of how
standards and implementations should handle the the-
oretical possibility of a user’s secret key matching the
prime; discussing this question is more difficult than
switching to another A. I rejected 464586 for the
same reason. So I ended up with A = 486662.”

Bernstein 2006, p. 14f
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3.2 Error handling

Error handling

▶ Error handling is crucial for production software

▶ Still, development is often focussed on the happy path

▶ In cryptographic software, we need to handle errors
carefully
▶ Indicate benign failures (e.g. out-of-memory)
▶ Indicate malicious interference (e.g. invalid signature)

Slide 73
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Approaches to error handling

I introduce three main paradigms for error handling that you
will encounter in different languages:

▶ Return values (C, C++, . . . )

▶ Exceptions (Java, Python, . . . )

▶ Result types (Rust, Go, . . . )

These interact a lot with the language’s type system as well.
And we will discuss these aspects in more detail later.
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C-style error handling

Declared as such:
int decrypt_aes_gcm(

uint8_t* key,

uint8_t* ciphertext, size_t ciphertext_len,

uint8_t* plaintext, size_t plaintext_len

);

Used as such:
plaintext = malloc(...)
if (decrypt_aes_gcm(&key, &ciphertext, &plaintext)) {

// do something here

}
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Classic C-style error handling relies on return values (usually int) to indicate success or failure.
Typically we use 0 for success and non-zero for failure—this is convenient, because it implicitly casts to
true or false. However, it is generally not very expressive and only allows for a single error code to be
conveyed.

C-style error handling

However, it’s error prone:
plaintext = malloc(...)
decrypt_aes_gcm(&key, &ciphertext, &plaintext)

// do something here

Slide 76
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More critically, it is very easy to forget to check the return value. This might be relatively easy to
detect in code like the one above, where failure is quite obvious if the plaintext we receive is not valid.
However, in more complex code, it might be much harder to detect.

C-style error handling

int random_key(uint8_t* key)

uint8_t* key;

random_key(&key)

// ....

uint8_t* ciphertext = malloc(...);

if(aes_gcm_encrypt(&key, &plaintext, &ciphertext)) {

// send ciphertext over the internet

}

Slide 77

One particularly dangerous area are values and conditions that are difficult for humans to detect. For
instance, that variables are properly initialized with random values. The same is true for code paths that
only rarely fail, e.g. due to out-of-memory conditions.

C-style error handling

int random_key(uint8_t* key)

uint8_t* key;

if (!random_key(&key)) {

// handle error

return

}

// ....

uint8_t* ciphertext = malloc(...);

if(aes_gcm_encrypt(&key, &plaintext, &ciphertext)) {

// send ciphertext over the internet

}

Slide 78
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C-style error handling: lessons learned

▶ Making error checking optional is dangerous

▶ Relying on humans to follow patterns is infeasible

▶ We need help from our tools!
▶ Static analysis (e.g. -Wunused-result)
▶ Linting (e.g. clang-tidy)
▶ Or, maybe using better paradigms. . .

Before we look at modern paradigms, let’s see how we can
deal with this in C in our call sites.
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While we would avoid writing and using code that follows this pattern, sometimes we have no choice.
This is often the case for embedded systems, where proprietary build chains keep us from easily switching
to better paradigms. Similarly, many underlying cryptographic libraries are still written in C. Where
there is no existing binding, we have to deal with their paradigms in our own binding code.

C-style error handling: writing better call sites

int decryptProtocolMessage(...) {
if (checkSignature(&otherPublicKey, &ciphertext)) {

uint8_t key = malloc(16);
if (dh(&privateKey, &otherPublicKey, &key)) {

if (decrypt(&key, &ciphertext, &plaintext)) {
free(key)
return OK

} else {
free(key)
return ERR_DECRYPTION_FAILED

}
} else {

free(key)
return ERR_DH_FAILED

}
} else {

return ERR_SIGNATURE_CHECK_FAILED
}

}
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Using nested if statements tends to be error-prone and leads to hard to reason code. For instance, it
creates heavily indented code, which is hard to read. Also, the error conditions, i.e. the else branches,
are often far away from the call site.
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C-style error handling: writing better call sites

int decryptProtocolMessage(...) {
if (!checkSignature(&otherPublicKey, &ciphertext)) {

return ERR_SIGNATURE_CHECK_FAILED
}

byte[] key = malloc(16);
if (!dh(&privateKey, &otherPublicKey, &key)) {

free(key)
return ERR_DH_FAILED

}

if (!decrypt(&key, &ciphertext, &plaintext)) {
free(key)
return ERR_DECRYPTION_FAILED

}

free(key)
result = &plaintext
return OK

}
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Using early returns is a good way to avoid the problems of nested if statements. It also makes the
code easier to read and understand. However, we still have to be careful to not forget about freeing
resources or other cleanup tasks.

C-style error handling: writing better call sites

int decryptProtocolMessage(...) {
int err = -1
byte* key = NULL
byte* plaintext = NULL

if ((err = checkSignature(&otherPublicKey, &ciphertext)) != 0)
goto fail;

key = malloc(16);
if ((err = dh(&privateKey, &otherPublicKey, &key)) != 0)

goto fail;

if ((err = decrypt(&key, &ciphertext, &plaintext)) != 0)
goto fail;

fail:
if (key) free(key)

done:
return err

}
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By using a goto statement, we can avoid the problems of nested if statements. If consistently used,
it can make the code easier to read and understand. However, it is also much easier to introduce bugs
and errors by anyone not familiar with the pattern, as the long variable lifetimes limit how much the
compiler can help us.
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Case study: goto fail (CVE-2014-1266)

static OSStatus
SSLVerifySignedServerKeyExchange(/* ...*/ )
{

OSStatus err;
/* ... */
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

/* ... */
fail:

SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

}
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One famous example of a bug due to this is the goto fail pattern in the OpenSSL library. Note the
duplicate goto statements: only the first one is part of the if statement, the second one is not. Hence,
the goto statement is executed unconditionally. Since the err variable is set within the if statement, we
will (almost always) return 0, hence success, from the function without execution the other tests at all.

Exception-based error handling

Declared as such:
byte[] decrypt(byte[] key, byte[] ciphertext)
throws DecryptionFailedException {

// ...

}

Used as such:
int doSomething() {

try {

plaintext = AesGcm.decrypt(key, ciphertext)

// do something

} catch (DecryptionFailedException e) {

// handle error

}

}
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The challenges of using return values has led to adoption of exception-based error handling in many
languages as a first-class citizen, most notably Java. It is also used in languages like Python, and as such
worth a consideration for your assignments.
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Exception-based error handling

int doSomething() {
try {

plaintext = AesGcm.decrypt(key, ciphertext)

doSomethingWithPlaintext(plaintext)

andSomeOtherThings(plaintext)

} catch (DecryptionFailedException e) {

// handle error

} catch (OtherException e) {

// handle error

} catch (AndAnotherException e) {

// handle error

}

}
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One risk of exception-based error handling is that it can lead to a blow-up of error handling cases
where the callsite grows—making it hard to maintain consistency.

Exception-based error handling

int doSomething() {
try {

plaintext = AesGcm.decrypt(key, ciphertext)

doSomethingWithPlaintext(plaintext)

andSomeOtherThings(plaintext)

} catch (Exception e) {

// super defensive!!11

}

}
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In turn, this might cause the opposite reaction: developers might be tempted to catch all exceptions
in an attempt to avoid having to handle them individually. That often leads to exception swallowing,
where exceptions are simply ignored.

Exception-based error handling

int doSomething() throws Exception {
plaintext = AesGcm.decrypt(key, ciphertext)

doSomethingWithPlaintext(plaintext)

}

int main() throws Exception {
try {

doSomething();

} catch (Exception e) {

// handle error

// - but what exactly should we do?

// - benign or malicious error?

}

}

Slide 87
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Alternatively, the callee might decide to simplify their job by throwing a generic exception. However,
this often breaks the understanding of which exceptions are expected and which are not. Similarly, it
makes it difficult to correctly handle the exceptions in the caller, as a lot of the relevant context is lost.

Result types for error handling

Declared as such:
fn decrypt_aes_gcm(key: &[u8], ciphertext: &[u8])

-> Result<Vec<u8>, DecryptionError>

Used as such:
fn do_something(&self) -> Result<(), Error> {

let maybe_text = decrypt_aes_gcm(&key, &ciphertext);

match maybe_text {

Ok(text) => { /* do something */ ; Ok(()) },

Err(err) => Err(Error::from(err, "aes gcm failed"))

}

}

Slide 88

The third paradigm is result types, which are popular in languages like Rust, Go, and Swift. Here,
functions return a Result<T, E> type, where T is the type of the value we want to return and E is the
type of the potential error. By explicitly requiring the caller to unwrap the result, we avoid the problems
of gathering many exceptions at single choke points or mindlessly passing them upwards. Second, they
typically encourage more detailed typing for the errors.

Result types for error handling (ergonomics)

Using let-else for error handling:
fn do_something(&self) -> Result<(), Error> {

if let Ok(text) = decrypt_aes_gcm(&key, &ciphertext) else {

return Err(MyDecryptionError::DecryptionFailed);

}

/* do something */ ;

Ok(())

}

Using anyhow for error handling:
fn do_something(&self) -> anyhow::Result<()> {

let text = decrypt_aes_gcm(&key, &ciphertext)?;

/* do something */ ;

Ok(()) // No need for return keyword

}
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While handling each result type individually can be cumbersome (looking at you, Go!), some languages
have features that improve ergonomics. In Rust, we can use let-else to handle result types. A similar
feature is available in other languages, e.g. guard let try? in Swift. Other libraries, like anyhow,
provide a more ergonomic way to handle result types—providing an approximation of exception-based
error handling.

Note that a big difference between exceptions and result types is also their underlying implementations.
While exceptions often rely on the ability to unwind the call stack, result types can be implemented using
a simple return value. That makes result types typically more efficient and robust—at the cost of being
more verbose. We are focused on overall API design, so we will not dive deeper into the implementation
details of the three different paradigms.
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Error messages

Consider the following code:
cipher = AesGcm.create(key)
plaintext = cipher.decrypt(ciphertext)

# do something with the plaintext

Let’s assume the library is generally following a
exception-based error handling approach. What behaviors
would be good? Helpful? Unhelpful? Dangerous?
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Error messages: be helpful

▶ decryption failed

▶ No information about what went wrong
▶ No guidance on how to fix it

▶ decryption failed: bad key length

▶ Indicates the specific issue
▶ Still lacks guidance on how to fix it

▶ decryption failed: key must be 16 or 32
bytes, but was 128 bytes

▶ Clearly states what went wrong
▶ Provides exact requirements
▶ Shows the actual problematic value
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Creating great error messages is hard and it requires careful balancing between conciseness, helpful-
ness, and safety. Consider the setting in which the error is seen and by whom. Is it the developer while
writing or debugging the call site? Then we want to be rather technical, helpful, and provide as much
information as possible. Is it the end-user using the software that integrates our code? Then we want
it to be “friendly”, i.e. not technical, and provide references they can forward to the developer. For
achieving this balance, a library might decide to change its behaviour based on its environment.
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Error messages: but not too helpful

decryption failed: key must be 16 or 32 bytes,

got value "secretkey" which is 9 bytes long

▶ This leads us to our next topic: leaky implementations
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3.3 Leaky implementations

Leaky implementations

Idealised formal world:

▶ Operations are solely defined by their mathematical
properties

▶ Perfect black boxes

▶ Often assuming infinite resources

Real world:

▶ Implementations are not perfect

▶ Adversary can learn exact hardware/software steps

▶ Work against a finite set of resources
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When moving from the idealised world to the real world, we need to be aware that our code will never
be a perfect implementation of the mathematical properties. Mathematical operations are instant and do
not leak any information, whereas in practice each operation is a sequence of discrete hardware/software
steps that can be observed. The multiplication of two curve points, very easily translates into thousands
of underlying operations such as: loading instructions from memory, comparing registers, performing
divisions, . . . . As such, code will necessarily provide an attack surface for an adversary that is otherwise
not visible in the mathematical specification. Hence, this advantage can be used by an adversary to learn
about the internal state, e.g. secrets, of our implementation at runtime.
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Side-channels

▶ Timing side-channels

▶ Error messages

▶ Memory access patterns

▶ Energy consumption

▶ Electromagnetic emissions

▶ . . .

Every bit of information can be used by an adversary.
Especially if accessible in a repeated manner with
adversary-controlled input.
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We call these side-channels, because they allow an adversary to learn information about the internal
state of our implementation without directly accessing it. Today we will focus on timing side-channels and
error messages. However, many other side-channels exist, e.g. memory access patterns, branch prediction,
energy consumption, electromagnetic emissions—even the flickering LED on a network device might leak
information. In your exercises you are not required to make your implementation side-channel resistant.
However, you should be aware of the challenges and potential pitfalls and discuss them in your lab report.

Timing side-channels

▶ If the execution time of an algorithm depends on a secret
value, measuring the time may leak that value, e.g.
private key (timing side-channel)

▶ Memory access patterns can be revealed by timing (cache
hits/misses)

Implementations should be constant-time to avoid this:

▶ No branches (if/else, break, . . . ) conditional on a secret

▶ No memory access (array lookups) dependent on a secret

▶ Individual CPU instructions (e.g. multiplying two 32-bit
numbers) typically assumed to be constant-time

Code you write in this module need not be constant-time.
However, your lab report should discuss how you could make it
constant-time.
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Production-quality code is often expected to be constant-time, which means that it always executes in
the same amount of time, regardless of the value of any secret inputs. This is important since even small
timing variations can result in a timing side-channel that is sufficient to allow an adversary to recover a
private key [Genkin et al., 2017].

Making code constant-time in practice can be rather fiddly [Pornin, 2017], and therefore code you
write in this module does not need to be constant-time. However, as part of your critical reflection in
your lab report you should discuss the ways in which your code’s timing is secret-dependent, and suggest
ways how you could make it constant-time in the future.
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Padding oracle attack

▶ Assume AES-CBC with PKCS#7 padding
▶ Padding pattern: ?? ?? ?? ?? 04 04 04 04
▶ Decryption: Pi = DK(Ci)⊕ Ci−1 and C0 = IV

▶ Server returns either nothing or PADDING ERR

Figure: Wikipedia, public domain.
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Padding oracle attacks are a classic example of a error message based side-channel that leaks 1-bit of
information per adversary-controlled attempt. Using just the availability of an error messaging indicating
whether the padding is correct or not, we can recover the plaintext of the entire message.

Let’s first recap how PKCS#7 padding works. PKCS#7 padding is a scheme for a block cipher that
pads messages to a multiple of the block size by appending bytes with a value equal to the number
of padding bytes needed. For example, if a message needs 3 bytes of padding to reach the next block
boundary, three bytes each with value 0x03 are appended. If the message is already aligned with the
block size and we use 16-byte blocks, we append a full block of 0x10 repeated 16 times.

Let C1, C2, C3 be three blocks of our correctly-padded CBC-encrypted ciphertext as per the diagram
above in slide 96. Let C0 be the Initialization Vector (IV). We first want to recover the plaintext P3 for
which we know that the last bytes are a valid padding, i.e. 0x01 or 0x02 0x02 or . . . .

We start our recovery attempt by assuming an initial padding where the last byte is 0x01. Based on
the XOR operation, we can set the last byte of P3 to 0x02 by setting C2[15] = C2[15]⊕0x01⊕0x02. Now
we try all possible values for the second-to-last byte of P3 and check if we find a value that results in a
valid padding. If we do, then our assumption of the 0x01 padding was correct. If not, our assumption of
the initial padding was wrong and we try again with the next possible padding, i.e. 0x02 0x02. For this
we change the last bytes to 0x03 0x03 and repeat the same process. It will take us 16 · 256 attempts to
find the correct padding length. Through this we now definitely know the last bytes of the plaintext P3.
That means we can take our known padding, increase all values by one and try to make the first byte
before the padding such that it becomes part of the longer padding.

For example, we found that the last bytes of P3 are 0x02 0x02. We then change the last bytes to
0x03 0x03 and try to find the correct padding. If it is directly a valid padding, we know that the first
byte before the padding must have been 0x03. Otherwise, we try all variants for C ′

2[16− 3] until we have
a match. We can then compute the original plaintext P3[16− 3] = C ′

2[16− 3]⊕ C2[16− 3]⊕ 0x03. This
analogously applies for all possible padding lengths and the other bytes of P3. By repeatedly applying
this process byte for byte we can recover the entire plaintext.
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Padding oracle attacks in the real-world

▶ Initial attack in 1998 by Bleichenbacher against RSA →
fixed

▶ More efficient attack against CBC-mode AES in 2002 by
Vaudenay → fixed

▶ Lucky Thirteen attack against TLS in 2013 (AlFardan
and Paterson) by using the same technique but with a
timing side-channel → fixed

▶ This introduced another timing side-channel
CVE-2016-2107 → fixed

▶ to be continued. . .

Not leaking information in Internet-connected services really is
a hard problem!
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More details are in the original papers by Bleichenbacher [Bleichenbacher, 1998], Vaudenay [Vaudenay,
2002], and AlFardan and Paterson [Al Fardan and Paterson, 2013] as well as in this write-up of the details
of CVE-2016-2107: https://blog.cloudflare.com/yet-another-padding-oracle-in-openssl-cbc-ciphersuites/.

3.4 Types

Types improve the robustness of cryptographic libraries and make it easier for developers to use them
correctly. In this section we will discuss how static typing can move many correctness guarantees to
the compilation time. We will discuss in later lectures more involved patterns including Type State that
ensure we not only pass in correct types, but can capture important logical guarantees throughout the
lifetime of our programs.

What is a secret key actually?

Let’s return to our X25519 secret key: x ∈ Fp. But what
exactly is x in the real world?

▶ A number in the set Fp?

▶ The binary representation of that number?

