Overview of Natural Language Processing Part II & ACS L390 Lecture 11: Language Models

Yulong Chen and Weiwei Sun

Department of Computer Science and Technology University of Cambridge

Michaelmas 2024/25

Paradigms in NLP Research before 2017

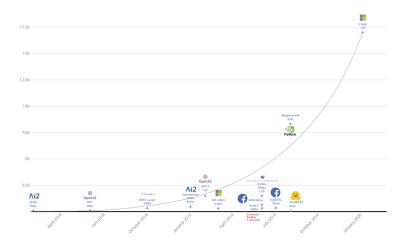
- Rule and Symbolics
 - Focus on how to better design rules.
- Statistic and Machine Learning
 - Focus on how to design model architectures, e.g., RNN vs Transformer.

Paradigms in NLP Research before 2017

- Rule and Symbolics
 - Focus on how to better design rules.
- Statistic and Machine Learning
 - Focus on how to design model architectures, e.g., RNN vs Transformer.
- Pre-training and Fine-tuning
 - Focus on how to obtain generalizable knowledge (pre-training), and how to efficiently adapt to downstream tasks (fine-tuning).

Paradigms in NLP Research before 2017

- Rule and Symbolics
 - Focus on how to better design rules.
- Statistic and Machine Learning
 - Focus on how to design model architectures, e.g., RNN vs Transformer.
- Pre-training and Fine-tuning
 - Focus on how to obtain generalizable knowledge (pre-training), and how to efficiently adapt to downstream tasks (fine-tuning).
- Prompting and Large Language Models
 - Focus on solving real-world problems (compared with traditional NLP tasks).



Lecture 11: Language Models

- 1. Pre-trained based NLP
- 2. Prompt learning and LLMs

Pre-trained based NLP

- Pre-training can be the process of a person learning through early education stages from infancy to high school. They learn foundational knowledge, and common sense.
- Fine-tuning can be the process of a person entering their high-level education they will be specialised in a programme. They learn professional knowledge.

- Pre-training can be the process of a person learning through early education stages from infancy to high school. They learn foundational knowledge, and common sense.
- Fine-tuning can be the process of a person entering their high-level education they will be specialised in a programme. They learn professional knowledge.
- Tuning a model from scratch (the second paradigm) can be asking a baby directly to study for their doctorate.

- Pre-training can be the process of a person learning through early education stages from infancy to high school. They learn foundational knowledge, and common sense.
- Fine-tuning can be the process of a person entering their high-level education they will be specialised in a programme. They learn professional knowledge.
- Tuning a model from scratch (the second paradigm) can be asking a baby directly to study for their doctorate.
- Given the same limited time and knowledge (a doctoral course), an undergrad can learn faster and better than a baby.

- Pre-training can be the process of a person learning through early education stages from infancy to high school. They learn foundational knowledge, and common sense.
- Fine-tuning can be the process of a person entering their high-level education they will be specialised in a programme. They learn professional knowledge.
- Tuning a model from scratch (the second paradigm) can be asking a baby directly to study for their doctorate.
- Given the same limited time and knowledge (a doctoral course), an undergrad can learn faster and better than a baby.
- But in practice, annotated data is small while raw data is large.

Suppose a model is a human ...

- Pre-training can be the process of a person learning through early education stages from infancy to high school. They learn foundational knowledge, and common sense.
- Fine-tuning can be the process of a person entering their high-level education they will be specialised in a programme. They learn professional knowledge.
- Tuning a model from scratch (the second paradigm) can be asking a baby directly to study for their doctorate.
- Given the same limited time and knowledge (a doctoral course), an undergrad can learn faster and better than a baby.
- But in practice, annotated data is small while raw data is large.

Can models learn general knowledge from raw text?

Self-supervised Learning

The main idea of self-supervised learning:

• Use the internal signal of a text as the supervising signal.

Self-supervised Learning

The main idea of self-supervised learning:

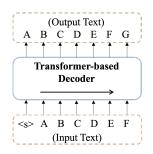
• Use the internal signal of a text as the supervising signal.

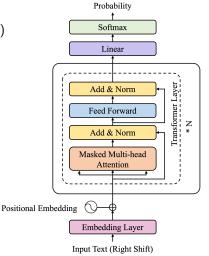
	Supervised	Self-supervised
Task	a specific task	re-construct the input
Label	human annotation	generate annotation using the data itself
Resource	limited	large

Decoder-only PLM: GPT

Improving Language Understanding by Generative Pre-Training (GPT)

- Architecture: Transformer decoder
- Pre-training Task:
 - Next Token Prediction (NTP)
- Pre-training Data:
 - BookCorpus

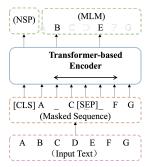


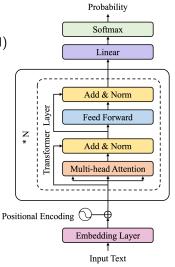


Encoder-only PLM: BERT

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

- Architecture: Transformer encoder
- Pre-training Task:
 - Masked Language Modeling (MLM)
 - Next Sentence Prediction (NSP)
- Pre-training Data:
 - BookCorpus and Wikipedia





