07. Paging

9th ed: Ch. 8, 9

10th ed: Ch. 9, 10

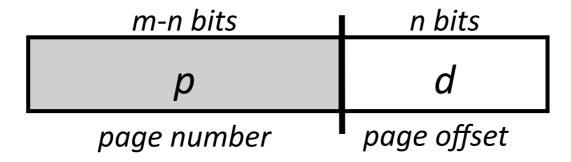
Objectives

- To discuss the purpose of paging
- To understand how paging is implemented
- To know some different ways that page tables are structured
- To be aware of the performance impact of the translation lookaside buffer
- To discuss how paging interacts with segmentation

Outline

- Non-contiguous allocation
- Paging implementation
- Page table structure

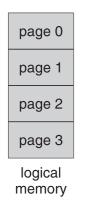
Outline

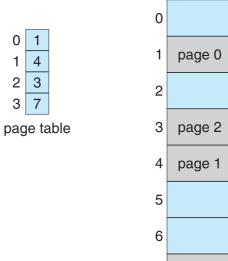

- Non-contiguous allocation
 - Address translation
 - Paging model
- Paging implementation
- Page table structure

Non-contiguous allocation

- How can we enable the physical address space of a process to be non-contiguous?
 - Allows physical memory to be allocated whenever available
 - Avoids external fragmentation and the problem of varying sized memory chunks
 - Still have internal fragmentation though
- Paging
 - Divide physical memory into **frames**, fixed-size (power of two) blocks from 512 bytes to 1GB
 - Divide logical memory into pages, blocks of the same fixed size
 - Build a page table to map between pages and frames
- Running a program that needs N pages then requires
 - Find *N* free frames
 - Create entries in page table to map each page to a frame
 - Load the program

Address translation

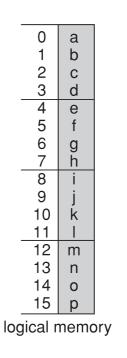

- Divide each logical address generated by the CPU into:
 - Page number (p) used as an index into a page table which contains base address of each page in physical memory
 - Page offset (d) is combined with base address to define the physical memory address that is sent to the memory unit



• For given logical address space 2^m and page size 2ⁿ

Paging model

Page Table stores Page Table Entries
 (PTEs) that map between logical and physical addresses
 frame


page 3

physical

memory

number

For example,

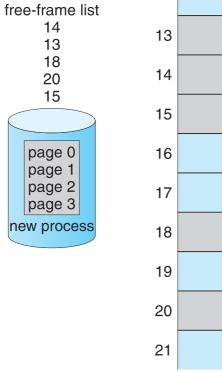
		1		
0	5			
1	6			
2	1			
2	2			
page table				

n=2 and m=4 32 byte memory and 4 byte pages

m 12 16 20 а е

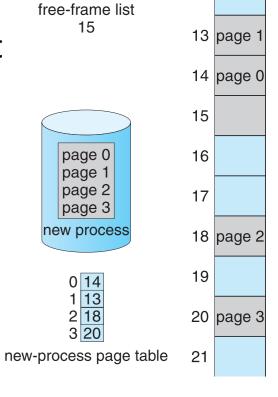
physical memory

Pros and cons


- No external fragmentation but still have internal fragmentation, e.g.,
 - Page size 2048 bytes, process size 72,766 bytes, so process requires 35 pages plus 1086 bytes, so internal fragmentation is 2048 1086 = 962 bytes
- On average, fragmentation is ½ frame per process
 - So small frame sizes are desirable to waste less
 - But each page table entry takes memory to track so page table grows
- Process view and physical memory now very different
 - OS controls the mapping so user process can only access its own memory
 - OS must track the free frames
 - OS must remap the page table on every context switch adds overhead

O7. Paging 8

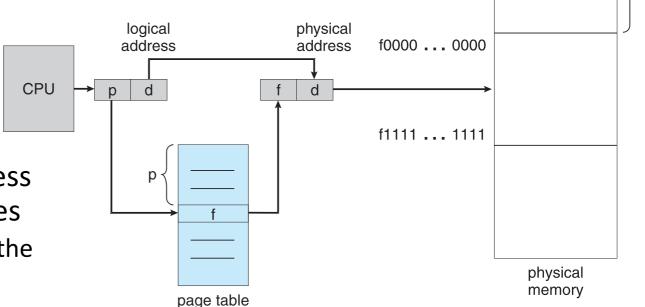
Free frames


 Before allocation, OS has several frames on the free

frame list

 After allocation, page table entries created and frames no

longer in free-frame list

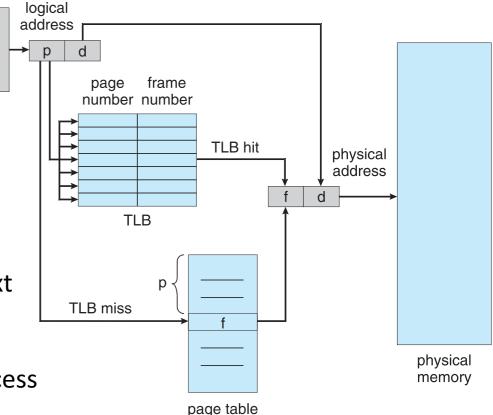


Outline

- Non-contiguous allocation
- Paging implementation
 - Free frames
 - Translation Lookaside Buffer (TLB)
 - Protection
 - Sharing
- Page table structure