▶ A Python object?

▶ The serialized bytes?

▶ Also the logic to interpret the bytes?

▶ . . .

Slide 98
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Example: X25519 key

x: int

▶ Simple

▶ Confusion possible with different keys

▶ Unclear how to turn into/from bytes
▶ This process is often called serializing or marshalling
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Example: X25519 key

x: bytes

▶ Relatively simple

▶ Still able to confuse with different keys

▶ Might be too short/long

Slightly better in languages, e.g. Rust, with fixed-sized arrays:
x: [u8; 32]
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Example: X25519 key

@dataclass

class X25519SecretKey:

x: int

▶ Strong type avoids mixing up different keys

▶ Can have extra functionality, e.g. comparison

▶ Can have extra checks, e.g. avoid uninitialized value
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Using strong types helps prevent common mistakes and makes the code more maintainable. How-
ever, we need to carefully consider how these types interact in more complex scenarios where multiple
components work together.
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Going past one type

This sounds great at first. However, it becomes tricky when
integrating multiple components, e.g. asymmetric key
agreement and symmetric encryption.

def enc(

x: X25519SecretKey, gy: X25519PublicKey,

message: bytes,

) -> bytes:

shared = x.dh(gy) # probably just bytes

aes_key = CipherLib.AESKey(shared)

# encrypt message and return
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Types might also come into play when we want to pass a result of one cryptographic operation, e.g.
an asymmetric key agreement like X25519, into a next one, e.g. as a key to a symmetric encryption. By
avoiding weaker types, e.g. bytes, we can prevent many potential error sources. Since cryptographic
operations usually can not be easily inspected, many wrong usages “work” but with devastating conse-
quences. For example, the developer might pass in the hexadecimal formatted output of a digest (easy to
do with some Python libraries) directly into the key function of a cipher. They might expect to receive
128-bit security with a 16 byte long input, however, they would effectively only get 64 bit security as each
byte only takes the value 0-9A-F.

Going past one type

We might want to use more types to describe these
boundaries. For example:

▶ DerivedSecret: result from a DH operation

▶ SecureRandom: anything that gives us high-entropy
random numbers

KeyMaterial = DerivedSecret | SecureRandom

class AesKey:

def __init__(self, key: KeyMaterial):

self.key = key
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Strong types can help us to mitigate some of these risks. For instance, we could ensure that an
AES key is never directly derived from a byte array, but only from high-entropy output of either a
cryptographically-secure random number generator or from the result of a key exchange. We might go
even further and e.g. require that the type needs to be promoted further by using a suitable key derivation
function (KDF). We discuss KDFs and why using them is a good idea in more detail in a later lecture.
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Going past one type

This comes with challenges:

▶ Cross-library interfaces require widely accepted
types/patterns.

▶ Imperfect representations of all cryptographic properties.

▶ At some point, types become too bothersome
▶ Developers go back to raw byte[] arrays

It’s not an exact science.
Don’t be too clever.
Empathy and pragmatism win.
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At large, the idea of adding zero-cost abstractions and moving more guarantees to the compilation
stage (or static checking) is great and promising. However, we must not overlook its challenges.

For example, read-world protocols and implementations often rely on multiple cryptographic libraries
to work together. Strong types will only work if both libraries are build upon the same type hierarchy
provided either by the language’s standard library or a widely-accepted library. One example is the Java
Cryptography Architecture (JCA, java.security) which defines a type hierarchy for cryptographic
operations. However, such frameworks tend to be difficult to extend and upgrade later, e.g. when adding
new primitives such as hybrid encryption with a different set of parameters. As a result, these retrofitting
new ideas often result in frankenstein-ish libraries that are hard to maintain and use.

Even where types are aligned, they typically are imperfect representations of the underlying crypto-
graphic properties. For example, the bias in a result, e.g. from X25519, might have implications when
used as a key for some ciphers, but might be perfectly fine for others.

Adding more and more information to types might also lead to a situation where the design become
too cumbersome to use. When leaving the carefully designed path, developers might find that their only
workable solution is to use the available escape hatches and fall back to raw byte[] arrays. Overall,
too complex type systems can distract from the actual cryptographic reasoning and make the engineer
focus primarily on “making the type checker happy”. Other drawbacks include hard-to-parse error mes-
sages, hard-to-maintain extensions that need updating with the imported type hierarchy, and prolonged
compilation times.

More complex types

Consider an encrypted AEAD message. It typically contains:

▶ A nonce or IV

▶ Associated data

▶ Encrypted data

▶ A tag

Strong types help here, as they ensure elements are not
accidentally mixed up. But does the callee actually need to
know about this? High-level API ↔ low-level API
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The following slides provide a crash course on how to use mypy to statically type check your Python
code. You’ll find it valuable to experiment with type checking in your exercises and explore the expressive
capabilities of Python’s type system. If you’re already familiar with statically typed languages like Rust,
you’ll notice interesting differences in what various type systems can express.
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Static Type Checking with mypy

▶ mypy is a static type checker for Python

▶ Helps catch type errors before runtime

▶ Popular alternatives:
▶ Pyright (from Microsoft)
▶ Pyre (from Meta/Facebook)
▶ Pytype (from Google)

▶ Easy to install and configure:

# Install mypy:

pip install mypy

# Run mypy:

mypy your_file.py

mypy your_code/
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For more information about mypy, see https://mypy.readthedocs.io/. We chose mypy because it has
been the most popular static type checker for Python over the last years. However, you might find other
type checkers more convenient for your use case.

Basic Type Annotations

▶ Start with built-in types

▶ Use generic types from the typing module

▶ Type checking works with nested types

from typing import List

def sum_numbers(numbers: List[int]) -> int:

total: int = 0

for num in numbers:

total += num

return total

# OK

result = sum_numbers([1, 2, 3])

# type error: List[str] not assignable to List[int]

bad_result = sum_numbers(["1", "2", "3"])
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Runtime Type Checking

▶ Type hints are not automatically checked at runtime

▶ Use assertions for runtime checks

from typing import List
import typing

def sum_numbers(numbers: List[int]) -> int:

assert isinstance(numbers, list),\

"numbers must be a list"

assert all(isinstance(x, int) for x in numbers),\

"all elements must be integers"

total: int = 0

for num in numbers:

total += num

return total
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The Python typing system is designed to be gradual—you can add types incrementally to your code-
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base. For more ergonomic runtime type checking, consider using libraries like typeguard or beartype.

Advanced Type Features

▶ TypeAlias: Create aliases for complex types

▶ Union: Allow multiple types

▶ Modern Python also supports | syntax for unions

from typing import TypeAlias, Union, List

Matrix: TypeAlias = List[List[float]]

Number: TypeAlias = Union[int, float]

def add_constant(matrix: Matrix, c: Number) -> Matrix:

return [[x + c for x in row] for row in matrix]

# Both valid

result1 = add_constant([[1.0, 2.0]], 1) # [[2.0, 3.0]]

result2 = add_constant([[1.0, 2.0]], 0.5) # [[1.5, 2.5]]
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Self-referential Types
▶ Self type for methods returning instances

▶ Useful for creation methods and operations

from typing import Self

class Matrix:

def add(self, other: Self) -> Self:

return Matrix([

[self.data[i][j] + other.data[i][j]

for j in range(self.cols)]

for i in range(self.rows)

])

@classmethod

def zeros(cls, rows: int, cols: int) -> Self:

return cls([[0.0] * cols for _ in range(rows)])

m1 = Matrix.zeros(2, 2)

m2 = m1.add(m1)
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The Self type is available since Python 3.11 and is used to refer to the class that is being defined.
For example, in the code above, we cannot simply use Matrix in the return type of the add method,
because Matrix is not defined yet. For more advanced typing features, including Protocol, TypeVar, and
Generic types, refer to Python’s typing documentation at https://docs.python.org/3/library/typing.html.
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Pattern: type state (1, motivating example)
struct AkeClient {

x: Secret,

k: Option<DerivedKey>,

has_verified_server: bool,

}

impl AkeClient {

fn handle_server_response(

&mut self,

response: ServerHelloResponse,

) -> Result<()> {

if self.has_verified_server {

bail!("already verified server");

}

// verify server response ...

self.has_verified_server = true;

self.k = Some(derive_key(&self.x, response));

Ok(())

}

}
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The ends, e.g. client or server, of protocols often go through state transitions. For instance, in an
mTLS-like handshake the client is first in an initialized state where they generate or load their secrets.
Afterwards they send a message to the server and transition into a waiting state. Once they received a
reply, they can derive the main session keys, send the next message to the server, and transition to a
connected state.

The motivating example in Slide 111 shows an implementation approach that’s very common. We can
see that it is difficult to understand which methods modify what state. Also, there is no consistent way
to ensure methods are called in the correct order—we only find out at runtime if we call methods in the
wrong order or too often. Also, the secret x lives longer than it needs to and there will be considerable
extra effort in dealing with an Option<...> type for the derived key.

Pattern: type state (2)

struct AkeClientInitialized {x: Secret}
struct AkeClientWaiting {x: Secret}

struct AkeClientVerified {k: DerivedKey}

impl AkeClientWaiting {

fn handle_server_response(

self, response: ServerHelloResponse

) -> Result<AkeClientVerified> {

// verify server response ...

// derive key ...

let k = derive_key(&self.x, response);

Ok(AkeClientVerified {k})

}

}
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Instead, we can use the type system to our advantage using the Type State Pattern [Biffle, 2019]. By
making the transition functions “consume our current state” and returning a new state with a different
type, our state transition graph is modelled using the type system. This works particularly well with
Rust’s type system—however, similar patterns can provide comparable benefits in other languages. The
Type State Pattern can also enforce additional constraints, e.g. that we process only one server response
per connection attempt and chosen x: Secret.
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Pattern: type state (3)

struct AkeClient<S> { state: S }

trait AkeClientState {}

impl AkeClientState for AkeClientInitialized {}

impl AkeClientState for AkeClientWaiting {}

impl AkeClientState for AkeClientVerified {}

impl AkeClient<AkeClientWaiting> {

fn handle_server_response(

self, response: ServerHelloResponse

) -> Result<AkeClient<AkeClientVerified>> {

// verify server response ...

// derive key ...

let k = derive_key(&self.state.x, response);

Ok(AkeClient {state: AkeClientVerified {k}})

}

}
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Another implementation variant of the Type State Pattern uses generic types. This has the advantage
of further reducing boilerplate code and allows us to have shared functions on the main AkeClient class.
Also, using the trait can give more control over the extend to which users of our API can add new
states. Finally, we can now also easily introduce common state, e.g. logging and protocol transcripts.
Note that we want to move this onto the heap using Box<...> so that it is not copied around the stack
unnecessarily.

Pattern: type state (4)

struct SharedState {debug_log: Vec<ProtocolLogEntry>}
struct AkeClient<S> {

state: S,

shared: Box<SharedState>,

}

impl<S> AkeClient<S> where S: AkeClientState {

fn log(&mut self, entry: ProtocolLogEntry) {

self.shared.debug_log.push(entry);

}

}
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Pattern: type state (5)
Benefits:

▶ Move important logic to compile time (or type checker)

▶ Improves IDE ergonomics

▶ Easier reasoning about state

For cryptography in particular:

▶ Clear management of secret life times

▶ Protections against accidental secret reuse

More examples for constraints that can be modelled:

▶ We can only access API methods after authentication

▶ Once a connection has been terminated, we cannot call
any send/receive methods

▶ After A, both B and C have been called (in any order),
before D can be called
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Pattern: type promotions

struct UnverifiedKey { bytes: [u8; 16]}
struct VerifiedKey { bytes: [u8; 16]}

fn load_root_of_trust(

path_buf: &PathBuf,

trusted_digests: &[u8]

) -> RootOfTrust {

// check: date constraints && matches trusted digests

return ...

}

fn verify_key(

key: UnverifiedKey,

certificate: &Certificate,

root_of_trust: &RootOfTrust

) -> Result<VerifiedKey> {

// check: date constraints && chained signature

return ...

}
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We can also use our type system to give us stronger guarantees about the validity of our secrets. In
particular, we can “promote” keys to a verified state only when we have properly validated them. This
ensures that we never accidentally forget check a signature. Also, by controlling the visibility of the
constructing methods, we can help audits of the code as there are intentional bottlenecks in the logic
flows.

We can extend the previous example by giving our keys a scope. For instance, keys might be assigned
a Role (user or server) and/or a Purpose (signing or encrypting). Binding these to the types themselves
makes it hard to use a key for the wrong operation. In Rust we have to use PhantomData<T> to convince
the compiler that we are actually “using” the type parameter.
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Pattern: scoped secrets

struct ScopedUnverifiedKey<Role>
{ bytes: [u8; 16], _role: PhantomData<Role> }

struct ScopedVerifiedKey<Role>

{ bytes: [u8; 16], _role: PhantomData<Role> }

fn verify_key_for_role<S>(

root_of_trust: &RootOfTrust,

certificate: &ScopedCertificate<S>,

key: &ScopedUnverifiedKey<S>

) -> Result<ScopedVerifiedKey<S>> where S:Role {

// ...

}

fn sign_message_to_server(

key: &ScopedVerifiedKey<Client>, msg: &[u8]

) -> Vec<u8> {

// ...

}
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4 Authenticated key exchange

Now that you have seen how to implement cryptographic primitives such as Diffie-Hellman and signatures,
we can build protocols out of those primitives. The first thing we need to do when talking about a protocol
is to define its threat model : that is, which participant in the protocol (including the network) is trusted
or not trusted to do certain things? A common model is the Dolev–Yao model, in which the network is
assumed to be completely untrusted: that is, the adversary is allowed to do anything with the messages
that travel over the network. This is actually a reasonable model for communicating over the internet:
for example, when you are connected to a random coffee shop wifi, the owner of the coffee shop (who
controls the router that your communications pass through) is in a position to perform arbitrary passive
and active attacks on your communications.

In principle, the Dolev–Yao model allows all messages to be dropped; of course, no protocol will be able
to get anything done if no message is ever delivered. We therefore often assume eventual delivery : that
is, the network protocol detects dropped messages and resends them (if necessary, multiple times) with
the expectation that one of the retries eventually succeeds. The recipient may need to filter out duplicate
messages resulting from such retries. For simplicity, we won’t worry about retries and deduplication in
this module. However, it’s important that a dropped message only results in the protocol not terminating;
the protocol must not violate its advertised security properties because a message was dropped.

Cryptographic protocols

We’ve seen cryptographic primitives: symmetric encryption,
hashes, Diffie-Hellman, signatures.

Now let’s look at protocols: interactive communication
between two or more parties, sending messages over a network.

Threat model: assume what each party may do / not do,
and what the network may do / not do

Common assumption: Dolev–Yao model. The adversary. . .

▶ sees everything sent over the network (eavesdropping)

▶ chooses if and when messages are delivered

▶ can inject fake messages, replay old messages (active)

▶ sees multiple protocol runs between different parties

Reasonable model if you’re on a coffee shop wifi!
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Under such a threat model the classic Diffie-Hellman protocol from Slide 17 is insecure. As shown
on Slide 119, the adversary can intercept the gx and gy messages from Alice and Bob, and replace them
with gz where the private key z is known to the adversary. Since Alice and Bob cannot distinguish the
adversary-generated gz from the genuine gx and gy, they proceed with the protocol as usual. As a result,
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Alice and Bob think they share a key, but in fact Alice ends up sharing a key k1 with the adversary, and
Bob shares a different key k2 with the adversary. The adversary can now decrypt the ciphertext c from
Alice and re-encrypt it under the key shared with Bob. As a result, the adversary learns the plaintext
message m and can even modify this message without Alice or Bob noticing.

Unauthenticated Diffie-Hellman

Alice Eve (adversary) Bob

private: x ∈ Zq

public: gx
private: y ∈ Zq

public: gy
z ∈ Zq

k1 ← H((gx)z)
k2 ← H((gy)z)

k1 ← H((gz)x)
c← Enc(k1,m)

k2 ← H((gz)y)

m← Dec(k1, c)
c′ ← Enc(k2,m)

m← Dec(k2, c
′)

gx gy

gz gz

c
c′
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This is an example of a machine-in-the-middle (MITM, also person-in-the-middle, or traditionally
called man-in-the-middle) attack on the protocol. The problem is that plain Diffie-Hellman lets you
establish a shared key with some other party, but it doesn’t tell you who that party is – it could be
anyone. To prevent it, we need to add authentication: the parties need to prove to each other who they
are.

Even if the Enc/Dec functions on Slide 119 are from an authenticated symmetric encryption scheme,
that’s not sufficient, since symmetric authentication only proves that a message was encrypted by someone
who knows the symmetric key. If an honest party shares a key with the adversary, the adversary can
generate arbitrary messages that are correctly authenticated from the encryption scheme’s point of view.

4.1 Requirements for authenticated key exchange

Authenticated key exchange (also known as key agreement) protocols establish a shared symmetric key
while verifying who the other party is. They come in two main flavours: those that identify parties using
public keys, and those that rely on knowledge of a shared password (we assume that only the genuine
parties know the password, and the adversary doesn’t). In the password case, we usually assume that
the password has less entropy than the ≥ 128 bits that a symmetric key would need – if it had enough
entropy, you could just use the password itself as symmetric key and be done with it. A Password-
Authenticated Key Exchange (PAKE) is designed to establish a secure channel even if the password has
much less entropy than that.

For example, a PAKE is used for WiFi passwords in the WPA3 standard. If a client device were to
simply send the password to the access point (even encrypted), that would not be secure, because the
adversary could simply operate a fake access point in order to learn the password, and there is no way
for a client device to know whether an access point is fake or not. The PAKE allows the client device to
prove to the access point that it knows the password, and for the access point to prove the same to the
client device, without revealing the password to each other. That prevents the adversary from stealing
the password.
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Mutual authentication in protocols

How do two communicating parties convince each other that
they are genuine?

