10. Storage & File
Management

ot ed: Ch. (10,) 11, 12
10 ed: Ch. (11,) 13, 14, 15

Objectives

* To understand the nature of mass storage
* To be aware of the challenges of (disk) storage management

* To understand concepts of files, directories and directory
namespaces, directory structures, hard- and soft-links

* To know of basic file operations and access control mechanisms

* To be aware of the relationship between paging and block storage in
the buffer cache

Outline

* Mass storage

* Disk scheduling

* Disk management
* Files

* Directories

* Other issues

Outline

* Mass storage
* Hard disks
* Solid state disks

Mass storage: Hard Disks (HDs)

* Stack of platters
* Historically 0.85” to 14”
* Commonly 3.5% 2.5”,1.8”
* Capacity continually increases but
perhaps 30GB —3TB
* Performance
* Transfer Rate (theoretical) = 6 Gb/sec
* Effective Transfer Rate (real) = 1Gb/sec

* Seek time 3—12ms with around 9ms
common

* Rotation typically 7200 or 15,000 RPM

10. Storage & File Management

actuator

spindle
| / read-write

N L7759
. .y
[\

X B

sector

cylinder

Hard disk performance

* Average latency [secs] = ¥4 latency = %2 x 60 / (™®%°"S/ inute) = 30 / RPM
* Access latency [secs] = Average seek time + Average latency

* Average I/0 time [secs]
= Access latency + (transferamount /' «errate) + controller overhead

* E.g., 4kB block, 7200 RPM, 5ms average seek time, 1Gb/sec transfer
rate, 0.1ms controller overhead

Average latency =30 /7200 =4.17ms
Transfer time = 4096 bytes x 8 P/, / 10243 */ cong= 0.031ms
Average I/O time =5ms + 4.17ms + 0.031ms + 0.1ms = 9.301ms

Mass storage: Solid state disks
(SSDs)

* Non-volatile memory used like a hard drive; many variations

* Pros
* Can be more reliable than HDDs
* No moving parts, so no seek time or rotational latency

* Much faster

* Cons
* Reads/writes wear out cells leading to unreliability and potentially shorter

* More expensive per MB
* Lower capacity

Outline

* Disk scheduling
* First-Come First-Served (FCFS)
* Shortest Seek Time First (SSTF)
* SCAN, C-SCAN

Disk scheduling

* The disk controller receives a sequence of read/write requests from
the OS that it must schedule
* How best to order reads and writes to achieve policy aim?
* Analogous to CPU scheduling but with very different mechanisms, constraints,

and policy aims queue = 98, 183, 37, 122, 14, 124, 65, 67
] . head starts at 53
* Many algorithms exist 0 14 37 536567 98 122124 183199
* Simplest: First-come First-served (FCFS) —

* Intrinsically fair but inefficient

* E.g., requests for blocks on cylinders are
98, 183,37, 122, 14, 124, 65, 67

Shortest Seek-Time First (SSTF)

* Service requests based on distance to current head position
* Next request in queue is that with the shortest seek time

* For this example, involves movement of just 236 cylinders

* 1/; of that required by FCFS ﬂ:z:i;rffaggg 37,122, 14,124, 65, 67

e Somewhat analogous to SJF 0 14 37 536567 98 122124 183199
* A big improvement but allows starvation N
* Not optimal: from 53 move to 37 then 14 ‘/.*-

and then 65 etc — gives movement of "/\>
208 cylinders

™~

Xt\>.

SCAN and C-SCAN

* SCAN or elevator algorithm

* Start at one end of the disk and move to the other

end
* Service everything on the way

* Consider density of requests when changing

direction

* Have just serviced (almost) everything in that vicinity
* Those furthest away have waited longest so...

* Circular-SCAN

* Return back to the start when reaching the end
* Cylinders treated as a circular list, wrapping when

reaching the end

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199
1 | L1l | 1l L]
|

-

_

!
\.