Page table implementation

- Hardware support required for performance
 - Translates (logical) page number into (physical) frame number
 - Offset within a page is then the offset within the frame
- Page table sits in main memory
 - Page-table base register (PTBR) points to the page table
 - Page-table length register (PTLR) indicates size of the page table
- Means every data/instruction access now requires two memory accesses
 - One for the page table plus one for the data/instruction
 - Dramatically reduces performance

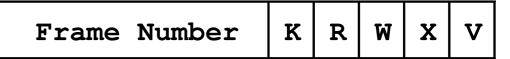


Translation Lookaside Buffer (TLB)

CPU

Resolves the performance issue of two memory accesses

- Effectively a special hardware cache using associative memory
- Typically fairly small, 64—1024 entries
- Operation
 - If translation is in the TLB, use it
 - Else we have a **TLB miss** so do the slow two-memory-access lookup in the page table
 - Also add the entry to the TLB for faster access next time subject to replacement policies – typically Least Recently Used (LRU)
 - Can sometimes pin entries for permanent fast access

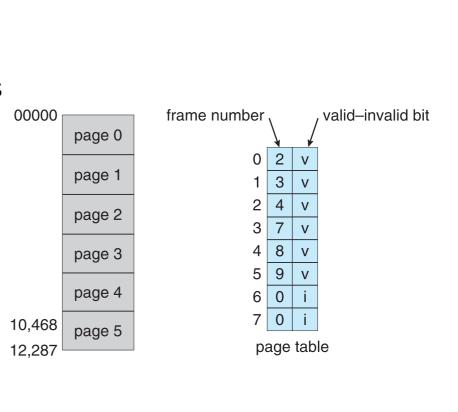


TLB performance

- Performance is measured in terms of **hit ratio**, the proportion of time a PTE is found in TLB, e.g., assume
 - TLB search time of 20ns, memory access time of 100ns, hit ratio of 80%
- If one memory reference is required for lookup, what is the **effective memory access time**?
 - 0.8 × 120ns + 0.2 × 220ns = 140ns
- If the hit ratio increases to 98%, what is the new effective access time?
 - 0.98×120 ns + 0.2×220 ns = 122ns
 - That is, it only gives a 13% improvement
 - (Intel 80486 had 32 registers and claimed a 98% hit ratio)
- TLB also adds context switch overhead as need to flush the TLB each time
 - Can store address-space identifiers (ASIDs) in each entry to avoid this

Protection

- Associate protection bits with each page, in the Page Table Entry (PTE), e.g.,
 - Accessible in kernel mode only, or user mode
 - Read/Write/Execute to page permitted
 - Valid/Invalid



- As the address goes through the page hardware, protection bits are checked
 - Note this only gives page granularity protection, not byte granularity protection
- Attempts to violate protection cause a hardware trap to the OS
 - TLB entry has the valid/invalid bit indicating whether the page is mapped
 - If invalid, trap to the OS handler to map the page
- Can do lots of interesting things here, particularly with regard to sharing and virtualization

Sharing pages

Shared code

- Keep just one copy of read-only (reentrant) code shared among processes
- Similar to multiple threads sharing the same process space
- Can also be useful for IPC if read-write pages can be shared
- Private code and data
 - Each process keeps its own copy of private code and data
 - Pages for which can appear anywhere in the logical address space