Two usual forms of mutual authentication:

▶ Authenticated Key Exchange (AKE):
each party has a private key; other party knows the
corresponding public key

▶ Password-Authenticated Key Exchange (PAKE):
the two parties share a (low-entropy) password; prove
they know it without revealing it (e.g. wifi password)

On the web it’s usually asymmetric:

1. Server authenticates itself to client using public key

2. Client authenticates itself to server by sending
password over encrypted+authenticated connection
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The authentication model you’re probably most familiar with is that of the web, using the TLS
protocol. Here, the server authenticates itself to the client using a public key, which is part of a server
certificate. TLS supports the client also authenticating itself to the server using a client certificate – this
mode is known as mutual TLS or mTLS – but this is rarely used on the web (in some countries, citizens
can authenticate to government websites using a client certificate stored on their ID card).

More commonly, a web client remains unauthenticated from a TLS point of view, and then at the
application level the client authenticates itself to the server by sending the user’s password over an
encrypted and server-authenticated TLS connection. In this case, sending the password over the network
(and not using a PAKE) is secure, because the adversary cannot impersonate the server – assuming that
the client knows the correct public key for the server! (There is also the risk of phishing, where the user
types their password into a lookalike website on a different domain name; that’s a separate matter that
we won’t go into in this module.)

Passkeys/WebAuthn are a way for a web browser client to authenticate itself to a server using a
public key. This authentication is not done at the TLS level, but rather on top of HTTP requests at the
application level.

That brings us to the question of how each party actually knows the public key for the other party.
For client authentication, a user may register their public key when they create an account. For server
authentication, in some cases the client knows the server’s public key in advance: for example, if you’re
building a mobile app that talks to a backend service that you operate yourself, then you control both
ends of the communication. In this case, you can simply compile the server’s public key into the mobile
app. This practice is known as public key pinning or certificate pinning.

However, in general, you don’t know in advance which parties a piece of software will want to com-
municate with. For example, a web browser can’t know the public keys of all websites in the world. (In
principle it could, but then it would be very slow to set up a new website, because you would have to
wait for everybody to update to a new browser version that contains your website’s public key before
users could connect to your website.) Moreover, a server may need to rotate its key after it has become
compromised, or as a precaution. To solve this, we need a PKI.
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Public Key Infrastructure (PKI)

But how does each party find out the other party’s public key?

▶ Web (WebPKI):
▶ Certificate is (domain name, pubkey, validity dates)
▶ Certificate is signed by a certificate authority (CA)
▶ Several CAs’ public keys are built into the web browser
▶ New website: CA checks via HTTP request or DNS

whether you own the domain

▶ Secure messaging (Signal, WhatsApp, iMessage, . . . )
▶ Key directory: database of phone number → pubkey
▶ Identity of key directory is built into messaging app
▶ User registration: directory sends SMS to phone number

Can check whether CA/directory is honest using certificate
transparency (and other transparency logs)

Slide 121

In practice, a TLS certificate often isn’t signed directly by the CA’s root key, but rather by some
intermediate key. You then have a certificate chain in which the CA’s root key signs the intermediate
public key, and the intermediate public key signs the certificate for a particular domain name. It’s even
possible to have several intermediate certificate, but the basic idea and the trust model remain the same.

Both a certificate authority (CA) and a key directory are parties that we have to trust: if Bob manages
to convince the CA that Alice’s username (domain name, phone number) should be mapped to a public
key that Bob controls, then Bob could intercept all of Alice’s communications. It’s hard to entirely avoid
this trust relationship, and in practice it works quite well most of the time. To encourage CAs and key
directories to be honest, one solution is to require all issued certificates and all key directory updates
to be recorded in a public audit log. This log does not prevent a CA from doing something wrong,
e.g. issuing a certificate to someone other than the true owner of a domain, but it ensures that such
misbehaviour leaves clear evidence that can be used to sanction the CA by removing its certificate from
the main browsers. This is what Certificate Transparency [Laurie, 2014] does; for key directories there
are variants that hide phone numbers from the public log [Melara et al., 2015].

Slide 122 shows one way how a web browser could use a certificate to authenticate a server. When the
client (web browser) first connects, the server sends the client the server’s certificate, signed by a CA. The
client checks that the certificate is for the correct domain name, that it’s signed by a CA whose public
key is built into the client, and that it’s within the specified validity period. If so, the client encrypts its
message to the public key included in the certificate.

Simple server authentication

Let cert = (“bob.com”, pkB, startDate, endDate)

Let sig = Sign(skCA, cert) and assume Alice knows pkCA

Alice bob.com

(domain, pkB, start , end)← cert

if domain = “bob.com” ∧
Verify(pkCA, cert , sig) ∧
start < now < end :

c← Enc(pkB,msg)

msg ← Dec(skB, c)

cert , s
ig

c

Slide 122

This mode of authenticated key exchange was supported in TLS 1.2 and earlier versions, but it was
removed in TLS 1.3. The reason is that it doesn’t offer forward secrecy : if the server’s key were ever to
be compromised, all past communications with that server could be decrypted.
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Including key compromise in the threat model

A simple scheme:

▶ Server sends its certificate to client, client checks it

▶ Client samples a random session key, encrypts it under
server’s public key (using a public key encryption scheme)

▶ Server decrypts session key

▶ Encrypt+authenticate communication using session key

If the server’s private key is ever compromised, all
communication ever with that server can be decrypted!

Adversary could record all ciphertexts now and hope to
compromise key in the future (“store now, decrypt later”)

We should try to handle key compromise as well as possible

Slide 123

If a private key is compromised, the adversary will inevitably be able to decrypt some messages. How-
ever, many modern protocols try to minimise the impact of the compromise to make it less catastrophic.
One good property to aim for is forward secrecy.

Forward secrecy
Forward secrecy (aka perfect forward secrecy):
If adversary learns private keys, they cannot decrypt any
communication prior to compromise

Considered essential in many modern protocols
TLS since 1.3 always offers forward secrecy

▶ Use ephemeral keys (i.e. new keys for every connection)

▶ Keep generating new keys from old ones (ratchet)

▶ Diffie-Hellman with ephemeral keys is forward secure. . .

▶ . . . if we can authenticate it correctly!

What about communication after compromise?

▶ Can still offer post-compromise security against
passive eavesdropping

▶ Refresh keys from time to time, e.g. with new DH

▶ Can’t prevent active impersonation by adversary
Slide 124

We can now list all the properties that we expect an authenticated key exchange protocol to have. We
will focus on the case where two parties are both trying to mutually authenticate to each other, which
is required e.g. for secure messaging (where the parties are users) or for mTLS (where one party is the
client and the other party is the server). If you only need one party to authenticate to the other (like on
the web, where the server is authenticated but the client not), it’s easy to take a protocol with mutual
authentication and just leave out the authentication on one side.
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Requirements for authenticated key exchange

For secure two-party communication, establish a session key
for use with an authenticated symmetric encryption scheme
with the following properties:

▶ Confidentiality: when two honest parties communicate,
the adversary learns nothing about the session key

▶ Authentication: each party can verify the identity of the
other party; adversary cannot impersonate

▶ Consistency: if A thinks it’s communicating with B,
then B thinks it’s communicating with A
▶ Violation is called identity misbinding attack

▶ Forward secrecy: if adversary compromises a party’s
private state, past session keys remain confidential

There are also group key exchange protocols for more than
two parties (beyond scope of this module)

Slide 125

An identity misbinding attack is sometimes also called an unknown key-share attack [Blake-Wilson
and Menezes, 1999].

4.2 Implementing a secure AKE protocol

It turns out that actually creating a secure authenticated key exchange protocol is not that straightfor-
ward: many plausible-looking protocols are in fact insecure. In this section we’ll look at some examples
from Krawczyk [2003]; that paper is recommended reading for your second assignment.

As a first attempt, let’s assume that there is a PKI via which Alice and Bob can learn each other’s
correct public keys. Then each party can sign the Diffie-Hellman message it sends with its private key,
and the other party can verify the signature using the public key.

Badly Authenticated Diffie-Hellman (1)

Alice Eve (adversary) Bob

sample x ∈ Zq

σA ← Sign(skA, g
x)

sample y ∈ Zq

σB ← Sign(skB, g
y)

σE ← Sign(skE, g
x)

Verify(pkB, g
y, σB)

k ← H((gy)x)

Verify(pkE, g
x, σE)

k ← H((gx)y)

gy, pkB, σB

gx, pkA, σA

gx, pkE, σE

Alice is talking to Bob, but Bob thinks he’s talking to Eve

Slide 126

Unfortunately, this protocol is vulnerable to an identity misbinding attack as shown on Slide 126. Eve
lets Bob’s message to Alice pass through unmodified. From Alice’s message Eve takes gx and then signs
it with her own private key. Bob now believes that gx came from Eve, when in fact it came from Alice.
Alice and Bob now share a key k, and Alice correctly believes she’s talking to Bob, while Bob incorrectly
believes he’s sharing k with Eve. Eve doesn’t learn k, so this attack does not violate confidentiality, but
it does violate the consistency property on Slide 125.

As an example of a situation where this attack could be a problem, imagine that Bob is a bank, and
Alice and Eve are customers of the bank. After establishing an authenticated session with the bank, Alice
sends the bank some information that has financial value (e.g. an instruction to deposit a cheque), asking
the bank to credit it to her account. However, Eve has interfered with the communication as in Slide 126,
and so the bank believes that the information is coming from Eve. As a result, the bank credits Eve’s
account instead of Alice’s. Even though Eve never learnt the session key, she has broken the security of
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the protocol.
Another problem with this protocol is that Eve could record the messages in one protocol run and

replay them in another run of the protocol, because Alice’s message doesn’t depend on Bob’s message
and vice versa. For example, if Eve ever manages to learn one of Bob’s private exponents y, she could
replay the corresponding (gy, pkB, σB) message (which bears Bob’s valid signature) to impersonate Bob
in future runs of the protocol. To prevent such replay attacks, we need to ensure that a signature from
one run of the protocol has no value in another protocol run. The protocol in Slide 127 does this by
computing the signature over both Diffie-Hellman exponentials.

Badly Authenticated Diffie-Hellman (2)
Alice Eve (adversary) Bob

sample x ∈ Zq

sample y ∈ Zq

σB ← Sign(skB, g
x ∥ gy)

Verify(pkB, g
x ∥ gy, σB)

σA ← Sign(skA, g
x ∥ gy)

k ← H((gy)x)

σE ← Sign(skE, g
x ∥ gy)

Verify(pkE, g
x ∥ gy, σE)

k ← H((gx)y)

gx

gy, pkB, σB

pkA, σA pkE, σE

Again Bob thinks he’s talking to Eve

Slide 127

This solves the replay attack, but not the identity misbinding attack. Eve can still replace the last
message from Alice to Bob with one containing her own signature, and thereby make Bob believe that
he has established a session with Eve.

To prevent an adversary who doesn’t know the shared key from tampering with the messages, we
could try using a MAC in addition to the signature. This allows one party to prove to another party that
it knows some symmetric key, without revealing it. The next two slides are a reminder of what a MAC
is (this should have been part of the basic cryptography recap in Section 1.2).

Message Authentication Code (MAC)

MAC(key ,msg) takes a symmetric key key and byte string
msg , returns a fixed-length authentication tag

▶ Security definition: existential unforgeability against
chosen-message attack (EUF-CMA). Cannot forge a tag
on some message without knowing key, even knowing
tags for other messages

▶ Proof that a message was constructed by someone who
knows key , and that the message was not altered

▶ To check, recompute MAC(key ,msg) and check whether
you get the same result

▶ Use a constant-time comparison, otherwise timing allows
adversary to guess the right tag!

▶ Implementations based on hash (HMAC), block cipher
(CBC-MAC), or polynomial (Carter-Wegman, GCM)

Slide 128

With SHA-256 and other Merkle–Damg̊ard hash functions, simply hashing the key together with the
message is insecure due to the internal construction of the hash function. HMAC is a popular construction
that works around this weakness by applying the hash function twice, along with some padding (innerPad
and outerPad are just fixed constants).
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Hash-based MAC (HMAC) – RFC 2104

▶ H(key ∥ msg) is not a secure MAC when H is SHA-256:
length extension attacks!

▶ HMAC(key ,msg) =
H((key ⊕ outerPad) ∥ H((key ⊕ innerPad) ∥ msg))
where ∥ is concatenation, ⊕ is bit-wise XOR

▶ Some hash functions (e.g. BLAKE2/3) have a keyed
mode, which can be used as a MAC directly

import hmac

import secrets

key, msg = secrets.token_bytes(16), b'hello'

tag1 = hmac.new(key, msg, 'sha256').digest()

tag2 = hmac.new(key, msg, 'sha256').digest()

print(hmac.compare_digest(tag1, tag2))

Slide 129

The Station-to-Station (STS) protocol [Diffie et al., 1992] improves on the protocol on Slide 127 by
sending not only the signature over the two Diffie-Hellman exponentials, but also a MAC over that
signature computed using the session key produced by the Diffie-Hellman exchange.1

MAC variant of STS protocol

Alice Bob

sample x ∈ Zq

sample y ∈ Zq

k ← H((gx)y)
σB ← Sign(skB, g

x ∥ gy)
µB ← MAC(k, σB)k ← H((gy)x)

MAC(k, σB)
?
= µB

Verify(pkB, g
x ∥ gy, σB)

σA ← Sign(skA, g
x ∥ gy)

µA ← MAC(k, σA)
return k if all ok

MAC(k, σA)
?
= µA

Verify(pkA, g
x ∥ gy, σA)

return k if all ok

gx

gy, pkB,
σB, µB

pkA, σA, µA

Slide 130

The STS protocol is better than the earlier ones, but it still has weaknesses, as shown on Slide 131
[Blake-Wilson and Menezes, 1999].

The first weakness is that the same k is used for the MAC and returned as the session key; by itself
this does not break the scheme, but it goes against the principle that a key should be used for only one
purpose. Ideally we would like that the session key k is indistinguishable from random to the adversary,
but by sending a MAC under k over the network the protocol allows the adversary to test whether a key
guess k is correct. Fortunately, this weakness is easy to fix, as we will see shortly.

The second weakness is that the protocol only includes the participants’ public keys, but not their
human-readable identities; it relies entirely on the PKI to supply the mapping between human-readable
names and public keys. If a PKI allows a user to register someone else’s public key (without checking that
this user actually controls the corresponding private key), it’s possible to have an identity misbinding
attack where Bob has authenticated Alice’s public key, but believes that this public key actually belongs
to Eve. Normally, a PKI is most focussed on ensuring that it doesn’t associate an honest user’s name
with an adversary’s public key; this issue is the other way round, where an adversary’s name is associated
with an honest user’s public key. The PKI can prevent this attack by checking that whoever registers
a public key can generate signatures that validate with that key. However, it would be nice if the key

1Actually, the STS protocol as originally published uses symmetric encryption instead of a MAC; Krawczyk [2003]
highlights that this doesn’t make sense, since we don’t need the signature to be confidential – we need to ensure that it
can’t be replaced by a party who doesn’t know the session key. That property is provided by a MAC or by authenticated
encryption, which includes a MAC.
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exchange protocol was secure even without making this assumption about the PKI.
The third weakness is that, depending on which signature scheme is used, the adversary might be able

to generate a new keypair so that Alice’s genuine signature also validates under the adversary-generated
keypair. Even if a signature scheme offers existential unforgeability, this might be possible! This is known
as a key substitution attack [Jackson et al., 2019].

Weaknesses in the STS protocol
1. The same k is used as MAC and as session key

▶ Violates single-purpose principle

2. Identifies the public key of the other side, but not the
human-readable name
▶ Could Eve take Alice’s public key pkA and register

(“Eve”, pkA) with the PKI?
▶ If so, we have an identity misbinding attack again
▶ To prevent, PKI must check whether Eve knows skA

3. Adversary might be able to create a new keypair
(sknew, pknew) such that signature σA = Sign(skA,m)
validates with pknew, i.e. Verify(pknew,m, σA) = true
▶ Then Eve registers pknew with PKI and replaces pkA

with pknew in last message
▶ Depends on signature scheme
▶ Existential unforgeability says you can’t make a new

valid signature for a given key; it doesn’t say you can’t
make a new key that validates an existing signature!

Slide 131

Finally, the SIGMA protocol [Krawczyk, 2003] fixes these remaining weaknesses. It’s not obvious that
there are no remaining bugs, but that’s what security proofs [Canetti and Krawczyk, 2002] are for!

The differences to the STS protocol on Slide 130 are:

1. Two different keys, a MAC key kM and a session key kS, are derived from gxy by concatenating it
with different constant strings (called domain separation tags) before hashing. This produces two
keys that are computationally independent : that is, no information about kM can be learnt from kS
and vice versa, thanks to the preimage resistance of the hash function.

2. The parties send each other their certificates containing their human-readable names and their
public keys, rather than just their public keys.

3. Instead of computing the MAC over the signature σA or σB, the MAC is computed over the certificate
of the party sending the MAC. This binds the Diffie-Hellman exponentials to the human-readable
names and the public key of the parties, preventing key substitution attacks.

SIGMA protocol
Let cA = (“Alice”, pkB, start , end) + PKI signature; cB similar.
Let g be a generator of a group with prime order |g| = q.