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199
1 | L1l | I L]
| |

Outline

* Disk management
* Booting from disk

Disk management

* Low-level or physical formatting
* Divides a disk into sectors that the disk controller can read and write
* Each sector can hold header information, plus data, plus error correction code (ECC)
* Usually 512 bytes of data but can be selectable

* Logical formatting to make a file system required before disk can hold files
* OS needs to record its own data structures on the disk so it can find files
* Partition the disk into one or more groups of cylinders, each treated as a logical disk
* To increase efficiency most file systems group blocks into clusters

* Disk I/O done in blocks

* File I/O done in clusters
* Some applications, e.g., databases, will prefer “raw” block access

Booting from disk

* OS needs to know where to start looking
* BIOS (or similar) is “firm-coded” to e.g., read first block of first disk

* First block contains bootloader program, which is executed

* Bootloader knows enough to start VT2l - boot
reading in the right blocks to read . code
the filesystem starting with partition 1 AN partition
the partition table S. | table

* Sometimes need to chain-load to partition 2
get enough code to parse more
complex filesystems - boot partition
partition 3 <

* Allows for handling of bad blocks

* E.g., by sector sparing where spare good .
blocks logically substitute for bad ones partition 4

On-disk structures

* A disk consists of a boot block followed by one or more partitions, number size/age dependent

* A partition is a contiguous range of N fixed-size blocks

/ Partition 1

of size k, containing a filesystem
* Figure shows two completely independent UNIX
filesystems
* |data blocks|>>|inode table|>>|superblock|

* Superblock contains metadata such as total
and free blocks, start of free-block and
free-inode lists

* On-disk have a chain of tables with head in superblock for each list — but this leaves

0

Hard Disk

j / Partition 2 \

= =
(&) (8]
L) L)
@ | Inode Data @ |Inode Data
2| Table Blocks 2 | Table Blocks
=}
@ @
1 |2 ili+1 jlj+1|j+2 1 1+1 m

superblock and inode-table vulnerable to head crashes so we must replicate in practice

* Now a very wide range of different filesystems even in a single OS such as Linux

Outline

* Files
* File systems
* File metadata
* File and directory operations

Files

* The basic abstraction for non-volatile storage:
* Can be a user or an OS abstraction (convenience vs flexibility)
* Typically comprises a single contiguous logical address space

* Many different types
* Data: numeric, character, binary (text vs binary split quite common)
* Program: source, object, executable
* “Documents”

* Can have varied internal structure:
* None: a simple sequence of words or bytes
* Simple record structures: lines, fixed length, variable length
* Complex internal structure: formatted document, relocatable object file

File system

filing system

text name

user file-id

* Consider only simple file systems
* Directory service maps names to file

identifiers and metadata, handles access
and existence control

* Storage service stores data on disk,

including storing directories | oo

I/O subsystem

* Each partition formatted with a
filesystem

information requested
A from file

* Logically, a directory and some files

* Directory maps human name (hello.java)

to System File ID (typically an integer)
* Different filesystems implement using

different structures

Directory
Service
) }
Storage Service
Disk Handler
Name SFID
hello. java 12353
Makefile 23812
README 9742

File metadata

Metadata Table

SFID (on disk)
* The mapping from SFID to File Control Block (FCB) \ _
is filesystem specific £ (SFID) - nte Control Block
/| Type (iile or directory)
* Files typically have a number of other attributes or ‘ /" | Location on Disk
metadata stored in directory Size In bytes
* Type —file or directory N Time of creation
* Location — pointer to file location on device \ Access permissions
* Size — current file size
* Protection — controls who can do reading, writing, executing

* Time, date, and user identification — data for protection, security, and usage monitoring

* OS must also track open files in an open-file table containing
* File pointer or cursor: last read/written location per process with the file open

* File-open count: how often is each file open, so as to remove it from open-file table when last process
closes it

* On-disk location: a cache of data access information
* Access rights: per-process access mode information

File and directory operations

A file as an abstract data type (ADT) over some (possibly structured) bytes

Directory operations to manage lifetime of a file
* Create allocates blocks to back the file

* Open/Close handle to the file, typically including OS maintained current position (cursor)

* Delete returns allocated blocks to the free list
* Stat retrieves file status including existence reads and returns file metadata

File operations to interact with file beginning

current position

end

* Write provided data at cursor location

* Read data at cursor location into provided

memory
* Truncate clips length of file to end at current cursor value

Access pattern:

* Random access permits seek to move cursor without reading or writing
* Sequential access permits only rewind to move cursor back to beginning

W ole fe—

——read or write ==

Opening a file

* In-memory directory structure previously read from disk resolves file
name to a file control block

open (file name)

directory structure

directory structure

uSer space

kernel memory

>

file-control block

secondary storage

Reading a file

index

\

—

read (index)

per-process
open-file table

e

system-wide
open-file table

user space kernel memory

el

data blocks

\

file-control block

secondary storage

* Using per-process open-file table, index (file handle or file descriptor) resolves to
system-wide open-file table containing file-control block which resolves to actual

data blocks on disk

Outline

* Directories
* Tree-structured
* Acyclic-graph structured
* File system mounting