07. Paging

page n

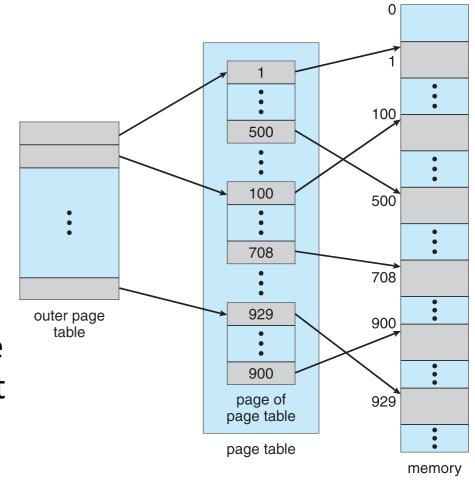
page 0

page 1

page 2

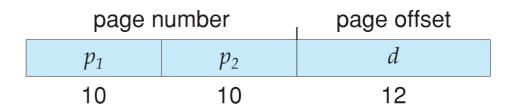
page 3

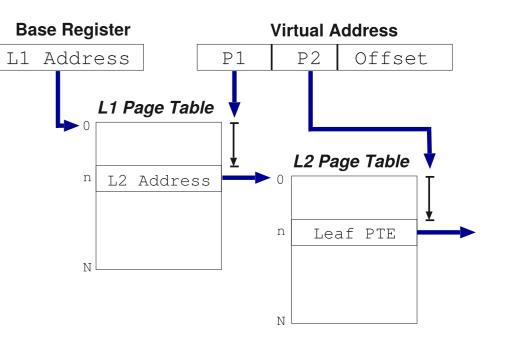
page 4


page 5

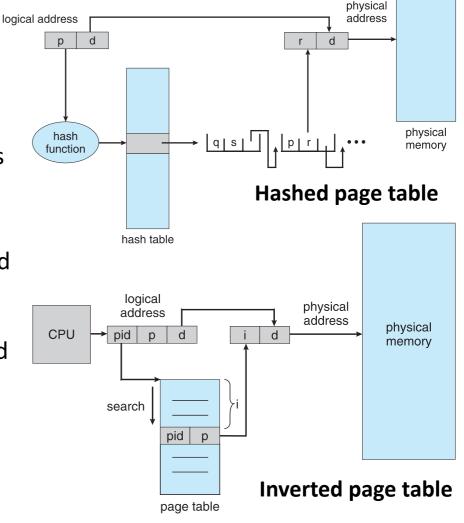
Outline

- Non-contiguous allocation
- Paging implementation
- Page table structure
 - Two-level page table
 - Larger address spaces
 - Examples: IA-32, x86-64, ARM


Page table structure

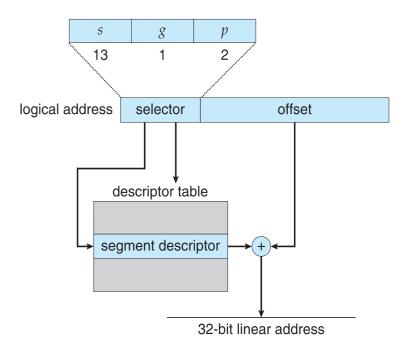

- Page tables can get huge using straightforward methods
 - E.g., for a 32-bit logical address space and page size of 4 KB (2^{12}), page table would have 1 million entries ($2^{32} / 2^{12} = 2^{20}$)
 - If each entry is 4 bytes that means 4 MB of physical memory for page table – don't want to contiguously allocate that
- Instead, split the page table into multiple levels and page out all but the outermost level

Two-level paging


- For example, given a 20 bit page number and a 12 bit page offset, split the page number into two equal sized parts of 10 bits each
 - NB. A 12 bit offset implies $2^{12} = 4096$ byte pages
 - There is no requirement that the two (or more) parts be equal sized
- The PTBR then points to the address of the outermost
 L1 page table and lookup proceeds by
 - The 10 bit p_1 value indexes into the L1 page table to obtain the address of the relevant page of the L2 page table
 - The 10 bit p_2 value then indexes into the L2 page table to obtain the address of the mapped frame
 - Finally the page offset d then indexes into the frame to obtain the intended byte
- This is a **forward mapped** page table

Larger address spaces

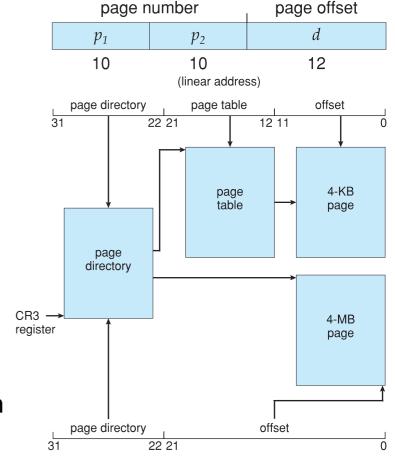
- For large address spaces e.g., 64 bit simple hierarchy is impractical
 - Either one or more layers remains too large,
 - Or the number of accesses to get to the target address becomes too large
- Non-examinable alternatives include
 - Hashed page tables, where the page number is hashed into a table and the chain followed until the specific entry is found
 - Inverted page tables, with an entry for each frame and a hash-table used to limit the search to one or a few entries, trading size for lookup latency
- Three **non-examinable** practical examples follow: Intel IA-32, Intel x86-64, and ARM