Alice Bob

sample x ∈ Zq

sample y ∈ Zq

kM ← H((gx)y ∥ “MAC”)
kS ← H((gx)y ∥ “session”)
σB ← Sign(skB, g

x ∥ gy)
µB ← MAC(kM, cB)

kM ← H((gy)x ∥ “MAC”)
kS ← H((gy)x ∥ “session”)
MAC(kM, cB)

?
= µB

Verify(pkB, g
x ∥ gy, σB)

σA ← Sign(skA, g
x ∥ gy)

µA ← MAC(kM, cA)
return kS if all ok MAC(kM, cA)

?
= µA

Verify(pkA, g
x ∥ gy, σA)

return kS if all ok

gx

gy, cB,
σB, µB

cA, σA, µA

Finally secure?!
Slide 132

The SIGMA protocol is the basis of the handshake in TLS 1.3 [Rescorla, 2018], which is outlined on
Slide 133. Some key differences are that it omits the authentication of the client to the server (although
this is supported as mTLS), that it uses a HMAC-based key derivation function HKDF instead of a plain
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hash function, and that the signature and MAC cover more fields than the minimum required by SIGMA
(in fact, they cover the entire transcript of data sent so far during the handshake). This does no harm
and reduces the risk of bugs: it’s better to authenticate too many fields than too few! The client and
server also tell each other which algorithms they support, so that they can choose a ciphersuite that both
ends understand. There are lots of additional details not shown here; for example, the signatures are
actually computed over strings that contain additional context, to prevent a signature generated in one
context from being replayed in another context.

TLS handshake, simplified

Let cS = (“example.com”, pkS, start , end) + PKI signature

Client Server

sample x ∈ Zq

hC ← (ciphersSupported , gx)
sample y ∈ Zq

hS ← (ciphersSupported , gy)
kC ← HKDF(“Client”, (gx)y)
kS ← HKDF(“Server”, (gx)y)
kM ← HKDF(“Master”, (gx)y)
σS ← Sign(skS, hC∥hS∥cS)
µS ← MAC(kS, hC∥hS∥cS∥σS)

kC ← HKDF(“Client”, (gy)x)
kS ← HKDF(“Server”, (gy)x)
kM ← HKDF(“Master”, (gy)x)

MAC(kS, hC∥hS∥cS∥σS)
?
= µS

Verify(pkS, hC∥hS∥cS, σS)
Verify PKI signature on cS
µC ← MAC(kC, hC∥hS∥cS∥σS∥µS)
return kM if all ok

MAC(kC, hC∥hS∥cS∥σS∥µS)
?
= µC

return kM if all ok

hC

hS, cS,
σS, µS

µC

Slide 133

And now you understand the core idea behind most secure communications over the Internet. There
are lots more variations on the theme of authenticated key agreement, some of which aim to achieve
additional security properties. For example, mTLS computes signatures over the handshake transcript,
which produces a cryptographic proof that the two parties communicated; in contrast, the X3DH key
exchange used by the Signal Protocol [Marlinspike and Perrin, 2016] and the Off-the-Record (OTR) pro-
tocol [Borisov et al., 2004] aim to provide deniability, which means that even though the communicating
parties are authenticated to each other, they cannot prove cryptographically to any other party that the
communication took place. (Whether the absence of such cryptographic proof would sway a legal case is
so far unclear.)

More on authenticated key exchange
Now just use the session key with an authenticated symmetric
encryption scheme, and that’s the core that makes most secure
communications (TLS, secure messaging, VPNs, . . . ) work!

Lots of extensions to that core:
▶ Identity protection: encrypt public keys + identifiers so

that eavesdropper can’t see who is communicating
▶ e.g. Great Firewall of China blocks websites based on

hostname in TLS handshake

▶ Ratchet: for long-running sessions, periodically refresh
keys (for forward secrecy + post-compromise security)

▶ From two-party to group communication
▶ including adding and removing group members

▶ Managing trust in the PKI (transparency logs, . . . )

▶ Some protocols (e.g. OTR, Signal’s X3DH) offer
deniability (no cryptographic proof of communication)

Slide 134

If you want to see the full gory details of how TLS works, you can look at RFC 8446 [Rescorla,
2018], and there is also a byte-for-byte breakdown of a TLS handshake online [Driscoll, 2018]. You
should now understand all of the cryptographic building blocks that make it work! However, it’s a very
complex protocol – partly to maintain compatibility with older versions of TLS, partly because of extra
features (such as the 0-RTT mode) that allow performance improvements, and partly because it supports
a range of different cryptographic algorithms (providing cryptographic agility, i.e. allowing algorithm to
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be swapped out without changing the protocol, in case an algorithm turns out to be broken).
If we had more time in this module, we’d ask you to write your own basic TLS implementation that is

able to establish a connection with a real server on the Internet. In principle, given your implementations
of X25519 and Ed25519 (plus a hash function and a symmetric cipher from a library), you could now do
this. However, given the complexity of the protocol, we think that is not feasible. So your first task for the
second assignment is a simplified version that demonstrates the core idea by implementing the SIGMA
protocol from Krawczyk [2003], as described on Slide 132. We suggest that you implement it using your
own X25519 and Ed25519 implementations from the first assignment, but if you prefer you can also use
an off-the-shelf library for these algorithms instead (e.g. if you want to use a different language than in
your first assignment). For HMAC and symmetric encryption you can use library implementations in
any case.

Assignment 2, Task 1
Implement the SIGMA protocol using X25519, Ed25519,
and HMAC.

▶ There’s no RFC, so you need to define the format of the
messages yourself (and justify it in your lab report)

▶ Use it to build a basic two-party secure messaging
protocol (use a library for hashes and symmetric crypto)

▶ As PKI, implement a basic CA that issues certificates
(signed using Ed25519), and include certificate validation
in your protocol implementation
▶ X.509 certificates are complicated; make your own

simple format
▶ Omit check whether user controls the phone

number/email address/domain name

▶ Identity protection, ratcheting, etc. are not required

▶ Simulate the network in a single process

Slide 135

Unlike the previous assignment, for this task there isn’t a specification that defines the exact byte-
for-byte structure of your data, so part of the task is for you to define your own formats for encoding
messages as bytes that could be sent over a network. For ease of testing, the actual network should
be simulated in your code – nothing complicated: you can simply have a function that returns a byte
string to be sent, and pass that string to another function that handles the message on the recipient side.
Please also include a basic certificate authority in your implementation; the format in which you encode
certificates is also something for you to define. (Real TLS certificates use the X.509 certificate format
defined in RFC 5280 [Boeyen et al., 2008], but this comes with a lot of baggage such as needing to parse
the ASN.1 file format, which is rather complicated – something that’s important to get right in a real
TLS implementation, but mostly irrelevant to the actual cryptography.)

A real CA would need to check that the user registering a name (domain name, phone number, email
address, etc.) actually controls that name, e.g. by sending it a test message containing a nonce. You can
ignore this in your implementation, since it’s a separate concern from the cryptography.

4.3 Password-authenticated key exchange

Let’s look into an alternative form of authenticated key exchange, which we briefly saw on Slide 120.
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Password-Authenticated Key Exchange (PAKE)

Authenticated Key Exchange requires knowing the other
party’s public key. In most cases that means trusting a PKI
(CA or key directory) for global name → pubkey mapping.

Can we manage without a PKI?

PAKE: no global names, no pubkeys, just a shared password

▶ e.g. wifi router: password is printed on the box

▶ e.g. device pairing: one device displays a code, type it
into the other (or scan a QR code)

▶ e.g. link shared via secure messaging/video call/email

Password should be short enough that you can sensibly type it
(i.e. much less than 128 bits entropy), and PAKE should
upgrade this to a strong shared secret

Slide 136

A PAKE is different from password authentication as it’s normally used on the web. On the web, the
client authenticates the server via its TLS certificate (relying on the WebPKI), and then sends its password
over that encrypted and server-authenticated TLS connection. If we want to avoid the dependency on a
PKI, we have to use a different approach. Simply sending an encrypted password would not work if we
don’t know the identity of the other party with which we’re sharing a key: the other party might be the
adversary, which would then learn the password.

Passwords on the web: Not a PAKE

Let certS = (“example.com”, pkS, start , end) + PKI signature

Client Server

validate certS
kM ← session key

kM ← session key

c← Enc(kM, passwd) H(Dec(kM, c))
?
=

hashedPassword

certS

TLS handshake

c

Doesn’t work without a PKI: client wouldn’t know who it’s
sending the password to

Slide 137

Using a PAKE instead of a PKI-based system can have a number of advantages. It can be simpler:
for example, with a wifi router you can just configure a password and then give that password to anybody
who should have access; you don’t have to register the router with any CA. It can be more resilient: with
a PKI you have to trust that the company operating it keeps it secure (and doesn’t shut it down), but a
PAKE is more decentralised because it doesn’t rely on any external infrastructure. And often it better
reflects the trust relationships that exist between people in the real world [McKelvey et al., 2021].

Then how can one party prove to the other party that it knows the password, but without revealing
it? One thing we might try is to send a hash of the password instead, and to bind it to a Diffie-Hellman
exchange by including the public Diffie-Hellman values in the hash, as shown on Slide 138.
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An insecure PAKE

Say Alice knows a password pwdA and Bob knows pwdB. We
want them to agree on a shared secret k if pwdA = pwdB.

Alice Bob

sample x ∈ Zq

hA ← H(gx ∥ pwdA)
sample y ∈ Zq

hA
?
= H(gx ∥ pwdB)

hB ← H(gx ∥ gy ∥ pwdB)
k ← H((gx)y) if okhB

?
= H(gx ∥ gy ∥ pwdA)

k ← H((gy)x) if ok

gx, hA

gy, hB

Problem: adversary who has intercepted gx and hA can run
an offline brute-force search, trying many passwords p until
they find one such that H(gx ∥ p) = hA

Slide 138

Unfortunately, that protocol is insecure: an adversary can eavesdrop on one message, and then run an
offline brute-force search to recover the password. Since we are assuming that passwords are low-entropy,
such a brute-force search is likely to be feasible. Even assuming that the hash function is preimage
resistant (as on Slide 13) doesn’t help if an adversary can just try all the likely passwords. With a typical
hash function such as SHA-256, password recovery tools like Hashcat can test tens of billions of potential
passwords per second on a single GPU. Even if you use an intentionally slow password hashing function
such as Argon2 or scrypt, the adversary is only limited by the computing resources they are willing to
pay for. Any password that is short enough to be realistically typed by users is probably weak enough
to be broken by a motivated adversary.

We therefore need a better protocol, in which the messages that an adversary might intercept incor-
porate so much entropy that a brute-force search is infeasible (as discussed on Slide 22, this is usually
at least 128 bits). There are a number of PAKE protocols that meet this requirement [Hao and van
Oorschot, 2022], and we will look at one example protocol called SPAKE2. We chose it because it is
fairly simple and can be implemented using the cryptographic building blocks that you have seen in this
module.

SPAKE2 was originally published by Abdalla and Pointcheval [2005], and is further described in
RFC 9382 [Ladd, 2023]. Note that they use different notation: Abdalla and Pointcheval [2005] use
multiplicative group notation, whereas the RFC uses additive notation, as discussed on Slide 38. We use
multiplicative notation on Slide 139 for consistency with the earlier protocols in this lecture.

The SPAKE2 protocol
Let E be a group of order |E| = hq. Let g ∈ E be a generator of prime
order |g| = q. Let M,N ∈ E be elements whose discrete log is unknown.

Alice Bob

sample x ∈ Zq

w ← H(pwdA) (mod q)
πA ← gxMw

sample y ∈ Zq

w ← H(pwdB) (mod q)
πB ← gyNw

K ← (πBN
−w)hx

T ← “A”∥“B”∥πA∥πB∥K∥w
Ke∥Ka ← H(T )
KcA∥KcB ← HKDF(Ka)
µA ← HMAC(KcA, T )

K ← (πAM
−w)hy

T ← “A”∥“B”∥πA∥πB∥K∥w
Ke∥Ka ← H(T )
KcA∥KcB ← HKDF(Ka)
µB ← HMAC(KcB, T )

µB
?
= HMAC(KcB, T )

return Ke if ok
µA

?
= HMAC(KcA, T )

return Ke if ok

πA πB

µA µB

Slide 139

Multiplying gx with Mw is essentially a way of encrypting gx using the password (this is also called
blinding). If the recipient knows the same password, they can decrypt (unblind) the message by multiply-
ing with the inverse element of Mw to recover gx, and then we have a regular Diffie-Hellman once again.
If the two parties have different passwords and hence different values of w, they will compute different
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values for K, and thus all the derived keys will also be different and the final MAC check will fail.
The additional factor h in the exponent is the cofactor of the group, which is relevant in elliptic curve

groups such as Curve25519 and Edwards25519, which are not prime-order but have h = 8. Multiplying
by the cofactor has the same function as the clearing of the three least significant bits that you saw as
part of the clamping process in X25519 and Ed25519: it protects against small subgroup confinement
attacks.

The orginal SPAKE2 protocol description just consists of a single round that outputs the hash of
the transcript H(T ), which includes K. However, at this point the parties don’t yet know whether they
actually have the same password. RFC 9382 adds to this a HKDF-based key derivation process and a
confirmation step, in which a session key Ke and two different confirmation keys KcA and KcB are derived
from T . Alice uses KcA as a MAC key to prove to Bob that she knows the password, and using KcB Bob
proves the same to Alice.

SPAKE2: Why it works

▶ πA = gxMw =⇒ (πAM
−w)hy = (gxMwM−w)hy = ghxy

▶ πA and πB are uniform random group elements =⇒ leak
no information about password
▶ gxMH(pwd) essentially encrypts gx with the password
▶ Intentionally unauthenticated! Authentication would

enable offline brute-force

▶ The MAC µA allows the party that generated πB to verify
whether the passwords were equal (similarly with µB and
πA), but not an eavesdropper

▶ In any run of the protocol, adversary can talk to Alice,
pretend to be Bob, and guess some password pwdB.
▶ If it succeeds (MAC is correct), guess was correct
▶ If it fails, adversary only learns that password was wrong
▶ =⇒ adversary gets one password guess per protocol run
▶ =⇒ limit protocol retries based on password entropy

Slide 140

With any PAKE, an adversary who is actively manipulating the communication can make one guess
at the password per protocol run that they interfere with; that is inevitable. The honest parties can’t
tell the difference between a protocol run where the passwords didn’t match and a run where there was
active interference from an adversary – both result in the final MAC check failing. If the protocol fails,
the parties can retry it; however, they shouldn’t retry too often, since every retry gives the adversary one
guess at the password. The lower the entropy in the password, the stricter this rate limit needs to be.

One thing you might be wondering about are the special group elements M and N in the protocol.
Their importance is explained on Slide 141 [Warner, 2016].

SPAKE2: Trusted setup
If adversary knows discrete log n such that N = gn:

▶ Adversary pretends to be Bob, sets πB = gy, receives
πA = gxMw and µA from Alice

▶ Alice computes K = (πBN
−w)hx = (gyg−nw)hx =

(gx)(y−nw)h = (πAM
−w)(y−nw)h

▶ Adversary knows πA, M , y, n, h; just not w
▶ Adversary can now guess w = H(pwd) (mod q),

compute K, hence compute KcA and the MAC
▶ If the MAC matches µA from Alice, pwd guess is correct
▶ Adversary can now run offline brute-force search

Attack is prevented if nobody knows n.

Requires trusted setup: whoever generates M and N must
convince others that their discrete log is unknown.

Slide 141

RFC 9382 contains M and N values for various curves, as well as the algorithm that was used to
generate them. The fact that the algorithm is open and reproducible, and that it doesn’t seem to be
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doing anything strange, gives us confidence that the values were generated in a trustworthy way. This
is another example of the nothing-up-my-sleeve principle, like on Slide 72. When values are generated in
such a transparent way, we don’t need to trust whoever generated them (unlike a PKI, which has to be
trusted all the time that a system is in operation).

You’re now ready to implement SPAKE2 yourself! RFC 9382 is less rigorous than the RFCs you saw
for X25519 and Ed25519: it doesn’t fully specify the byte-for-byte encoding, so it’s not detailed enough
to ensure that different implementations are interoperable [Warner, 2017]. But it does specify more detail
than Abdalla and Pointcheval [2005]’s paper, such as the key derivation functions to use.2

Assignment 2, Task 2

Implement the SPAKE2 protocol using Edwards25519.

▶ Same curve as for Ed25519 – you can use your
implementation from assignment 1 (but don’t have to)

▶ RFC 9382 contains M and N values you can use (given
using compressed point encoding)

▶ The RFC contains some ambiguities; you’ll need to decide
on some details yourself

▶ Deadline: 3 Mar 2025

Slide 142

5 Software Engineering II

5.1 Randomness

Randomness is a core ingredient in cryptography. It is used for generating cryptographic keys, nonces,
tokens, salts, and many other important values. An adversary who can predict these values can break the
security of many cryptographic primitives. For example, knowing the prime factors of an RSA modulus
allows for easy factoring and thus breaking the encryption. Hence, good cryptography engineering requires
careful handling of randomness.

Randomness

▶ Cryptography requires random inputs
▶ Key generation
▶ Nonce generation
▶ Tokens
▶ ...

▶ Building strong random number generators is not trivial

Slide 143

2RFC 9382 first hashes the transcript and then feeds half of the transcript hash into HKDF to derive the confirmation
keys. We don’t know why that construction was chosen – it would have been simpler to pass the transcript directly into
HKDF and then obtain the session key and both confirmation keys from HKDF.
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LAB: build your own PRNG (10min)

Hidden from the published slides.

Slide 144

LAB: collect (5min)

Hidden from the published slides.

Slide 145

Real-world entropy

Instead of relying on deterministic algorithms, we can use
real-world entropy sources.

▶ Interrupts (e.g. from user input)

▶ Hardware sources (e.g. electrical noise, nuclear decay,
. . . )

▶ Observation of physical phenomena

▶ Lava lamps

▶ . . .

Slide 146
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Lava lamps

Image from Wikipedia (CC-BY 2.0 Dean Hochman)

Slide 147

Real-world entropy

Instead of relying on deterministic algorithms, we can use
real-world entropy sources.

▶ Interrupts (e.g. from user input)

▶ Hardware sources (e.g. electrical noise, nuclear decay,
. . . )

▶ Observation of physical phenomena

▶ Lava lamps

▶ . . .