6 of 22

Probability Softmax

Linear

Add & Norm

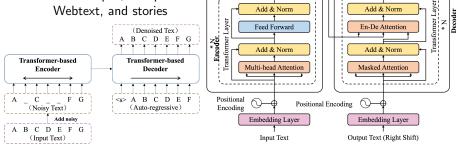
Feed Forward

Add & Norm

En-De PLM: BART

BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension

- Architecture: Transformer encoder-decoder
- Pre-training Task:
 - (1) Masking (2) Sentence Permutation
 - (3) Document Rotation (4) Token Deletion
 - (5) Text Infilling
- Pre-training Data:
 - BookCorpus, Wikipedia Webtext. and stories



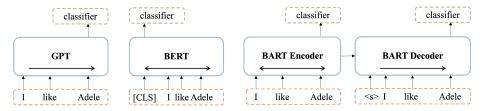
Add & Norm

Suppose we want to use PLMs for **a downstream task**, how can we do this?

Suppose we want to use PLMs for **a downstream task**, how can we do this?

Full Fine-tuning

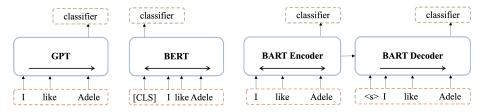
- Update all parameters of a PLM on downstream tasks.
- Case 1: Sentiment Analysis



Suppose we want to use PLMs for **a downstream task**, how can we do this?

Full Fine-tuning

- Update all parameters of a PLM on downstream tasks.
- Case 1: Sentiment Analysis

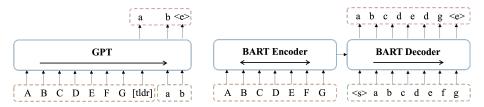


Trick: Continual pre-training (Reading).

After pre-training on large raw data, we fine-tune the PLM to a specific task.

Full Fine-tuning

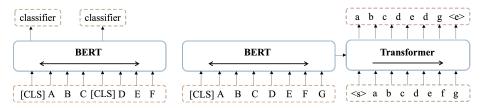
- Update all parameters of a PLM on downstream tasks.
- Case 2: Summarisation



Suppose we want to use PLMs for **a downstream task**, how can we do this?

Full Fine-tuning

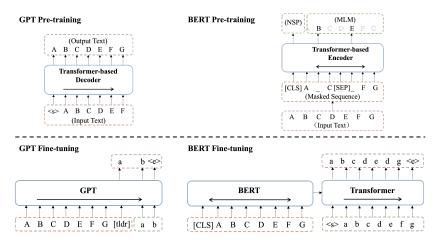
- Update all parameters of a PLM on downstream tasks.
- Case 2: Summarisation



Reading: Text Summarization with Pretrained Encoders

It is empirically considered that the Encoder models are better at NLU tasks, while Decoder and En-De models are better at NLG.

It is empirically considered that the Encoder models are better at NLU tasks, while Decoder and En-De models are better at NLG.

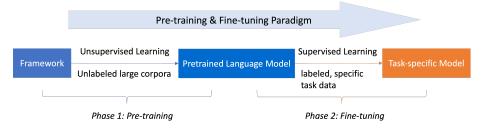


There is a gap between the language modeling task and downstream tasks.

Pre-trained based NLP

Although fine-tuning is less costly than pre-training (**data size**), it still cannot meet the increasing demand:

- Need to update all model parameters (still not cheap).
- One fine-tuned model for one specific task.
- Cannot be used for low-resource settings.



Prompt Learning and Large Language Models

Main idea of prompt learning

• Adapting a downstream task into a language modeling format.

Main idea of prompt learning

• Adapting a downstream task into a language modeling format.

Take sentiment analysis (SST2) for example:

Given a movie review X as the input, e.g.:
X = "it 's about issues most adults have to face in marriage and i

think that 's what i liked about it – the real issues tucked between the silly and crude storyline"

the task asks a model to generate a binary label (positive or negative).

Main idea of prompt learning

• Adapting a downstream task into a language modeling format.

Take sentiment analysis (SST2) for example:

 Given a movie review X as the input, e.g.: X = "it 's about issues most adults have to face in marriage and i think that 's what i liked about it – the real issues tucked between the silly and crude storyline"

the task asks a model to generate a binary label (positive or negative).