Example: Intel IA-32 architecture

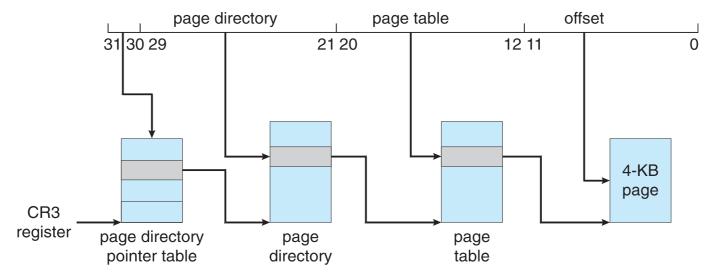
- Hybrid using segmentation with paging
 - Each segment up to 4GB, and up to 16,384 segments per process split into two equal partitions
 - First partition's segments are private to the process, kept in the Local Descriptor Table (LDT)
 - Second partition's segments are shared among all processes, kept in the Global Descriptor Table (GDT)
 - LDT and GDT entries are 8 bytes with info about a given segment including its base location and limit
- CPU generates a **logical address** which the segmentation unit translates to a **linear address** which the paging unit translates to a **physical**

address

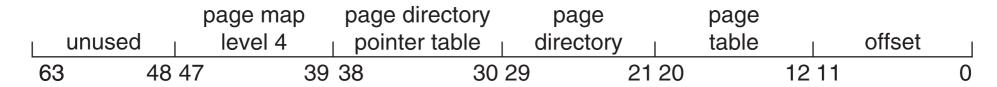
Example: Intel IA-32 architecture


- **Logical address** is a pair < *selector*, *offset* > where
 - the **selector** is a 16 bit number indicating segment number *s*, global/local indicator *g*, and protection bits *p*, and
 - the offset is a 32 bit number indicating the byte in the selected segment
- Generate linear address by
 - Six segment registers so can address six segments at any given time, and further six 8 bit microprogram registers hold the LDT/GDT descriptors
 - Segment register points to entry in LDT/GDT
 - Limit information validates the offset
 - If valid, offset is added to base giving linear address

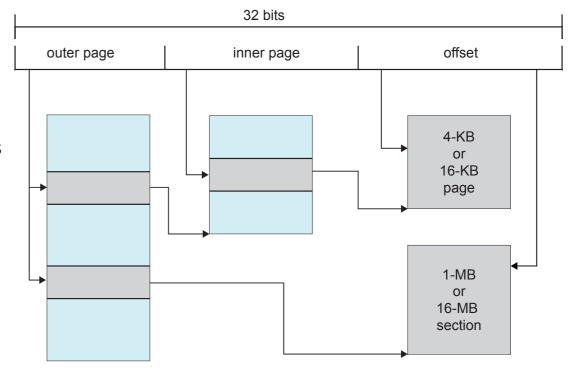
page number		page offset
p_1	p_2	d
10	10	12


Example: Intel IA-32 architecture

- Linear address is then resolved
 - If the page_size flag is not set, then standard 4kB pages are used with a two level lookup, with Intel referring to the (outermost) L1 table as the page directory and the L2 table as the page table
 - Otherwise 4MB pages and frames are used with the page directory pointing directly to the 4MB frame, bypassing the inner page table completely
- In the former case, a valid/invalid bit in the page directory entry indicates whether the inner page table is itself swapped out or not
 - If it is, the other 31 bits indicate the disk address from which to swap it in


Example: Intel Page Address Extensions (PAE)

- 32 bit address limits led Intel to create Page Address Extension (PAE) allowing 36 bit addresses ~ access to 64GB physical memory
 - Paging went to a 3-level scheme
 - Top two bits refer to a page directory pointer table
 - Page-directory and page-table entries moved to 64 bits in size


Example: Intel x86-64

- Current generation Intel x86 architecture
 - Developed by AMD, adopted by Intel
 - 64 bits is enormous 16 exabytes!
- In practice only implement 48 bit addressing
 - Page sizes of 4kB, 2MB, 1GB
 - Four levels of paging hierarchy
- Can also use PAE so virtual addresses are 48 bits but physical addresses are 52 bits

Example: ARM

- Modern, energy efficient, 32-bit CPU
 - Dominant mobile platform chip
 - E.g., Apple iOS and Google Android devices
- Paging structures
 - 4 kB and 16 kB pages
 - 1 MB and 16 MB pages called sections
 - One-level paging for sections, two-level for smaller pages
- TLB support in two levels
 - Outer level has two micro TLBs: one for data, one for instructions
 - Micro TLBs support ASIDs
 - Inner is single main TLB
- Lookup proceeds by
 - First check inner TLB
 - On miss, check outers
 - On miss, CPU performs page table walk

Summary

- Non-contiguous allocation
 - Address translation
 - Paging model
- Paging implementation
 - Free frames
 - Translation Lookaside Buffer (TLB)
 - Protection
 - Sharing

- Page table structure
 - Two-level page table
 - Larger address spaces
 - Examples: IA-32, x86-64, ARM