Problem:

▶ Not uniformly distributed

▶ Slow entropy sources

▶ Might be temporarily unavailable

Slide 148

Cryptographically secure PRNGs (CSPRNGs)

PRNGs are not suitable for cryptographic applications. We
need a CSPRNG with strong guarantees:

▶ Next-bit test: given all previous i output bits, predicting
the next bit is computationally infeasible

▶ Forward security: if an adversary learns the state of the
PRNG, they cannot use it to predict previous outputs

▶ Recovery: after compromise of the state, new entropy
can be added

Slide 149

Instead of relying on real-world entropy sources directly, we can use the “real randomness” to seed
a cryptographically secure PRNG. This combines the benefits of real-world entropy sources with the
performance and convenience of a deterministic source. A normal PRNG is not suitable for crypto-
graphic applications as its output leaks information about its previous state. Therefore, we require that
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a CSPRNG fulfils the properties introduced on Slide 149. The next-bit test is the most important one
as it ensures that the PRNG is unpredictable. It can be shown that a CSPRNG that passes the next-bit
test produces an output that is computationally indistinguishable from random. Forward security and
the recovery property provide interesting parallels to the properties that we have sought for messaging
protocols (Slide 124.)

Measuring entropy

Entropy is the amount of uncertainty in a source, i.e. “how
surprising is the next event?”.

The entropy H of a discrete random variable X with possible
values {x1, . . . , xn} and probability mass function P (X) is
defined as:

H(X) = −
n∑

i=1

P (xi) log2 P (xi)

Example: A fair coin has an entropy of 1 bit per toss (we
assume it will not land on its edge). A sequence of four fair
coin tosses has an entropy of 4 bits.

Slide 150

LAB: compare (10min)

Hidden from the published slides.

Slide 151
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Randomness tests

The NIST Statistical Test Suite is a collection of tests that
can be used to evaluate the quality of a random number
generator.

▶ Frequency test

▶ Block frequency test

▶ Runs test

▶ Compression tests

▶ ...

Slide 152

The NIST Statistical Test Suite [NIST, 2010] is a collection of tests that can be used to evaluate the
quality of a random number generator. However, they are only heuristic tests and therefore not foolproof.
One should particular attention if the output of the RNG is used for different distributions, e.g. during
machine learning [Dahiya et al., 2024].

The Linux CSPRNG design

Image from [BSI, 2022].

Slide 153

This Linux CSPRNG design relies on a pool of entropy collected from interrupts and hardware sources.
Randomness from these sources is extracted and added to the pool where it is mixed with the existing
pool state using the BLAKE2 hash function. Whenever new information is added, its entropy is estimated
and a global counter is incremented accordingly.

The input pool seeds a Base ChaCha20 stream which in turn generates random bytes for seeding Level
2 CSPRNGs. A typical system has a instance of the Level 2 CSPRNG for each core so that applications
can speedily and without contention access random numbers. During the lifetime of the system, the input
pool is continuously reseeded with new entropy coming from the system’s entropy sources. And so are
its dependent CSPRNGs.

User programs can use the getrandom() system call and the files /dev/urandom and /dev/random

to access the Linux CSPRNG. The only difference is that /dev/random blocks if the entropy pool is empty,
e.g. early during boot. One can check the available entropy from /proc/sys/kernel/random/entropy avail.
By design, the total entropy in the pool grows continuously and will from then on always report its max-
imum value, which is typically 256 bits. To overcome the potential lack of entropy early during boot,
some systems store a seed on disk and use it for bootstrapping.
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CSPRNGs in practice

Linux:

▶ Read from /dev/urandom or /dev/random1

▶ getrandom() system call

Python:

▶ Preferred method: secrets module

▶ Still common: os.urandom(...)

1The only difference is that /dev/random blocks if the entropy pool is
empty, e.g. early during boot. You can read the available entropy from
/proc/sys/kernel/random/entropy avail.

Slide 154

Case study: Debian OpenSSL Predictable PRNG

(CVE-2008-0166)

▶ OpenSSL collects entropy from many different sources
(/dev/urandom, time, . . . )

▶ Read method tried to be clever and includes also
uninitialized parts of a buffer

int RAND_load_file(const char *file, long bytes) {
/* ... */

i=fread(buf, 1, n, in);

if (i <= 0) break;

/* even if n != i, use the full array */

RAND_add(buf, n, double(i));

/* ... */

}

Slide 155

Case study: Debian OpenSSL Predictable PRNG

(CVE-2008-0166)

▶ Down-stream developers (Debian) saw Valgrind warnings

▶ Remove two lines that adds these uninitialized buffers

▶ The only remaining source of entropy was the PID. . .

▶ Keyspace |K| = 32 768

Take-aways:

▶ Low entropy can be more dangerous than no entropy at
all

▶ Avoid user-level CSPRNGs. Use the kernel-level CSPRNG
instead.

Slide 156
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Dealing with imperfect randomness

Often we deal with randomness that is not perfect, e.g. biased
and not uniformly distributed. We can capture these
conditions with the following definition:

A probability distribution X has min-entropy (at least) m if
for all a in the support of X and for random variable X drawn
according to X :

Prob(X = a) ≤ 2−m

We cannot use these sources directly as input for our
cryptographic primitives that require uniform randomness.
This includes pseudo-random functions (PRFs) that are the
basis of many constructions.

Slide 157

Key derivation functions (KDFs)

We can use a KDF to generate cryptographically strong keys
from a source with min-entropy m:

▶ The initial extraction step also relies on a secret salt

▶ HKDF [Krawczyk, 2010] is a popular KDF with an
HMAC-based extract-and-expand construction

As such we can expand a short random seed into a larger
number of pseudorandom bytes. In addition, extra info
parameters enable domain separation for keys.

Slide 158

Indistinguishability

Two probability ensembles X = {Xn}n∈N and Y = {Yn}n∈N
are computationally indistinguishable if for every
probabilistic polynomial-time distinguisher D there exists a
negligible function negl such that:

|Pr
x

$←Xn
[D(x) = 1]− Pr

y
$←Yn

[D(y) = 1]| ≤ negl(n)

The distinguisher D would output 0 if it thinks its input is
sampled from X ∈ X and 1 if it thinks its input is sampled
from Y ∈ Y .

Slide 159

The above definition is adapted from Definition 7.30 in [Katz and Lindell, 2020]. Using probability en-
sembles, i.e. infinite sequences of probability distributions, are required so that we capture the asymptotic
behavior. Where samples xn from the ensembles are shorter than n, we’d also want to technically pass
in the unary 1n input to the distinguisher to allow it to run in polynomial time. From this definition it
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follows that also having polynomial many samples of each distribution is sufficient for indistinguishability,
which then directly applies to practical PRNGs.

5.2 Testing

Testing and correctness

“Testing security is pretty much impossible. It’s
hard to know if you’re ever done.”

– Daniel Rohrer, VP of Software Security at NVIDIA

Slide 160

This quote from a 2025 blog post reflects an important challenge with cryptography and protocol
implementations. Our normal, heuristic approaches to convince ourselves that software is fit for purpose
are not sufficient: it only takes a single input that triggers a broken behavior to potentially result in
devastating consequences. Therefore, implementing cryptography software is special and benefits from a
close connection between formal methods and robust engineering.

During our journey we saw that even the seemingly simple task of precisely defining what we mean
with “correct and secure implementation” is quite difficult. For instance, as we saw on previous slides, we
need to be precise about the exact error and edge case behaviors. Also, where side-channels are of concern,
considering our implementation only on the source code abstraction is no longer sufficient but dependent
on the underlying hardware platform. The same is true about the compiler model. For instance, the
same source code can result in different binary code depending on a compiler version—a snapshot that
compiled side-channel-free today, might do something different tomorrow with a new compiler version.
This blog post shows how some compiler versions and configurations can introduce branches in the final
assembly even where the source code has been carefully written using a constant-time construction.

Approaching correctness

▶ It is really really hard to convince ourselves that our code
is always, always correct and secure

▶ In fact, it is already hard to precisely define what this
means
▶ Edge cases and error handling
▶ Side-channels
▶ Abstraction: source code, binary file, execution, . . .
▶ Assumptions about the compiler, hardware model, . . .

Slide 161
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Testing strategies

▶ Bottom-up: testing individual operation thoroughly across
their specification range

▶ Top-down: economic testing of overall functionality and
compatibility

▶ Edge cases and error handling

▶ Randomized tests
▶ Against another implementation
▶ Fuzzing (later slides)
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These testing strategies complement each other, each addressing different aspects of correctness and
security. While bottom-up testing helps ensure individual components work correctly, top-down testing
verifies that these components work together as intended. Edge cases and error handling are particularly
important for cryptographic implementations since they often provide attack vectors, as we saw when
discussing padding oracle attacks in slide 96. Randomized testing through fuzzing is a powerful technique
for finding edge cases and implementation bugs that we might not think of ourselves, which we’ll explore
further in slide 168.

Formal approaches
For serious real-world implementations, it is helpful to ground
the implementation strategy in a formal approach.

▶ Derive implementation step-by-step from specification
▶ That is most-likely the best approach for your lab reports
▶ Scope: a few days

▶ Prove all implementation steps
▶ Requires model of the underlying system (compiler,

hardware, ...)
▶ Scope: an MPhil thesis

▶ Derive implementation from formal description &
hardware model
▶ Requires detailed model of hardware
▶ Scope: a PhD thesis or research group

Slide 163

Formal approaches are a great way to be sure that an implementation is correct. In this slide we
highlight three representative approaches ranging from simple to complex. The first one should feel
familiar to you and is likely how you have been approaching many other challenges, e.g. implementing
algorithms and data structures. However, because the correctness of cryptographic protocols is critical,
this can only be the minimum requirement.

Many hardened real-world implementation use tools such as Isabelle [Paulson, 1994] to “prove” the
correctness of the underlying model and resulting implementation. However, these proofs (and the prop-
erties they are proving), are only approximations of reality—limited by the fidelity of the model. One
example for a hand-written implementation accompanied with a machine-checked formal proof is Ama-
zon’s s2n-bignum library.

Another approach is to first fully describe the specification/algorithm in a formal language. A precise
model of the target architecture and build chain this is then used to derive a provable correct imple-
mentation. One example for this approach is “Fiat Cryptography” [Erbsen et al., 2020] which is used in
production software, e.g. Google’s Chrome browser.
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Test-driven development (TDD)

▶ Popularized by Kent Beck

▶ Write test first, then write code

▶ Some advantages
▶ Understanding of edge cases
▶ View point of the callsite
▶ Motivates testable APIs (mocking)
▶ Psychological: gamification, avoiding

write-then-challenge

Slide 164

Test-driven development (TDD) [Beck, 2022] has undergone a variety of interpretations over the last
years and can mean different things to different people. Note that, as with any other approach, doing
TDD for TDDs-sake is not helpful and as every tool it has its set of problems where it is very effective,
and might not be a great choice in other scenarios.

Test vectors

▶ The bread and butter of testing cryptographic
implementations

▶ As a very basic minimum requirement, each library should
pass the test vectors provided in the specification

▶ Good tests:
▶ check intermediate values
▶ generate additional test vectors for edge cases
▶ strategically build coverage

▶ Project Wycheproof collects “tricky” test vectors

Slide 165

Advanced test vector patterns

Test vectors are also a great way to test compatibility of
different implementations.

Example: server written in Go and an Android app in Kotlin

▶ Server adds new test vectors as part of CI

▶ Android app tested in CI against vectors

▶ ensures spatial compatibility

Can be extended with persisted vectors

▶ continuously add test vectors from committed versions

▶ test new versions against existing vectors

▶ ensures temporal/backwards compatibility

Slide 166

78



Fuzzing

Automated testing of programs using randomized input.

Initial population:

▶ Test vectors

▶ State from previous runs

▶ Samples from production code

Classic fuzzing loop:

▶ Add new candidates (bit flips, dictionaries, . . . )

▶ Measure “coverage” (basic blocks, edges, . . . )

▶ Trim population

Slide 167

Fuzzing has become a widely used and well-supported technique for building confidence in software
that processes (potentially malicious) input. Popular target software include protocol implementations
as well as libraries that parse file and media formats. Traditionally, fuzzing has focused on identifying
classic memory bugs and undefined behaviors that might occur in C programs. For this the programs are
compiled and executed with special guard rails that turn these bugs into crashes that are then visible to
the fuzzer. For example, address sanitizers features (ASAN) will flag reads from uninitialized memory,
use-after-free bugs, and buffer overflows. However, this can be easily extended to also cover logic bugs
and deviating behavior from other reference implementations.

Fuzzing

▶ Traditionally focused on C-style bugs
▶ but can be applied to logic bugs itself given reference

▶ Particularly valuable for anything that parses
adversary-controlled input
▶ Deserialization code
▶ File formats
▶ Network protocols
▶ ...

▶ Continuous fuzzing as part of CI/CD strategy (e.g. OSS
Fuzz)

Slide 168

While fuzzing can be performed as a one-off endeavour, e.g. after implementing new features, many
projects use 24/7 fuzzing services, e.g. Google’s OSS Fuzz. This allows for longer runs and therefore
more comprehensive coverage. In addition, it can serve as an opportunity to benchmark different fuzzing
techniques.
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Fuzzing road-blocks

Some code is easier to fuzz than other. Tricky conditions that
are unlikely to pass with random guessing are often referred to
as “road blocks”.

def handle_packet(pkt: Packet):

tag = pkt[32:40]

if hash(pkt[:32]) == tag:

parse_packet(pkt[:32])

Countermeasures:

▶ Allow fuzzer to disable/skip checks

▶ Symbolic execution, back-propagation

▶ Additional entry points

Slide 169

One challenge in fuzzing are so-called road blocks. These are conditions in code that are unlikely to
be passed by random guessing. For example, a protocol implementation might first verify a message’s
authentication tag before parsing the inner message. Hence, simply mutating the input string most likely
will cause this early check to fail and not explore interesting code paths afterwards.

There are a few approaches for working around these. For simpler checks, e.g. length constraints, back-
propagation of required properties and symbolic execution can provide an automatic solution. However,
with protocol software it is more likely that we need to build a separate target of our library where
some checks are optionally deactivated or simplified. Alternatively, we might expose new entry points
of internal methods, e.g. the parse message function in the above target, and run our fuzzer against
these more narrow targets. However, this can lead to false positives for which no real-world exploit chain
exists. Nevertheless, it will be worth to fix these inner issues as well given smart prioritisations among
other findings.

Performance optimizations

▶ Write a correct (näıve) implementation first. Celebrate.

▶ Make all tests pass

▶ Add benchmarks and ensure they are solid

▶ Do small step-by-step improvements
▶ The tests give you confidence
▶ Benchmarks help you to evaluate changes as you go

Slide 170

In your lab report make sure you discuss “costs”. This can include maintenance burden, additional
dependencies, reduction in compatibility with other libraries, more complex API interfaces, ... It is
tempting to over-optimize on quantifiable metrics such as runtime and not defending more qualitative
metrics.
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Benchmarking with timeit

import timeit
x = setup(...)

ts = timeit.repeat(

'your_function(x)',

globals=globals(),

repeat=5, number=5

)

▶ Minimize the lines under test

▶ Consider mean, media, p90, p99, ...

▶ Reduce noise (GC, dynamic frequency, ...)

▶ “Warm-up” the code

Slide 171

When measuring the performance of individual operations, the built-in timeit module is a good
starting point. In general, we want to reduce the measured section as much as possible and leave non-
critical operations, e.g. parsing serialized data and logging3, out of the measurement. However, it is
important to understand that the performance of a single operation can vary widely depending on the
context in which it is executed. Therefore, we want to reduce external noise (e.g. other running processes,
variable CPU frequency, ...) as much as possible. In cryptography, many algorithms are randomised and
therefore the performance can vary even between two runs of the same program. One stark example is the
generation of RSA keys which typically relies on the Robin-Miller primality test which is probabilistic.

This blog post by Filippo Valsorda discusses how to benchmark such operations efficiently without
having to run too many samples (RSA key generation is a notoriously slow operation). The idea is to
find representative samples, commit them to the repository, and then test against these when compar-
ing different code snapshots. This approach ensures that our benchmarks have sufficient coverage, but
importantly, it keeps inter-run variance to a minimum which in turn allows running faster benchmarks
with fewer samples.

Once we have a solid performance baseline, we can start to optimise. For this we are interested
in understanding which parts of our code are slow. This is where profiling comes in. In Python, the
cProfile module provides us with detailed stacktraces of which functions are called and how much time
is spent in each function. All with relatively low overhead so that it does not distort our results. It’s
convention to use its Context Manager interface in a with statement. We stop recording by calling
pr.disable().

In the slide below we use cProfile to profile the performance of an X25519 implementation. Not
surprisingly, the mul operation is the most time-consuming one and therefore an ideal target for
optimisation. Instead of a text based output, we can call pr.dump stats to save the profile to a file
which can be analysed later. This is particularly useful when we want to compare the performance of
different runs before and after our “optimisation”. A common visual representation of the profile is a flame
graph which can be generated using tools like snakeviz. In a flame graph, the functions are represented
as boxes and the time spent in each function is represented by the width of the box. Importantly, the
x-axis is the cumulative time spent in a function and its call stack—not the actual linear time. That is,
multiple calls to the same function in a loop are represented as a single box.