• We can define a pattern function for NTP PLM (e.g., GPT):

 $P(\mathbf{X}) = \mathbf{X}$. In summary, this movie is

(1)

Take sentiment analysis (SST2) for example:

• The input is converted as:

 $P(\mathbf{X}) =$ "it 's about issues most adults have to face in marriage and i think that 's what i liked about it – the real issues tucked between the silly and crude storyline. In summary, this movie is"

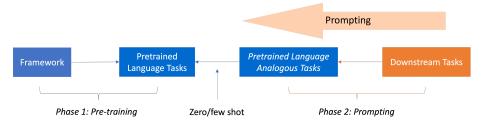
• Then, we define a verbalizer function:

$$V("good") = pos$$
 (2)
 $V("bad") = neg$ (3)

• Finally, we can ask GPT (θ) to directly perform NTP:

$$p(pos|\mathbf{X}) = \theta(y = "good"|P(\mathbf{X}))$$
(4)
$$p(neg|\mathbf{X}) = \theta(y = "bad"|P(\mathbf{X})$$
(5)

- Make better use of PLM's pre-training knowledge.
- Zero-shot/few-shot Performance.
- One model for multiple NLP tasks (one PLM with multiple prompts).
- Unify NLP tasks in an NLG manner.



Reading: Language Models are Few-Shot Learners and Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference

Scaling from PLMs to LLMs

Intuitively:

- Model of larger parameters has better performance.
- Model trained on more data has better performance.

Scaling from PLMs to LLMs

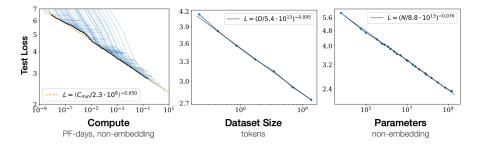
Intuitively:

- Model of larger parameters has better performance.
- Model trained on more data has better performance.

But in practical:

- But training large models on small data can be **overfitting**, and training small models are large data can be **underfitting**. How can we find the balance?
- Training budgets are **limited**. How can we make the best use of training time to maximize performance?

Scaling from PLMs to LLMs



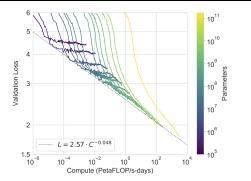
Main findings:

- Model performance L depends the most on amount of compute (C), size of datasets (D) and parameters (N), and each has a power-law relationship with L.
- Efficiency on the ratio of $N^{0.74}/D$.
- When C is fixed, increase large N with small D.

Reading: Scaling Laws for Neural Language Models

Scaling from PLMs to LLMs From GPT-1 to GPT-3:

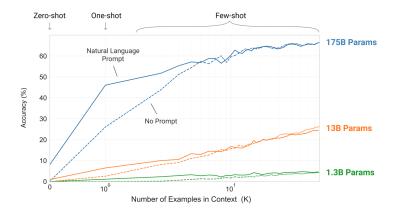
	GPT-1	GPT-2	GPT-3
Model	Transformer	Transformer	Transformer
Parameter	120M	1.5B	175B
Data Size	1.3B	10B	300B
Emergent	No	No	ICL



In-Context Learning (ICL) in GPT-3

The ICL is regarded as an **emergent ability** of GPT-3.

- Different from task prompt (task descriptions) & Can be combined together with prompts.
- New few-shot learning paradigm (pattern recognition at inference time).



Although GPT-3 is very strong at standard NLP tasks (e.g., text classification), it shows poor performance on **complex tasks**.

Pre-training on Code.

- Code-trained model shows better performance on other tasks (in particular the mathematical and logical reasoning tasks). Why?
- Many assume that *Step-by-step* reasoning (Chain-of-Thoughts, CoT) is an emergent ability from code training.

Standard Prompting	Chain-of-Thought Prompting
Model Input	Model Input
Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?	Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
A: The answer is 11.	A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to	
make lunch and bought 6 more, how many apples do they have?	Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?
Model Output	Model Output
A: The answer is 27. X	A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9. ✓

Reading: Evaluating Large Language Models Trained on Code and Chain-of-Thought Prompting Elicits Reasoning in Large Language Models

Although GPT-3 is very strong at standard NLP tasks (e.g., text classification), it shows poor performance on **complex tasks**.

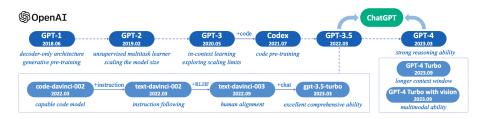
- Standard prompting on GPT-3.
 - GPT-3 may not understand the prompt well.
 - GPT-3 cannot perform complex task.

Tuning with Instructions.

- Explicit describe the goal of tasks in natural language:
 - "Is the sentiment of this movie review positive or negative?"
 - "Translate 'how are you' into Chinese."

Finetune on many tasks ("instruction-tuning")

Reading: Finetuned Language Models Are Zero-Shot Learners



More interesting topics

- Multi-modal LLMs
- LLMs as Agents (with Tools)
- Retrieval-Augmented Generation
- Hallucination in LLMs
- etc

Reading

 Chapter 3: N-gram Language Models. D Jurafsky and J Martin. Speech and Language Processing
Other reading papers are embedded with hyperlinks in the previous slides of this lecture.