Directories

* Implementations must provide
* Grouping, to enable related files to be kept together
* Naming, for user convenience so different files can have the same name and

one ﬁle can have many Nnames directory test | data | mail | cont records

.- Efﬁciency,t?ﬁnd ﬁles-qui-ckly g g g g g g g g g

* Single-level directory is simplest
* Naming and grouping problems though masterfile [poo T

directory

* Two-level directory is next (FAT) \

user file

test data test data a

S for diff ia paths
el S S S RS R SR

Tree-structured directories

* Provide naming convenience, efficient search, and grouping
* Introduce notion of current working directory (CWD)

root spell bin |p og ams|

cd /spell/mail/prog
ty p e liSt stat mail dist find | count hex reorder e mail
* Gives rise to absolute or relative S Doodod o B
path names
* Name is resolved with respect to the prog | copy reorder] I f"d coun
CWD \\\Q 5 é
* Other operations also typically ot Ton Tooer | [ar] Tt et

carried out relative to CWD é é 6 é é é

Acyclic-graph structured directories

* Generalise to a DAG so can share subdirectories and files
* Allows files to have two different absolute names (aliasing)

* Need to know when to actually delete a file
* Use back-references or reference counting

root | dict | spell

N

* Compare soft- and hard-links in Unix

list

all

count count

* Need to know how to account storage
* Which user “owns” the storage backing the file
* For deletion and generally for permissions

* Need to avoid creating cycles
* Forbid links to subdirectories

words

list

a1

> Jist | rade

556

6

File-system mounting

* Filesystems must be mounted at a mount-point before access, e.g.,

é\é ...an unmounted filesystem in

manother partition

...Is mounted, overlaying
the users subdirectory

Outline

* Other issues
* Consistency
* Efficiency
* Buffer cache

Consistency Issues

Arise without multiple threads!

E.g., Deleting a file uses the unlink system call
* Invoked from the shell as rm <filename>

Implementation must

* Check if user has sufficient permissions on the file (write access)
Check if user has sufficient permissions on the directory (write access)
If ok, remove entry from directory
Decrement reference count on inode
If reference count is now zero, free data blocks and inode

* |f the system crashes, must check the entire filesystem (fsck)
* Check if any block is unreferenced, and mark free
* Check if any block double referenced, and update reference counts

Efficiency and performance

* Efficiency depends on, e.g,
* Disk allocation and directory algorithms
* Similar challenges to memory of allocation, fragmentation, compaction

* Types of metadata in directory entries
* E.g., file creation time vs last written time vs last accessed time

* Pre-allocation or as-needed allocation of metadata structures
* Fixed-size or varying-size data structures

* Performance measures include
* Keep data and metadata close together

* Create a buffer cache, a separate part of memory for often used blocks
* Synchronous writes sometimes requested by apps or needed by OS
* Require no buffering / caching — writes must hit the disk before acknowledgement
* Asynchronous writes more common, can be buffered, are faster

Buffer caches

I/0 using
rEmel e pee 1o read() and write()

* Not unified I

page cache

* Page cache caches pages not disk blocks, using virtual \
memory techniques and addresses

* Memory-mapped I/O uses a page cache while routine
/O through the file system uses the buffer (disk) cache

 J U n Iﬁ ed file system

buffer cache

. I/O usi
* Asingle buffer cache usesa | ™™Y™maed 0 oa() and write()
single page cache for both \ /

memory-mapped |/O and
normal disk 1/O

buffer cache

file system

Summary

* Mass storage
* Hard disks
* Solid state disks

* Disk scheduling
* First-Come First-Served (FCFS)
* Shortest Seek Time First (SSTF)
* SCAN, C-SCAN

* Disk management
* Booting from disk

* Files
* File systems
* File metadata
* File and directory operations

* Directories
* Tree-structured
* Acyclic-graph structured
* File system mounting

* Other issues
* Consistency
* Efficiency
* Buffer cache

	10. Storage & File Management
	Objectives
	Outline
	Outline (2)
	Mass storage: Hard Disks (HDs)
	Hard disk performance
	Mass storage: Solid state disks (SSDs)
	Outline (3)
	Disk scheduling
	Shortest Seek-Time First (SSTF)
	SCAN and C-SCAN
	Outline (4)
	Disk management
	Booting from disk
	Slide 15
	Outline (5)
	Files
	File system
	File metadata
	File and directory operations
	Opening a file
	Reading a file
	Outline (6)
	Directories
	Tree-structured directories
	Acyclic-graph structured directories
	File-system mounting
	Outline (7)
	Consistency issues
	Efficiency and performance
	Buffer caches
	Summary