3In particular, print statements notoriously turn CPU-bound code into IO-bound tasks and therefore invalidate our
conclusions.
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Profiling with cProfile

import cProfile, pstats
with cProfile.Profile() as pr:

x25519(alice_sk, bob_pk)

pr.disable()

pstats.Stats(pr) \

.strip_dirs() \

.sort_stats('cumulative') \

.print_stats(5)

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.001 0.001 0.007 0.007 curve25519.py:102(x25519)

1276 0.001 0.000 0.002 0.000 field.py:77(__mul__)
1021 0.001 0.000 0.002 0.000 field.py:96(__pow__)
4596 0.001 0.000 0.002 0.000 field.py:8(__init__)
1020 0.001 0.000 0.001 0.000 field.py:49(__add__)
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Profiling with cProfile (Flamegraph)

import cProfile, pstats
with cProfile.Profile() as pr:

x25519(alice_sk, bob_pk)

pr.disable()

pr.dump_stats('x25519.prof')
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Slide 174 shows the same profile. The top half of the graph is the same as before, however, the bottom
half is an inverse flamegraph. It aggregates not by the caller but by the callee. This allows us to quickly
identify the functions where we spend most execution time overall and where we call them.

Profiling with cProfile (Flamegraph)
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5.3 Serialization and marshaling

In the previous Section 5.2 we have explored the challenge of transforming our ideal mathematical objects
into representations within the constraints of the programming language of our choosing. However, often
we need to do an additional step – we need to turn them into byte streams so that we can exchange them
over the network or persist them in files. Often it is tempting to model these after the representations
in our implementation, i.e. the language serves as an intermediate step. However, this can complicate
interoperability where these mechanisms are tied to a particular language.

Serialization/marshaling/...

▶ We already translated the ideal mathematical objects into
some representation in our programming language

▶ Representing them as byte streams
▶ Storage on disk
▶ Transport over network
▶ ...

▶ In both cases, there will be two parties: the writer and
the reader
▶ Could be temporally separate (store now, load later)
▶ Could be spatially separate (send over network)
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The terms of serialization and marshaling are often used synonymously to mean “turning an in-
memory object (graph) into a byte stream”. However, in some contexts, e.g. Java, marshaling also
means including the code of the object itself. Including arbitrary code in marshaling can make receiving
potentially untrusted files very risky and we discuss this using Python’s pickle framework as an example.

Python’s pickle is not great

▶ A very simple mechanism

▶ Requires both parties to have (roughly) the same class
definitions

▶ Allows to customize the serialization/deserialization
process
▶ Making sure to only store what’s needed
▶ A wide attack surface

Slide 176
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Pickle example (1)

import pickle

class Foo:

def __init__(self, name):

self.name = name

foo = Foo('good')

with open('foo.pkl', 'wb') as f:

pickle.dump(foo, f)
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Pickle example (2)

import pickle

class Foo: pass

with open('foo.pkl', 'rb') as f:

foo = pickle.load(f)
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Pickle example (3)

import pickle

class EvilFoo:

def __reduce__(self):

return (

exec,

('import os; os.system("uname -r")',)

)

with open('evil.pkl', 'wb') as f:

pickle.dump(EvilFoo(), f)
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Pickle example (4)

$ xxd -c8 evil.pkl
00000000: 8004 9538 0000 0000 ...8....

00000008: 0000 008c 0862 7569 .....bui

00000010: 6c74 696e 7394 8c04 ltins...

00000018: 6578 6563 9493 948c exec....

00000020: 1c69 6d70 6f72 7420 .import

00000028: 6f73 3b20 6f73 2e73 os; os.s

00000030: 7973 7465 6d28 2268 ystem("h

00000038: 746f 7022 2994 8594 top")...

00000040: 5294 2e R..
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Pickle example (5)

import pickle

class Foo: pass

with open('evil.pkl', 'rb') as f:

foo = pickle.load(f) # Boom
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The first examples demonstrate why Python’s pickle functionality enjoys great popularity: it is very
easy to use and easily stores an object in any byte stream. Note that the deserialization does not rely
on the constructor, but uses the getstate and setstate methods. These can be overwritten for
customized behavior, e.g. not including secret data or large cached data that can be reconstructed. The
ability to customize is where the danger lies.

We can also overwrite the reduce method to dictate how an object is being reconstructed by
pickle. It returns both a function (reference) to call and a tuple of arguments. These instructions are
actually included in the pickle byte stream – and hence can come as a surprise on the deserializing side
as the included (arbitrary) code will be executed directly by the interpreter.

Importantly, the hexdump reveals that the evil.pkl file does not even contain a reference to the
EvilFoo class. Unpickling this file will relatively directly execute the same code that we had written in
the reduce method. If the os were in scope the initial import would not be needed.
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Do not use Python’s pickle!

▶ If you have to, make sure that nobody can tamper with
the files (using a MAC, . . . )

▶ The AI/ML community is rediscovering this
▶ model = torch.load(PATH, weights only=False)
▶ Still an on-going issue
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Interestingly, using pickle for loading and storing models is very wide-spread in the AI/ML community
and is widely used to load third-party models from the Internet. The PyTorch tutorial on saving and
loading models does not mention the potential security risks at all4.

Case study: Log4J

▶ Log4Shell (CVE-2021-44228) is considered one of the
most serious vulnerabilities of the last years

▶ Messages could contain special tags ${type:arg} to
enhance the message

▶ Log4J allowed plugin-like behaviour with ${jndi:url}

▶ Faults
▶ Trusting untrusted user-controlled input
▶ Message parsing leads to code loading and execution
▶ JRE allows downloading code during runtime by default
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4However, in some instances, e.g. when using torch.nn.Model, one can use a dictionary based format to store weights
without much risk. The related GitHub discussion started in 2021, has not come to a satisfying conclusion. The main
challenge is that many actually rely on pickle to build complex objects that are tedious to deserialize in new environments.
Alternatives likes ONNX can be used instead.
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Better choices: length-encoding, protobuf, JSON

▶ Protobuf:
▶ Describe types and messages
▶ Compiler generates language bindings

▶ JSON
▶ Simple and human readable
▶ Type differences between languages (date format, ...)

▶ Custom formats (e.g. length encoded)
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In the next slides we explore how the popular Serde library for Rust provides a framework for se-
rialization and deserialization. Its macros generate the required code at compile time without relying
on reflection APIs as many frameworks do in languages like, e.g. Java and Python. This provides
both performance benefits and increased confidence about what code can be reached when loading from
byte streams. Interestingly, Serde separates between the serialization approach (via the macros) and the
encoding format. The latter is left to individual plugins and hence allows supporting many different
formats.

In the following example, we use the serde json plugin to serialize and deserialize to JSON and the
rmp serde plugin for MessagePack. MessagePack is a binary encoding format that is equivalent to JSON
in terms of expressiveness, but more compact and faster to parse.

Serde example (1)

use serde::{Deserialize, Serialize};

#[ derive(Serialize, Deserialize) ]

enum Message {

Ok,

Text{msg: String},

}
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Serde example (2)

serde_json::to_string(&msg)?;

// json: {"Text":{"msg":"Hello world!"}}
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Serde example (3)

rmp_serde::to_vec(&msg)?;

// msgp: 81A45465787491AC

// 48656C6C6F20776F

// 726C6421
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The separation of the serialization approach and the data format allows us to change the mapping
between language types and their abstract representation easily. In our example, we use an enum type
and see that it uses a key-value pair to remember the used variant. However, we can change the behavior
to make either format to use a separate tag key or to leave it untagged and simply use the first matching
variant. The latter is very useful when parsing typical REST-API responses that can return different
JSON variants.

Serde example (4)

#[ derive(Serialize, Deserialize) ]

#[ serde(tag = "type") ]

enum Message {

Ok,

Text{msg: String},

}

// json: {"type":"Text","msg":"Hello world!"}

// msgp: 92A454657874AC48

// 656C6C6F20776F72

// 6C6421

Slide 188

88



Serde example (5)

#[ derive(Serialize, Deserialize) ]

#[ serde(untagged) ]

enum Message {

Ok,

Text{msg: String},

}

// json: {"msg":"Hello world!"}

// msgp: 91AC48656C6C6F20

// 776F726C6421
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What we want from serialization tools

▶ Simple (complexity is danger)

▶ Expressive (avoids writing custom sub-parsers)

▶ Cross-platform and cross-language type agreement

▶ Backwards compatibility (new code)

▶ Streamable parsing

▶ Pluggable
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Postel’s law

“2.10 Robustness principle: [. . . ] be conservative in
what you do, be liberal in what you accept from oth-
ers.”

— RFC 761, Transmission Control Protocol

▶ Great idea for making systems work together

▶ Often bad for cryptographic systems

▶ Example: YAML v1.1
▶ name: peter is a string
▶ name: yes is a boolean
▶ Requires very careful parsing and generating
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In the general software engineering mindset, we are interested in robust protocols and data exchange.
This works well where we are trying to make many different implementations talk to each other and not
crash. However, being liberal with what we accept and (try to) parse, can lead to an increased attack
surface. For instance, researchers found that Tor’s protocol flexibility introduced new side-channels Ro-
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chet and Pereira [2018]. And even seemingly simple configuration formats like YAML can have surprising
behaviour – and in security we do not like surprises. In the following example, a list of three countries in
ISO-3166-2 format will get parsed as the types string, bool, string. This is because earlier YAML versions
allowed many words for boolean values, including: true, false, on, off, yes, and . . . no.

YAML’s country surprise

countries-iso:

- SE

- NO

- FI
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ASN.1

▶ Abstract Syntax Notation One (ASN.1) is an interface
description language
▶ Independent of used computer architecture and language

▶ Used in many specifications such as X.509, LDAP, ...

▶ Many features handy for cryptography such as constraints
on values and arbitrary-precision integers

▶ Supports different encodings
▶ Basic Encoding Rules (BER)
▶ Distinguished Encoding Rules (DER, subset of BER)
▶ XML Encoding Rules
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Many protocols and cryptographic specifications express their objects in ASN.1 [ITU-T, 2002a]. It’s
independent of the used computer architecture and programming language. Therefore, it is well suited
for the ground truth description. For example, it does not refer to bytes (a platform specific word) but
instead uses octets, groups of 8 bits.

The most common encoding for protocols is DER. DER is a subset of BER, but with extra constraints
such that each object has exactly one encoded representation (compare the YAML example above) [ITU-
T, 2002b]. Therefore, DER is very helpful when we have to compute signatures over other objects since
there is no ambiguity of the message that is to be signed. Compare this to, e.g. JSON, which can be
formatted in many different ways.

In practice some protocols sidestep this issue by computing a signature over the transmitted serialized
form, instead of first parsing the bytes into an in-memory representation and then serializing it again.
This works well for when we can retrieve the fully-encoded object in the incoming message. However, it
does not work if we actually have to create such an object on-the-fly, e.g by combining information from
multiple sources.
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ASN.1 example (1)

MyModule DEFINITIONS ::= BEGIN

Message ::= CHOICE {

ok OKMessage,

text TextMessage

}

OKMessage ::= NULL

TextMessage ::= SEQUENCE {

message UTF8String (SIZE(0..1024))

}

END
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The above ASN.1 specification picks up our message example from Slide 185. One interesting feature
of ASN.1 in the context of cryptographic protocols is its ability to define constraints, such as the length
of the message. The following Python program generates three different outputs from our specification
and our test message.

ASN.1 example (2)

import asn1tools

for codec in ('der', 'xer', 'jer'):

mod = asn1tools.compile_files('module.asn', codec)

msg = mod.encode(

'Message',

('text', {'message': 'Hello'})

)

with open(f"message.{codec}", 'wb') as f:

f.write(msg)
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ASN.1 example (3)

$ xxd -c9 message.der

00000000: 3007 0c05 4865 6c6c 6f 0...Hello

<Message>

<text><message>Hello</message></text>

</Message>

{"text": {"message": "Hello"}}

Slide 196
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Popular serialization formats

JSON
▶ Human readable and flexible

▶ Few built-in types (no support for, e.g. dates)

MessagePack
▶ “Binary JSON encoding” (concise and fast)

▶ Compact encoding and less ambigious encoding

protobuf
▶ Efficient binary format by Google

▶ Schema required (compiled)

ASN.1

▶ Complex standard for telecom/crypto

▶ Multiple encodings (BER, DER, etc.)

▶ Platform independent

CBOR
▶ Concise and fast

▶ Extensible without schema
Slide 197

Other deserialization challenges

▶ Protection against resource exhaustion and Denial of
Service (DoS) attacks

▶ Defense against ZIP bombs (e.g. compressed long,
repetitive strings or recursive archives)
▶ Limit expansion and deny nested compression
▶ Less of a problem with streaming processing

▶ Handling recursive encodings and references
▶ Avoid formats that allow clever references
▶ Detect cycles and/or limit stack size
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5.4 Randomness II

We revisit the topic of randomness from Section 143 and discuss some topics more in-depth. In particular,
we discuss the challenges of deriving keys from passphrases and providing encryption algorithms with
IV/nonce parameters reliably.

PSA: Universally Unique Identifier (UUID)

d37b6a75-0419-11f0-9ba1-f875a40a2c42

▶ Created to uniquely identify objects (128 bits) and
designed to avoid conflicts.

▶ Different versions exist:
▶ V1: 48-bit MAC address + 60-bit timestamp
▶ V4: 6-bit version + 122-bit random number
▶ V7: 6-bit version + 48-bit timestamp + 74-bit

counter/random

▶ Do not assume that a UUID is a valid cryptographic
secret! For instance, it is not uniformly random and
subsequent UUIDs can be predicted.

Slide 199

92



In many cryptographic protocols we need to derive keys from passphrases. While we have seen
passphrase authentication with a remote party using SPAKE2 in Section 139, we now consider local key
derivation, e.g. for full disk encryption.

Password-based key derivation functions

▶ We cannot use the passphrase directly as a key, as it is
not uniformly random. However, we can fix that using a
KDF.

▶ Problem: the min-entropy is low and hence passwords are
vulnerable to brute-force attacks

▶ Solutions:
▶ Generate high-entropy passphrases for the user
▶ Making the password derivation step intentionally

expensive
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One problem with passphrases is that those chosen by users often have low min-entropy, as they pick
common words or short phrases Blocki et al. [2018]. Hence, one solution is to generate a passphrase for
the user from a word list. Today, there are two popular word lists: the EFF word list and the BIP 39
word list which is used for some cryptocurrency applications.

Generating high-entropy passphrases (EFF)

▶ EFF word list: |L| = 65 = 7776 words
▶ Also called “dice list”
▶ Chosen to avoid pairs of words that are similar (e.g.

“build” and “built”)

▶ Single word provides: log2(6
5) = 12.92 bits

▶ For 128-bit security we need 10 words:

“snowfield enamel subtext awkward viscous yippee hardly
clamshell deploy anew”
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Generating high-entropy passphrases (BIP 39)

▶ BIP 39 word list: |L| = 2048 words
▶ Each word uniquely identified by its first 4 letters

▶ Single word provides: log2(2048) = 11 bits

▶ For 128-bit security we need 12 words:

“wild artefact gossip float pelican novel toddler salute dish
agent actor figure”

“wild arte goss floa peli nove todd salu dish agen acto figu”
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Such long passphrases are not very practical for users and thus only feasible for some special cases.
However, if we can make the guessing time for a passphrase high enough, we can get away with shorter
passphrases. Password-based key derivation functions (PBKDFs) were designed for this purpose. They
use iterative application of a hash function, to force a sequential number of operations, which makes them
slow to compute and hard to parallelize.

The original PBKDF1 simply applied the hash function multiple times. However, this runs at risk that
the evaluation sequences for different passwords converge once a common intermediate value is reached.
For instance, if H(H(hello)) = 0x1234 and H(H(H(world))) = 0x1234, then all following hashes in
both cases will be identical—this can give an advantage to the adversary. Therefore, PBKDF2 typically
uses a HMAC construction keyed with the password to avoid such shared evaluation chains.

However, simply applying a hash function iteratively is often not good enough in practice. Already
a few ten-thousand iterations often hit a few milliseconds on a modern CPU and thus we cannot choose
much higher levels for interactive applications. At the same time, an adversary with a GPU or ASIC can
evaluate billions of hash operations per second. For instance, this hashcat benchmark suggests that an
NVidia H100 GPU can compute up to 100 ·109 SHA-256 hash operations per second. Another indication
is the hash rate of the Bitcoin network which is estimated to be north of 100m TH/s (100 million tera-hash
operations per second) or 100 · 1018 hash operations per second.

Let us make things slower

▶ Hash function H(pw): 10,000s of millions per second

▶ PBKDF1: H(H(...H(pw)))

▶ PBKDF2: combine intermediate results using XOR and
allow for variable output length
▶ Single guess cannot be parallelized
▶ However, multiple guesses can be parallelized using

GPUs / ASICs

▶ Adversary scales with computation speed
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Adversary with compute power (cloud GPU)

Assume:

▶ GPU computes 100 GHash/s (NVidia H100)

▶ Adversary rents 1,000 GPUs

In one day the adversary can make:

▶ ≈ 8.6 quintillion guesses (≈ 63 bits)
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LAB: Design a memory hard function

Challenge: design a function that is memory hard! It should
take a password and have the following requirements:

▶ Easy to compute if you have 100MiB space

▶ Hard to compute if you have much less than that

5min to think about it and then we’ll gather and discuss
solutions

Slide 205

The Argon2 KDF [Biryukov et al., 2021] is a popular choice for memory-hard (password-based) key
derivation and was selected as the winner of the 2015 Password Hashing Competition. Argon2 takes
a memory parameter which specifies the amount of memory the algorithm will use. Its memory-hard
property guarantees that the output is only efficiently to compute with the specified amount of memory.
It does so by filling the memory with a pseudo-random function and then indexes into the memory and
updating it multiple times based on the previous steps. Thus, an implementation without the specified
amount of memory would have to then re-compute the requested memory blocks again.

Argon2 also has a time parameter which specifies the number of iterations and a parallelism parameter
which specifies how many independent memory blocks are used and thus how many cores can be used. It
comes in three variants: Argon2d, Argon2i, and Argon2id. Argon2d used data-dependent memory access,
i.e. the indexing operation is also based on the password. This variant is believed to be more secure,
but more likely leads to side-channel attacks. Argon2i uses data-independent memory access, i.e. the
indexing operation is not based on the password. This mitigates side-channel attacks, but is potentially
weaker. Argon2id is a hybrid of the two and uses data-independent memory access for the first half of
the memory and data-dependent memory access for the second half. RFC 9106 recommends Argon2id
as the default variant.
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Argon2 (RFC 9106)
▶ Parameters: memory, number of iterations, parallelization

▶ 2+1 version: Argon2d, Argon2i, Argon2id

▶ Optimized for multi-core and assembly

Graphic from https://www.password-hashing.net/argon2-specs.pdf
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Why optimize an intentionally slow step?

▶ Hardness relies on difficulty of the underlying problem.
Not our implementation!

▶ Making it faster allows us to choose harder parameter
within our acceptable bounds

→ We work against an adversary which has the fastest
possible computation
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Cambridge HPC

Assume:

▶ Cambridge HPC: ∼500 PiB memory

▶ 10ms per guess, limited only by memory

▶ Set Argon2 memory parameter: 256MiB

In one day the adversary can make:

▶ ≈ 104 billion guesses (≈ 36 bits)
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Having to build a high-performance computer as in Slide 208 is likely a lot more expensive than
acquiring a few hundred ASICs as in Slide 204. Thus, the memory-hardness of Argon2 is a good property
to have! With more confidence in how long it takes to verify a guess, we can then use shorter passphrases:

96



Using generated passphrases

▶ Adversary makes can guess up to 236 passphrases per day

▶ We want to protect for at least 1,000 years

▶ Hence, we need log2(2
36 · 1000 · 365) ≥ 55 bit

▶ BIP 39 word list → 5 words

“primary boil army core robust”
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An alternative to purely local key derivation is to use a third-party for evaluation of the hash. For
instance, in the OPAQUE protocol [Jarecki et al., 2018] the client needs the server to evaluate the hash
of the password. The protocol uses an oblivious pseudorandom function (OPRF) such that the server
does not learn anything about the password. This allows applications to enforce rate-limits on the server
side. However, this setting is not suitable for local encryption (e.g. full disk encryption) or where the
scheme needs to work offline. It is also not suitable for applications that need plausible deniability, i.e.
we do not want leave traces of using it at all.

Some of these short-comings can be mitigated by using a “built-in third party” which is a secure
element (SE) embedded in the device. The SE is a specialized, tamper-resistant processor that is designed
to perform cryptographic operations securely. This allows smartphones to enforce rate-limits on otherwise
insecurely short PIN codes. However, typically only the first-party operating system can utilize these
features of the SE. By using the its limited computational bandwidth for generally-available cryptographic
operations as an intentional bottleneck, we can enforce actual wall-time constraints for password guesses—
without requiring modifications to the device or operating system.

Forcing strict rate limits

▶ Using a third-party for evaluation of the hash (e.g.
OPAQUE)
▶ Not suitable for local encryption (e.g. full disk

encryption)
▶ Or where the scheme needs to work offline

▶ Alternative: use a “built-in third party”
▶ Secure Element part of most modern devices (especially

smartphones)
▶ Resist local attacks
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In addition to PBKDFs, we also want to quickly discuss modern hash functions such as SHA-3 and
BLAKE2. One important improvement of the newer generations of hash functions is that they are
resistant to length extension attacks. This is a property that the SHA-1 and SHA-2 hash functions do
not have—hence the importance of the HMAC construction (see Slide 129).
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Modern hash functions (SHA-3)

▶ Part of Keccak, published by NIST, 2015

▶ Based on a sponge construction
▶ Different to Merkle–Damg̊ard in SHA-1 and SHA-2

▶ Large (hidden) internal state prevents length extension
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Modern hash functions (BLAKE2)

▶ Faster than SHA-3, based on ChaCha

▶ Prevents length-extension attacks by compressing the last
block differently

▶ Argon2 uses the variant BLAKE2b
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Nonces and IVs

▶ IVs generally assumed to be unpredictable (though not
secret)

▶ Nonce only need to be unique, e.g. 0, 1, 2, . . .

▶ Nonce re-use is typically “catastrophic”, i.e. allows an
attacker to break the encryption

Example: if nonces are random, for AES-GCM (96-bit nonce)
and m = 232 messages the chance of collision is:

p ≈ m2

2 · n =
22·32

2 · 296 = 2−33
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Many encryption schemes require a nonce or IV to be used to achieve IND-CPA security. However,
reusing nonces or IVs is potentially catastrophic and can allow the attacker to break the scheme, i.e.
decrypt messages. Commonly deployed schemes, such as AES-GCM, are vulnerable to this scenario and
come with short 96-bit nonces. Where we choose such short nonces at random, the chance of collision
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is ≈ 2−33 for 232 messages as per square-root approximation of the birthday paradox: the number of
possible nonces n = 296 are the bins, the number of messages m = 232 are the balls, and we are interested
in the probability of two balls landing in the same bin. For real world systems, the probability of 2−33

for a catastrophic failure is uncomfortably high.
One simple approach to mitigate this is to have separate counters for each direction of the protocol.

However, this requires additional storage and becomes complex for more than two parties. For instance,
if A wants to send a message M2 with nonce N2 = N1 + 1, it needs to ensure that it has persisted the
new counter value N2 to disk before sending the message. Otherwise, it might crash after sending and
before persisting the value. In this case, A would likely re-use the same message when they retry after
restarting.

Approach 1: counting per direction

▶ Party A counts 0, 2, 4, ... and party B counts 1, 3, 5, ...

▶ Choose A to be the one with the lexicographical lower
DH input

▶ Simple and collision free

▶ Difficult to use with n > 2 parties and in decentralized
settings

▶ Storage and retry mechanism go into security scope!

The Noise protocol uses 64-bit nonces (to differentiate from
random and for compatibility with some ciphers)
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Most schemes break exactly when the same nonce/IV is used with different messages under the same
key. So, we can use a synthetic initialization vector (SIV) which depends on the nonce and the message.
This way, the SIV is unique for each message and the scheme is secure even if the same nonce is used for
different messages.

Approach 2: nonce-reuse resistant modes

▶ Using a synthetic initialization vector (SIV) which
depends on the nonce and the message

▶ Example: AES-GCM-SIV (RFC 8452)

▶ In case of nonce reuse, it is only revealed whether two
messages are the same or not.

▶ Needs two passes over text (no streaming)

▶ “Collisions” after 232 messages
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The final approach, which finds its way into many modern schemes, is to make the nonce space very
large. This way, the chance of collision is negligible even if we choose the nonce randomly.
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Approach 3: extended nonces

▶ Make the nonce space very large so that collisions are
unlikely

▶ Typically 192-bit, e.g. XChaCha20-Poly1305,
XAES-256-GCM

▶ Increasingly popular, especially when trying to make
misuse-safe APIs

Example: for XAES-256-GCM (192-bit nonce) and 264

messages the chance of collision is:

p ≈ 22·64

2 · 2192 = 2−64
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5.5 API Design

In our final section, we touch on some high-level aspects of API design. There are few canonical resources
on the topic. Instead, we often see that progress in this area is shared through new code and shared
experiences from engineers in the form of blog posts, talks, and the like.

LAB: Library design reflections

Topic: What third-party cryptography libraries have you
worked with?

▶ Good aspects?

▶ “Interesting” aspects?

▶ Dangerous patterns or APIs?

Collect your thoughts for a few minutes and then we’ll discuss!
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Cryptographic agility

▶ Idea: allow upgrading the underlying cipher suites
▶ Phase out old algorithms
▶ Upgrade to new algorithms (e.g. PQC)

▶ Challenges:
▶ Backwards compatibility prevents us from removing old

algorithms, see e.g. SHA-1 in TLS
▶ Negotiation happens early, i.e. before we establish

authenticity.
▶ New schemes might require larger underlying changes,

e.g. allowed message size
▶ Complexity! Specification, implementation, proofs, . . .
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Cryptographic agility is a property of a protocol that allows it to evolve over time. While this is a
desirable property, e.g. in order to phase out weak algorithms, it is very challenging in practice. For
instance, once a diverse set of clients and servers are deployed, it is likely that a non-negligible set of these
deployments will never update. Thus, when agreeing on a commonly supported subset of algorithms,
these stragglers prevent us from completely removing old algorithms, as this would break compatibility.
Similarly, most protocols needs to negotiate the algorithms to use before establishing authenticity. As
a result, machine-in-the-middle attacks can try to influence these initial messages and force the use of
weaker (broken) algorithms. In his blog post on cryptographic agility and version negotiation, Adam
Langley suggests: “have one joint and keep it well oiled”.

Case study: JSON Web Token (RFC 7519)

▶ Given out to clients after authentication

▶ JOSE Header {"typ":"JWT", "alg":"HS256"} + claim

▶ HS256: HMAC using SHA-256

“To support use cases in which the JWT content is
secured by a means [. . . ] using the ”alg” Header Pa-
rameter value ”none” and with the empty string for
its JWS Signature value” – RFC7519

▶ In 2020 researchers found that many libraries “correctly”
accepted none in production systems. . .
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Authoritative versioning

▶ Idea: Each API/protocol endpoint only supports one
version

▶ Advantages:
▶ Reduces complexity by having separate endpoints → we

can actually delete code!
▶ No negotiation required

▶ Migration strategies:
▶ Shadow traffic
▶ Brown-outs
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An alternative to more complex version negotiation is to have implementations only implement one
version. This immediately allows to remove new code from the newer version and prevents “zombie
extensions” that are rarely used, under-tested, and add unnecessary complexity. In a classical client-
server setting, this is straightforward as the load-balancer can route to the correct version. Upgrades to
clients will only be shipped, once the new version is available. Once prevalence of the older version is
negligible, the old version endpoint can be removed.

In practice, two deployment strategies have proven helpful: When testing the new version, have a
small number of test clients communicate with the new version in parallel to the old one. This shadow
traffic allows to detect issues with the new version and any troubles do not have user-visible impact. In a
complex environment, once the decision is made to turn-off an old version, it is not necessary clear what
other systems are relying on it. Hence, before turning it off entirely, we often have brown-outs where the
version is temporarily deactivated, e.g. for an increasing number of hours each day, or clients emit very
visible warnings.
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Opinionated libraries

▶ Avoid user misconfiguration and wrong usage
▶ Limited choice
▶ Secure defaults
▶ High-level abstractions

▶ You have seen a few:
▶ LibNacl, LibSodium, LibHydrogen
▶ Noise protocol
▶ Many Rust libraries
▶ . . .
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Pure functions

▶ All information and state are explicitly passed
▶ Input/output parameters
▶ Environment: file system, time, ...

▶ On embedded systems this might include
▶ Memory allocation
▶ Secure random generator

▶ Added benefit: drastically simplifies testing!
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Managing secret life times

▶ We want to minimize the lifetime of secrets in memory
▶ Quickly transform into derived secrets
▶ “Erase” memory

▶ Have the language help us with this
▶ Rust: Drop handler
▶ C++: RAII pattern
▶ Java: AutoCloseable, finalize
▶ . . .

▶ Difficult in user interfaces which are often not under our
control
▶ Also, side-channels such as keyboard predictions
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Rust

▶ Drop handler can automatically erase memory

▶ Non trivial: making sure the compiler does not optimize
this step away

use zeroize::{Zeroize, ZeroizeOnDrop};

#[ derive(ZeroizeOnDrop) ]

struct SessionKey { bytes: [u8; 16] }

Slide 224

This is harder in non-native languages

▶ Java/... do not provide direct access to memory

▶ The GC might inadvertely copy our secrets

pw = byte[16];

read_pw(pw);

// do work

Arrays.fill(pw, 0);
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Ensuring that secrets are effectively removed from memory is challenging in languages that abstract
away the physical memory. That includes most languages that rely on garbage collection (e.g. Java,
Python), as the GC might copy our secret to different memory locations during its operation. Hence,
when we try to override the memory, we might only changes values at the new location. The example in
Slide 225 is not effective, as the GC might have copied pw to a new location before we fill it with zeros.

However, most of these languages provide some methods to interact with physical memory addresses
through Foreign Function Interfaces (FFI). In Java, we can also use the ByteBuffer.allocateDirect

method to allocate memory that is not managed by the GC, but lives at a fixed physical address. Thus,
we can override the memory later and be sure that our secrets are indeed removed from memory. In the
example in Slide 226, we clear the buffer by rewinding the cursor to the beginning and writing zeros.
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This is harder in non-native languages

▶ Use ByteBuffer or equivalent to manage directly
allocated memory

pw = ByteBuffer.allocateDirect(16);

read_pw(pw);

// do work

pw.rewind();

pw.put(new byte[16]);
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This is harder in non-native languages

Add safety by using finalize method which is (supposed to
be) called just before an object is garbage collected.

▶ Variant A: perform the operation for the user (might be
delayed or unreliable)

▶ Variant B: cause crashes in debug builds (see e.g.
Android’s strict mode)
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Locking memory

▶ Prevent swapping out to disk
▶ Extra motivation why swap should always be encrypted

▶ On Linux we have to simple call mlock and munlock

int mlock(const void *addr, size t len);

int munlock(const void *addr, size t len);
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Case study: crash dump leak (MS STORM-0558)

▶ Microsoft has an isolated production environment for
signing final artifacts

▶ A crash dump from this environment was exported for
investigation
▶ Usually, secrets are filtered out from crash dumps (this

was broken)
▶ Usually, secrets would be detected and revoked by other

systems (this was broken)

▶ Attackers had access to the investigation machine which
was outside the isolated environment

▶ Libraries did not automatically validate the key scope

▶ Result: attackers were able to access enterprise emails
using forged tokens.
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6 Homomorphic Encryption and Private Information Retrieval

In this section we introduce the Learning With Errors (LWE) problem and see how it can be used to build
a strong cryptographic scheme. Using its homomorphic properties, we will then build a simple private
information retrieval (PIR) scheme. These following slides are partly based on the MIT CS 6.5190 lecture
slides by Yael Kalai and Alexandra Henzinger [Kalai and Henzinger, 2025]. However, in the spirit of the
practical nature of this course, we have simplified some notation.

LWE is also believed to be difficult if an adversary has access to a practical quantum computer.
Therefore, we afford a few slides to cover a brief introduction to the topic of post-quantum cryptography
(PQC).

6.1 Post-quantum security

Post-quantum security

▶ A post-quantum computer promises efficient solutions to
problems underlying classical public-key cryptography
using Shor’s algorithm
▶ Factorize number N in O(poly(logN))
▶ Solve discrete logarithm in O(poly(logN))
▶ Adversary can then “quite easily” break encryption

techniques (RSA and X25519) relying on these problems

▶ Symmetric algorithms (AES, SHA-3, . . . ) and hash
functions are believed to be mostly unaffected
▶ Grover’s algorithm only provides a quadratic speed-up
▶ Can be countered by doubling the key size
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If a sufficiently large quantum computer is ever built, it will enable integer factorisations and discrete
logarithms to be computed efficiently using Shor’s algorithm. This would allow an adversary to break
encryption techniques (RSA and X25519) relying on these problems. However, symmetric algorithms
(AES, SHA-3, . . . ) and hash functions are believed to be mostly unaffected.

On the flip-side, post-quantum technology can also enable new, complementary security solutions.
For instance, quantum key distribution (QKD) allows two parties to securely exchange a key over a
public channel. Such a system might use the entanglement property to ensure that any eavesdropping is
detected or disturbs the measured information. QKD typically works over optical fibres—and hence can
be considered an out-of-band key exchange mechanism.
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Post-quantum world

We Adversary

Classic Classic Today’s world

Quantum Quantum Quantum key distribution, . . .

Quantum Classic

Classic Quantum Post-quantum crypto

Harvest now & decrypt later: an adversary might record
interesting data now and await the advent of a practical
quantum computer.
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Quantum status-quo

21 = 3 × 7
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A well-discussed achievement was when quantum computers first factored 15 = 3 × 5 [Vandersypen
et al., 2001]. That is the number 15, not a number with 15 bits. A more recent achievement was when
quantum computers factored 21 = 3 × 7 [Martin-Lopez et al., 2012]. Hence, we believe that currently
there are no quantum computers with a large enough number of qubits to come close to providing an
advantage in breaking existing cryptographic schemes.

Quantum readiness

▶ Favouring symmetric schemes
▶ Out-of-band key exchanges (e.g. in person, over phone,

. . . )
▶ One-time-pads
▶ . . .

▶ Ensure data structures can handle larger key and
signature sizes
▶ e.g. tree-based log

▶ Adopting new algorithms
▶ e.g. Kyber KEM, Signal’s PQXDH, hash-based

signatures
▶ Often in a hybrid mode with established techniques

▶ Allowing key rotation also for long-term storage
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Many believe that switching to just relying on PQ algorithms is risky, as they have not undergone
scrutiny for as long as e.g. factorization and elliptic curves. Therefore, most protocols go for a hybrid
approach: protecting the key in a way that requires breaking both the PQ and classical algorithms. The
NIST standard chose Kyber (ML-KEM) as its suggestion for general-purpose key encapsulation.

Note: in other places the word hybrid is used to denote the approach where a public key algorithm
protects a symmetric key which then encrypts the main payload. A specified variant is hybrid public key
encryption (HPKE) [Barnes et al., 2022]. Soon we therefore might encounter schemes that we could call
“hybrid hybrid public key encryption”.

Kyber comes in different variants and Kyber512 is compatible with our standard security level of
128 bit. The public key (800 bytes) and secret key (1632 bytes) are much larger than those we are used to
from ECC. While Kyber’s security relies on hard problems over module lattices, there existing interesting
reduction between these and the LWE problem that we introduce in the next section.

6.2 Learning with errors

Learning without errors (1)

Let’s consider the following (overdetermined) equation system
over Z:

1x+ 2y + 3z = 16
2x+ 3y + 4z = 27
3x+ 4y + 5z = 35
4x+ 5y + 6z = 43
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Learning without errors (2)

We can also write it using Matrix-Vector notation and use
Gaussian elimination to solve it:




1 2 3
2 3 4
3 4 5
4 5 6


× s =




16
27
35
43




→ s = (1, 3, 4)⊤

where A ∈ Z4×3 and s ∈ Z3
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Learning without errors (3)

The same works perfectly fine in Zq (the ring of integers
modulo q). For example q = 7:




1 2 3
2 3 4
3 4 5
4 5 6


× s =




2
6
0
1




→ s = (1, 3, 4)⊤

where A ∈ Z4×3
7 and s ∈ Z3

7
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Rings are another algebraic structure that require fewer properties than fields (see Slide 2.1). In
particular, they do not require the existence of multiplicative inverses and multiplication is not required
to be commutative. For example, Z is a ring, but not a field (only 1 and -1 have multiplicative inverses).
However, our trusty companion Zq is a field for any prime q and thus also a ring.

Learning with errors (LWE)

However, adding even a little bit of noise e ∈ χ4, i.e. a vector
with four independent samples from the random distribution
χ, turns this into a tricky problem for which there is no simple
solution s.




1 2 3
2 3 4
3 4 5
4 5 6


× s =




2
6
0
1


+




+0.2
−0.2
+0.0
+0.2


 =




2.2
5.8
0.0
1.2
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Learning with errors (LWE)

Let Zq be the ring of integers modulo q. Let n and m be
positive integers that we choose depending on our security
parameter. Let χ be an error distribution over Zq with values
[−B,B], where B is much smaller than q.

The decisional Learning With Errors (LWE) problem is to
distinguish between the following two distributions:

▶ (A,A · s+ e) where A ∈ Zm×n
q , s ∈ Zn

q , and e ∈ χm

▶ (A,U) where A ∈ Zm×n
q and U ∈ Zm

q uniformly random

Notation: we use c = A · s+ e to denote the “LWE sample”.
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For example, where χ is the uniform distribution over Zq, i.e. B = q/2, any number becomes equally
likely for the LWE sample. This is because, for every possible value ci and all possible values of (A · s)i,
there is exactly one ei that satisfies the equation ci = (A · s)i + ei. However, this case is not very helpful,
as knowing s does not provide a distinguisher with any advantage.

However, it turns out it is also hard where χ is bounded to a small set of values [−B,B] with B ≪ q.
If we know s, we can also easily compute c − As to get e and therefore distinguish between (A, c) and
(A,U). However, finding s given only (A, c) is believed to be difficult. Sounds familiar?

The LWE assumption was first introduced by Regev in 2005 [Regev, 2009]. He received a Goedel
prize for this work in 2018 with particular recognition of the impact it had in the field of post-quantum
cryptography.

LWE: symmetric encryption (one-bit message)
Let’s consider the message spaceM = {0, 1}, i.e. a single bit
message and therefore we set m = 1. We want to build a
symmetric encryption scheme (Gen, Enc, Dec) to encrypt the
message b ∈M.

▶ Let s ∈ Zn
q be the secret key

▶ Let A ∈ Zn×1
q be the public matrix

▶ Let e ∈ χ1 be the error vector with B < ⌊q/4⌋

We define encryption and decryption as:

Encs(b) = (A,A · s+ e+ b · ⌊q/2⌋)

Decs(c) =

{
1 if ⌊q/4⌋ ≤ c− A · s < 3 · ⌊q/4⌋
0 otherwise
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Our ciphertext is a tuple, the LWE sample (A, c). The formulas here match the definition of the LWE
problem on slide 238 with m = 1. As a result, A is a single column vector and both e and the ciphertext
c is a single element of Zq. One can encrypt multi-bit messages, by choosing m to be the bit length of
the message. We can verify that this scheme is correct by expanding our definition of decryption:

c−A · s = (A · s+ e+ b · ⌊q/2⌋)−A · s = e+ b · ⌊q/2⌋
Note that some resources use a notation like |c− A · s| < ⌊q/4⌋ and where taking the absolute value

implies including the values that wrap around in the ring, i.e. |x| < y = {x|x + n · q < y for n ∈
{0, 1}} for x, y ∈ Zq.

As it stands, this scheme is very inefficient. Encrypting a single bit requires (n + 1) log2 q bits of
communication. We can increase the value of m to encrypt longer messages whose ciphertexts in turn
are vectors.

LWE: symmetric encryption

We can extend this scheme to encrypt multi-bit messages by
using a matrix A with m columns, where m is the bit length
of the message.

▶ Let s ∈ Zn
q be the secret key

▶ Let A ∈ Zn×m
q be the public matrix

▶ Let e ∈ χm be the error vector with B < ⌊q/4⌋

We define encryption and decryption as:

Encs(b) = (A,A · s+ e+ b · ⌊q/2⌋)

Decs(c)i =

{
1 if ⌊q/4⌋ ≤ ci − (A · s)i < 3 · ⌊q/4⌋
0 otherwise
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6.3 Homomorphic encryption

Homomorphic encryption

A public-key encryption scheme (Gen, Enc, Dec) is
homomorphic if for all (pk, sk), it is possible to define groups
M, C (depending on pk only), with group operators ⊕ and ⊗
respectively, such that:

▶ The message space isM and all ciphertexts output by
Encpk are elements of C

▶ For any m1,m2 ∈M and c1 ← Encpk(m1),
c2 ← Encpk(m2) it holds that:

Decsk(c1 ⊗ c2) = m1 ⊕m2

▶ The distribution of all ciphertexts obtained by applying ⊗
to any ciphertexts Encpk(m1), Encpk(m2) is identical to
the distribution of Encpk(m1 +m2)
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The above definition is based on Definition 13.4 from [Katz and Lindell, 2020]. However, we simplified
some technically important details (such as passing in 1n to the key generation algorithm for correct
complexity). Also, while we use the + operator for both M and C, these might be distinct operations.
What we describe here is a “partially homomorphic” scheme as it only allows us to perform one operation
(addition) on ciphertexts. A fully homomorphic scheme would allow us to perform arbitrary operations
and combinations thereof on ciphertexts. Such schemes for fully homomorphic encryption (FHE) are
more complex and there exist implementations, e.g. Microsoft SEAL [Microsoft, 2023] and OpenFHE
[2023].

Symmetric LWE is homomorphic
LWE is homomorphic under addition, i.e.

Dec(s, Enc(m1) + Enc(m2)) = m1 ⊕m2

We can convince ourselves of this by looking at the definition
of encryption:

Enc(m1) = (A,A · s+ e1 +m1 · ⌊q/2⌋)
Enc(m2) = (A,A · s+ e2 +m2 · ⌊q/2⌋)

Enc(m1) + Enc(m2) =

(A+ A, (A+ A) · s+ (e1 + e2) + (m1 +m2) · ⌊q/2⌋)

Note: the noise in the ciphertext grows (doubles) with each
operation: enew = e1 + e2
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LWE allows for fast homomorphic addition of the ciphertexts. Since we operate over Zq, the result
might wrap around, which is why for our binary messages the resulting operation is a XOR. Hence the
use of ⊕ symbol – although it is implied by having a one-bit message inM = Z2. In this scheme, we only
pay one addition in Zq for each bit of the message when performing our operation over the ciphertexts.
However, as the noise grows with each addition, you want to carefully consider a good choice of q in your
implementation and discuss the trade-offs. Once the accumulated noise reaches q/4, we run at risk of not
being able to correctly decrypt the result.

6.4 Private information retrieval
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Private information retrieval (PIR)

We want to build a protocol for private information retrieval
(PIR).

Problem:

▶ Server has a database D ∈ {0, 1}N with N one-bit entries

▶ Client wants to retrieve the item at index i ∈ [N ]

Requirements:

▶ Correctness: Client should learn Di

▶ Privacy: Server does not learn which i was requested

▶ Minimal communication: They must not exchange more
than N bits
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The privacy requirement is typically captured as an indistinguishability property where the server/adversary
is challenged to distinguish between two queries i and j with i ̸= j. The minimal communication require-
ment rules out trivial schemes, such as sending the entire database to the client. We will now go and
see a simple implementation of PIR using symmetric LWE encryption that has O(

√
N) communication

complexity.

PIR using LWE (näıve)
Alice wants to retrieve the i-th entry from a database D ∈ {0, 1}N where
i ∈ [N ].

Client Server

v ∈ ZN
2 with vx =

{
1 if x = i

0 otherwise

s ∈ ZN
q

A ∈ ZN×N
q , e ∈ χN

c = A · s+ e+ v⌊q/2⌋
A′ = 0N , c′ = 0
for i ∈ [N ] :
if Di = 1 :
A′ = A′ +Ai

c′ = c′ + ci
r = c′ −A′ · s
Output 1 if r ∈ [⌊q/4⌋, 3 · ⌊q/4⌋]

(A, c)

(A′, c′)
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PIR using LWE (näıve)

▶ Privacy: the server only ever sees the LWE sample
(A, c) ∈ ZN×N

q × ZN
q . Reduction to the LWE assumption

shows that it does not learn i

▶ Correctness:
▶ We add ci where Di = 1
▶ Only one of the ci encrypts 1, hence we only “add”
⌊q/2⌋ in that case

▶ The result c′ contains the noise N · e
▶ Minimal communication:

▶ |A| = N2 log2 q bits
▶ |c| = N log2 q bits
▶ Let’s improve this!
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PIR using LWE (square-root)
Alice wants to retrieve the (i, j)-th entry from a database

D ∈ {0, 1}
√
N×

√
N where i, j ∈ [

√
N ].

Client Server

v ∈ Z
√
N

2 with vx =

{
1 if x = j

0 otherwise

s ∈ Z
√
N

q

A ∈ Z
√
N×

√
N

q , e ∈ χ
√
N

c = A · s+ e+ v⌊q/2⌋

A′ = D ·A
c′ = D · c

r = c′ −A′ · s
Output 1 if ri ∈ [⌊q/4⌋, 3 · ⌊q/4⌋]

(A, c)

(A′, c′)
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We can build a simple PIR scheme based on LWE, similar to the one proposed by Kushilevitz and
Ostrovsky [1997]. The construction becomes more efficient if we re-arrange the database D into a matrix
of size

√
N ×

√
N .

In this scheme, the client first creates a “one-hot encoded” vector v with a 1 in the j-th position and
0s elsewhere. The client then encrypts this vector v using the LWE encryption scheme which requires us
to sample vector s, matrix A, and error vector e. It then sends the LWE sample (A, c) to the server.

The server then computes A′ = D · A and c′ = D · c and sends (A′, c′) back to the client. Note that
this only requires homomorphic addition, i.e. we only add elements (A, c′) where the database entry is 1.
As v is a one-hot encoded vector, the resulting ciphertext (A′, c′) is an encrypted representation of the
j-th column of D.

The client can then unblind the response by computing r = c′ −A′ · s using their secret key s. If the
result is close to ⌊q/2⌋, the client can conclude that the (i, j)-th bit of D is 1.

PIR using LWE: improvements

We can make a few observations that allow us to improve the
scheme:

▶ Since A is already transmitted in the clear, we can use it
for multiple queries without having to re-transmit it.

▶ Similarly, the server can pre-compute A′ = D · A.
▶ And in turn A′ can be distributed to clients ahead of time

(barring any updates to D)
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PIR using LWE (optimized square-root)
Alice wants to retrieve the (i, j)-th entry from a database

D ∈ {0, 1}
√
N×

√
N where i, j ∈ [

√
N ]. Both have pre-computed and

shared A and A′ = D ·A.

Client Server

v ∈ Z
√
N

2 with vx =

{
1 if x = j

0 otherwise

s ∈ Z
√
N

q , e ∈ χ
√
N

c = A · s+ e+ v⌊q/2⌋

c′ = D · c

r = c′ −A′ · s
Output 1 if ri ∈ [⌊q/4⌋, 3 · ⌊q/4⌋]

c

c′
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Assignment 3

Implement a PIR scheme using symmetric LWE encryption.

▶ Users should be able to query 1-bit fields from a database
with more than 1,000 entries

▶ Simulate the network by exchanging serialized messages

▶ Note: to our knowledge, there are no relevant
standards/specifications. You will have to make your own
decisions.

▶ Deadline: 24 Mar 2025
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This assignment is due on 24 Mar 2025. You will have noticed that the assignments have become
progressively more open-ended: we started with a strict specification for X25519 and Ed25519, then
moved to AKE which left more API design decisions for you to make, and now this PIR gives you the
opportunity to also consider parameter choices. The Simple PIR paper [Henzinger et al., 2023] is a good
starting point and develops a scheme similar to the one we have described here. Since this assignment is
more open-ended, we encourage you to consider some of the following extensions:

• Identify performance bottlenecks and optimize them

• Extend the scheme to support small integers (e.g. 8-bit)

• Incorporate the suggested improvements

• Consider how these can work with updates to the database

• Testing and verifying the privacy properties

6.5 Public-key encryption based on LWE

The previous slides might have left you slightly disappointed: we motivated the need for a post-quantum
public-key encryption scheme, but all we have seen so far is a symmetric encryption scheme. Luckily, we
can use the LWE assumption to construct a public-key encryption scheme as well. We start again with
our examples from Slides 234–236.
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LWE Public-key Encryption (1)

We recall our example from the previous slides and represent it
as an augmented m× (n+ 1) matrix P :

P = (A | A · s+ e) =




1 2 3 2.2
2 3 4 5.8
3 4 5 0.0
4 5 6 1.2
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The notation of an augmented matrix is likely familiar from linear algebra where it was convenient
for performing Gaussian elimination. Here, it allows us to compactly represent the LWE problem. Let’s
make P our public key. For our public-key scheme, we now want to allow everyone with access to P
to create challenges that only the owner of the secret key s can solve. We further want to be able to
create many randomly looking ciphertexts so that an adversary cannot learn anything about our hidden
message m by observing our ciphertexts. In our scheme, the encrypting party will select a subset of the
m rows of P and add them together. We can express this concisely by sampling a row vector r ∈ {0, 1}m
and multiplying it with P . For the following example we choose r = (0, 1, 0, 1).

LWE Public-key Encryption (2)

We sample a random vector r ∈ {0, 1}m and compute r · P .

r · P =
(
0 1 0 1

)



1 2 3 2.2
2 3 4 5.8
3 4 5 0.0
4 5 6 1.2


 =

(
6 8 10 7

)

With s we can distinguish the ciphertext c from a random
vector:

(r ·P ) ·




s0
...

sn−1
−1


 =

(
6 8 10 7

)



1
3
4
−1


 = 63 ≡ 0 (mod q)
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With this approach we can now generate 2m different ciphertexts and only a party with s can verify
that the ciphertext is correct. To encode a single-bit message m ∈ {0, 1}, we can use the known approach
of adding ⌊q/2⌋ to the the right-most column. The party with access to s can then test if the result is
close to 0 or ⌊q/2⌋ to retrieve m. We use ŝ to denote s augmented with a −1 in the last position for
which otherwise can only be expressed slightly awkwardly with commonly available notation.

The augmented −1 matches the last column of the augmented matrix P which is the constant term
after applying the error vector. By subtracting the right-hand side of the equation, we should receive a
value close to 0 if s is the secret key.
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LWE Public-key Encryption (3)

Let x ∈ {0, 1} and r ∈ {0, 1}m. We can then define the
encryption of x as:

c = r · P + (0, . . . , 0, x · ⌊q/2⌋)

The recipient can then use their secret key s to decrypt the
ciphertext by computing:

Dec(P, s, c) =

{
1 if ⌊q/4⌋ ≤ c− (P · ŝ) < 3 · ⌊q/4⌋
0 otherwise

where ŝ = (sT | −1)T i.e. the column vector s augmented with
−1 in the last position.
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LWE Public-key Encryption Parameters

Let λ be our security parameter. Then let n = λ and
m = Θ(n · log q). Let χ be a discrete Gaussian distribution
bounded to [−B,B] such that B ·m < q/4. Then the scheme
from the previous slide is a semantically secure public-key
encryption scheme.

▶ A typical choice for q is 216

▶ For 128-bit security, we choose n = 27

▶ With m = 2n · log2 q we get m = 211

▶ Remains to choose B such that B ·m < q/4
▶ Higher B gives better security but the noise growth is

higher
▶ Lower B gives less security and we might need to

increase n
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With the correct choice of parameters, this scheme is semantically secure. Since we only require Zq

to be a ring, not a field (since we don’t need multiplicative inverses), our choice of q does not need to be
a prime. It is convenient to choose q to be a power of 2 so that we can implement fast arithmetic using
native machine operations. In the above example, we see that we quickly end up with large values for n
and m which result in both large public-keys, i.e. the matrix P , and ciphertexts c. For our parameters
above, the public key P has 27 · 211 = 218 elements in Z216 which translates to 218 · 16 = 222 bits or
512KiB for a public key!

We can reduce the size of the public key by using a pseudorandom matrix A derived from a short
seed. In our notation we use the concatenation ∥ symbol, but want to emphasize that the encoding should
be chosen to be unambiguous. Instead of the general LWE assumption, many practical schemes use the
Ring-LWE assumption (RLWE) [Lyubashevsky et al., 2010] that is specialized to polynomial rings of
finite fields. It is assumed to be similarly hard, but it provides smaller keys and ciphertexts as well as
faster computation.
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Improving LWE Public-key Encryption

Problem: The resulting public key P is large: n ·m elements
in Zq. The ciphertexts c has n elements.

▶ Derive the matrix A pseudorandomly from a short seed.
▶ Generate the entries using H(seed ∥ i ∥ j).

▶ Pack more bits into each ciphertext by usingM = Zp

with p > 2
▶ Encode m ∈M as m · (q/p)
▶ During decryption, find nearest multiple of (q/p)

▶ Use the LWE over rings assumption (RLWE)
▶ Reduces key and ciphertext sizes
▶ Also reduces required computation
▶ Used in practical schemes
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